一维缺陷光子晶体及其温度特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,光子晶体的理论研究、结构设计和应用技术已成为光电子领域的研究热点。研究的核心技术是设计可以禁止或允许某一方向、某些频率光信号传输的光子晶体结构。由于光子晶体的特点,使得光子晶体在许多方面有着重要的应用,如光子晶体激光器、光子晶体滤波器、光子晶体光纤、光子晶体偏振片、光子晶体天线及光子激光二极管等。随着激光技术和无源器件及光电转换器件的发展与进步,光子晶体在传感领域得到了许多应用的机会,特别在传感器的更新和制作上,出现了一些新型光子晶体传感器,如光子晶体压力传感器、光子晶体温度传感器、光子晶体扭矩传感器、光子晶体生物传感器等,拓展了光子晶体的应用领域。本文主要对几种结构一维缺陷光子晶体的温度特性进行了理论和实验研究,具体内容包括:
     介绍了电磁波在光子晶体中传输的模型,分析了光子晶体固体能带的形成及分析方法,对几种光子晶体传输特性的分析方法进行了详细讨论,并采用传输矩阵法分析了构成光子晶体的材料与几何尺寸对其光学传输特性的影响,包括介质的折射率的变化、周期数和入射光角度的变化对经典的一维光子晶体的传输特性影响,介质折射率变化、周期数、缺陷层的光学厚度的变化对一维缺陷光子晶体的传输特性的影响及含负折射率介质的啁啾与变迹一维光子晶体的传输特性。
     在分析一维缺陷光子晶体光学传输特性时,重点阐述了缺陷层光强增强因子与介质的折射率比成正比关系,微腔的品质因子受缺陷层的调制,谐振腔光品质因子与微腔的能量损耗成比例关系。因此,在实验制备一维缺陷光子之前,对三种典型的一维缺陷光子晶体的传输特性进行了大量的仿真实验,包括低折射率介质为SiO_2,缺陷层为Si的Si-Si-SiO_2光子晶体,低折射率介质为SiO_2,缺陷层为SiO_2的Si-SiO_2-SiO_2光子晶体和低折射率介质为空气,缺陷层为Si的光子晶体Si-Si-Air。并分别进行了不同周期的透射谱和反射谱特性分析,发现当光子晶体的周期数增加时,谐振峰的透射率都会减小,这是由于增加了光程导致光的衰减增大,且透射谱的禁带宽度有微小的变化规律。对于相同介质周期数相同的光子晶体,缺陷层为高折射率介质的谐振峰透射率比缺陷层为低折射率介质的谐振峰透射率大,同样是由于相同的光学厚度的缺陷层,低折射率的光程大导致损耗增大。
     在一维缺陷光子晶体的制备过程中,由于光子晶体的几何尺寸只有微米数量级,因此为了解决不同时刻刻蚀得到的光子晶体定位问题,在芯片的一些位置设置一系列标记,且为了使这些标记处于波导结构的初始位置,标记必须和波导结构平行。实际刻蚀中,标记是由大量的与基地硅良好粘贴的50nm厚度钛上沉积Au介质的正方形构成,且Au标记在SEM下必须明显容易捕捉。本文制备了硅-空气介质的周期为6、8和10三种一维缺陷光子晶体,通过SEM图像可以看出,采用电子束曝光制版技术(EBL)和感应耦合等离子体刻蚀技术(ICP)制作的基于硅波导的一维缺陷光子晶体的结构非常理想,刻蚀过程的良好控制使制作出的光子晶体的边缘非常平滑。
     根据谐振腔理论,建立了一维缺陷光子晶体的温度特性数学模型,在上述研究的基础上,构建了分析光子晶体温度特性的实验模式,设计了基于一维缺陷光子晶体的温度特性及信号分析实验系统,编制了相关的数据采集、处理和谱型分析软件。采用该系统分别对硅—石英和硅—空气两种结构一维缺陷光子晶体的低温特性和高温特性进行了实验,获取了相应的实验数据和透射谱,并将实验数据与理论分析进行了对比,验证了理论的正确性。
In recent years, the theoretical research, structure design and application technology of photonic crystal (PC) have become a hot research topic in the field of photoelectron. It is the major technology to design the structure of photonic crystal which in the optical signal with certain direction or frequency can be forbidden or transmitted. Due to these characteristics, PC has been applied in a wide variety of areas, such as photonic crystal lasers, filter, fiber, polarizer, antennas and laser diode and so on. With the development of the laser technology, passive devices and photoelectric conversion devices, PC gets lots of chance in the field of sensing. Especially, in the sensors’innovation and manufacture aspects, many novel photonic crystal sensors have appeared, such as photonic crystal pressure sensor, temperature sensor, torque sensor and biological sensor etc, which expand the application range of PC. In this dissertation, the temperature properties of several structures of one-dimensional (1D) PC with defect were studied theoretically and practically. The primary content includes:
     Introducing the propagation model of the electromagnetic wave in PC; analyzing the cause of the production and analyzing methods of the solid band; discussing in detail several methods used to analyze the propagation property of PC; analyzing the influence of the materials and geometry size on propagation property by using the transfer matrix method including both the influence of propagation property of classical 1D PC on the refraction index, the number of periods and the incident angle and the influence of propagation property of 1D PC with defect on the refraction index, the number of the period and the optical depth of the defective layer; studying the propagation property of chirped PC and apodized PC with negative refraction media.
     As analyzing the propagation property of 1D PC with defect, we expound mainly the proportional relation between the intensity enhancement factor of defective layer and the material refractive index, the quality factor of micro-cavity modulated by defective layer and the proportional relation between the optical quality factor of the resonator and the energy loss of the micro-cavity. Therefore, before experimental manufacture of the 1D PC with defect, many simulation experiments about the propagation property of the three kinds of classical 1D PC with defect have been implemented. These three kinds of classical 1D PC with defect are Si-Si-SiO_2 (the lower refractive index material is SiO_2 and the defective material is Si), Si-SiO_2-SiO_2 (the lower refractive index material and defective material are SiO_2) and Si-Si-Air(the lower refractive index material is air and defective material is Si ). Analyzed the transmission spectrum and reflection spectrum with different periods respectively then we found that on the increase of the number of the periods, the transmittance of resonant peak decrease correspondingly due to the increasing of the light energy loss resulting from the increasing of propagation distance and the tiny change of the band width. For PC with the same materials and periods, the transmittance of resonant peak in the defective mode with higher refractive index is larger compared with it in the defective mode with lower refractive index .This is also due to the larger light energy loss resulting from the larger propagation distance in the defective mode with lower refractive index.
     In the 1D PC with defect manufacture process, as a result of the micro order of PC’s size, We must set a series of marks on chips in order to deal with the location problem of PC during etching at the different time and make the marks be parallel to the waveguide structure in order to place these marks at the initial position of the waveguide structure. During practical etching, marks are many squares made by titanium of 50-nm in thickness witch to Au deposited and the basis of Si stuck well and marks Au must be captured easily under SEM. We manufactured three kinds of 1D PC with defect in the modes of Si-Air which have periods of 6,8,10 respectively. Through the SEM images, we can see that 1D PC with defect structures based on silicon waveguide made by the electron beam lithography technology (EBL) and the induction coupling plasma etching technology (ICP) are very ideal. The good control during the etching process makes the edge of the made PC smooth.
     According to the resonant cavity theory, the mathematical model of the temperature property of 1D PC with defect was analyzed. On the base of the studies above, we have designed experimental systems based on the temperature property and signal analysis about 1D PC with defect, the experimental model to analyzing the temperature property of PC and compiled the software to collect data, deal with data and analyze spectrum. Applying this system, we carried out experiments with the structures of Si-SiO_2 and Si-Air 1D PC with defect about low and high temperature properties and got the experiment data and transmission spectrum. Compared the experiment data with theory studies, it came to the conclusion that the theory is correct.
引文
1 E.Yablonovitch. Inhibited Spontaneous Emission in Solid-state Physics and Electronics. Phys. Rev. Lett.,1987,58(20):2059-2062
    2 S.John.Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Phys. Rev. Lett.,1987,58(23):2486-2489
    3 S.John. Localization of Light. Physics Today,1991,44(5):32-40
    4 K.M.Ho. Photonic Band Gaps in Three Dimensions:New Layer-By-Layer Periodic Structures.Solid State Commun.,1994,89(5)5:413-416
    5 E.Yablonovitch. Photonic Band Structure: The Face-Centere-Cubic Case Employing Monsphericcal Atoms.Phys.Rev.Lett.,1991,67(12): 2295-2298
    6 J.M. Drake, A.Z. Genack. Observation of Nonclassical Optical Diffusion. Phys. Rev.Lett., 1989,63(3):259-262
    7 S.Fan. Design of Three-Dimensional Photonic Crystals at Submicron Length- scales.Appl.Phys.Lett.,1994,65(11):1466-1468
    8 E.Ozbay. Measurement of A Three-Dimemsional Photonic Band Gap in A Crystal Struc- ture Made Of Dielectric Rods. Phys.Rev.B.,1994,50(3):1945-1948
    9 H.Sozuer,J.Dowling.Photonic Band Calculations for Wood Pile Structures. J.Mod.Opt., 1994,41(2):231-239
    10 Dario Gerace, Lucio Claudio Andreani. Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs. Fundamentals and Applications,2005,3:120-128
    11 P.Pieranski. Colloidal crystals. Contemp.Phys.,1983,24(1):25-73
    12 Peichen Yu, Juraj Topol’ancik, Pallab Bhattacharya. Characteristics of a Photonic Crystal Defect Waveguide-Coupled Quantum-Dot Photodiode. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,2004,40(10):1417-1422
    13 Olga N. Kozina, Leonid A. Melnikov.Laser action and gain and attenuation properties of the 1D photonic crystal structure with active and passive layers. Journal of Non-Crystalline Solids,2007,353:968-970
    14 S.Gupta. Infrared Filters Using Metallic Photonic Band Gap Structures on FlexibleSubstrates.Appl.Phys.Lett.,1997,71(17):2412-2414
    15 X.Y.Lei. Novel Application of A Perturbed Photonic Crystal: High-Quality Filter. Appl.Phys.Lett.,1997,71(20):2889-2891
    16 H.S.Sozuer,J.W.Haus,R.Inguva. Photonic Bands: Convergence Problems with The Plane- Wave Method.Phys.Rev.B.,1992,45(24):13962-13972
    17 V.I.Kopp. Low-Threshold Lasing at The Edge of Photonic Stop Band in Cholesteric Liquid Crystals. Opt.Lett.,1998,23(21):1707-1709
    18 I.I.Tarhan, G.H.Watson. Photonic Band Structure of Fcc Folloidalcrystals. Phys.Rev.Lett., 1996,76(12): 315-318
    19 S.Fan. High Extraction Efficiency of Spontaneous Emission from Slabs of Photonic Crystals. Phys.Rev.lett.,1997,78(17):3294-3297
    20 W.L.Vos, R.Sprok. Strong Effects of Photonic Band Structures on The Diffraction of Colloidal Crystals.Phys.Rev.B.,1996, 53(24): 16231-16235
    21 Karri Varis, Marco Mattila. Reflection of focused beams from opal photonic crystals. Optics Express,2005,13(7):2653-2667
    22 Pierre Viktorovitch. Photonic crystals: basic concepts and devices. C. R. Physique,1997, 8: 253–266
    23 Young-Kyoung Choi et al.Improved transmittance in one-dimensional metallic photonic crystals. Physica B, 2003, 338 :132-135
    24王宏.一维光子晶体缺陷模激光器的放大特性.光学学报,2006,26(11): 1691-1697
    25陈慰宗.一维光子晶体的有效折射率及色散特性.光子学报, 2002,31(9):1124-1127
    26 A. Rostami. Generalized Fibonacci quasi photonic crystals and generation of superimposed Bra gg Gratings for optical communication. Microelectronics Journal, 2006,37:897-903
    27徐善驾,寇学坤,刘健.准周期多层平板介质光栅色散特性的数值分析.电子学报,1999,27 (2):132-134
    28 M.M.Voronova.Photoluminescence spectroscopy of one-dimensional resonant photonic crystals. Journal of Luminescence,2007,125:112-117
    29顾国昌.一维光子晶体材料中的光学传输特性.光学学报,2000.20(6):728-734
    30陈慰宗.一维光子晶体与光学多层介质膜.光子学报,2001,30(9):1081- 1084
    31 Zhi-Fang Sang,Zhen-Ya Li.Properties of defect modes in one-dimensional photonic crystalscontaining a graded defect layer. Optics Communications,2007,273: 162-166
    32 Garrett J. Schneider et al. Defect modes in coaxial photonic crystals. JOURNAL OF APPLIED PHYSICS,2001,90(6):2642-2649
    33 Elissavet P. Kosmidou. Analysis of Tunable Photonic Crystal Devices Comprising Liquid Crystal Materials as Defects. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2005, 41(5):657-665
    34 Toshihiko Baba. Light Localizations in Photonic Crystal Line Defect Waveguides. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,2004,10(3):484-491
    35 Zhaofeng Li.A proposal for low cross-talk square-lattice photonic crystal waveguide intersection utilizing the symmetry of waveguide modes.Optics Communications,2007,273: 89-93
    36 YuanFong Chau. Efficient mode coupling technique between photonic crystal hetero- structure waveguide and silica waveguides. Optics Communications,2005,253:308–314
    37常伟,范广涵.光子晶体的发展及制备研究.华南师范大学学报,2006,(1):48-53
    38 V.A.Tolmachev.1D photonic crystal fabricated by wet etching of silicon. Optical Materials,2005,27:831-835
    39许兴胜.半导体量子阱材料微加工光子晶体的光学特性.物理学报,2006,55(3): 1248-1252
    40许兴胜,张道中.二维光子晶体微加工方法的研究与进展.科学通报,2006,51(20):2337- 2346
    41杜伟.高质量二维光子晶体结构刻蚀掩膜版的制作方法.半导体学报,2006,27(9):1640- 1644
    42 Ekmel Ozbay,Irfan Bulu,Koray Aydin,Humeyra Caglayana et al.Physics and applications of photonic crystals. Photonics and Nanostructures,2004,2:87-95
    43 Jianhua Yuan,Ya Yan Lu.Computing photonic band structures by Dirichlet-to-Neumann maps. Optics Communications,2007,273: 114-120
    44 E.Galindo-Linares,P.Halevi,Ad′an S.S′anchez. Tuning of one-dimensional Si/SiO2 photonic crystals at the wavelength of 1.54μm. Solid State Communications,2007,142: 67-70
    45 Tomoyuki Takahata. Transmittance tuning of photonic crystal reflectors using an AFM cantilever. Sensors and Actuators, 2006,128:197-201
    46 A. Ferrando,J.J. Miret.Single-Polarization Single-Mode Intraband Guidance in SupersquarePhotonic Crystals Fibers. Applied Physics Letters,2001,78(21): 3184-3186
    47 T. A. Birks, P. J. Roberts, P. S. J. Russell, et al. Full 2-D Photonic Bandgaps in Silica /Air Structures. Electronics Letters, 1995, 31(22): 1941-1943
    48 R. F. Cregan, B. J. Mangan, J. C. Knight, et al. Single-Mode Photonic Band Gap Guidance of Light in Air. Science, 1999, 285: 1537-1539
    49 D. C. Allan, J. A. West, J. C. Fajardo. Photonic Crystal Fibers: Effective-Index and Band- Gap Guidance. C. M. Soukoulis, Photonic Crystals and Light Localization in the 21 st Cen- tury, Kluwer Academic Publishers, Netherlands,2001: 305-320
    50 C. M. Smith, N. Venkataraman, M. T. Gallagher. Low-Loss Hollow-Core Silica/Air Photo- nic Bandgap fibre. Nature, 2003, 424(6949): 657-659
    51 J.N.Munday,W.M. Robertson.Observation of negative group delays within a coaxial photo- nic crystal using an impulse response method.Optics Communications,2007,273: 32-36
    52 Zhenfeng Xu,Ping Su,Qingsheng He et al.Compact delay structure based on photonic crystal waveguide loop. Optics Communications,2007,272:529-533
    53 Munazza Zulfiqar Ali, Tariq Abdullah.Investigation of the linear and nonlinear properties of a Drude model photonic crystal, Physica B,2007,390:45-51
    54李志远.二维各向异性光子晶体完全带隙的增宽.物理,1999, 28 (4):193-195
    55冯立娟.光子晶体耦合腔波导的色散特性.物理学报,2005,54(5):2102-2105
    56包秀龙,李征帆,孙晓玮.采用等效介电常数时域差分法分析二维介质型光子晶体色散特性.上海交通大学学报,2004,38(增刊):133-136
    57段晓峰.一维光子晶体的光学传输特性分析.光子学报,2003,32(9):1086-1089
    58陈宪锋.一维光子晶体的缺陷模特性研究.光子学报,2005,34(12):1876-7880
    59顾培夫.光子晶体中的能带结构及其光的传播.光学仪器,2005,27(3):55-59
    60李岩.一种类分形结构光子晶体的能带.光子学报,2004,33(10):1118-1121
    61陈慰宗.有限周期的一维光子晶体的透射率及其禁带.光子学报,2003,32(1):101-105
    62 Jian Li, Weihuan Huang, Yanchun Han. Tunable photonic crystals by mixed liquids. Colloids and Surfaces A: Physicochem, 2006,279 :213-217
    63 Pochi Yeh, Amnon Yariv, and Chi-Shain Hong. Electromagnetic propagation in periodic stratified media. I. General theory.1977,67(4):423-438
    64 V.A.Kosobukin.SURFACE-ENHANCED MAGNETO-OPTICAL EFFECTS IN FERROM-AGNETIC SUPERLATTICES. Solid State Communications,1997,101(7):497-501
    65 M. Kalafi, A. Soltani-Vala, J. Barvestani. Surface optical waves in semi-infinite one-dimensional photonic crystals with a thin nonlinear cap layer. Optics Communications, 2007,272:403-406
    66 Tushar Prasad, Daniel M. Mittleman, Vicki L. Colvin.A photonic crystal sensor based on the superprism effect. Optical Materials,2006,29:56-59
    67 Michael C. Parker,Stuart D. Walk. An isomorphic Fourier transform approachto light propagation in AWGs, FBGs, and photonic crystals. Information Sciences,2003,149:41–51
    68 D.M. Sedrakian. Photonic band gap in 1D Photonic crystals with gradient profile of pitch and amplitude of modulation. Optics Communications,2007,271:451-456
    69 R. Uitham,B.J. Hoenders. The Sommerfeld precursor in photonic crystals. Optics Communi- cations ,2006,262:211-219
    70 Arvind Narayanaswamy,Gang Chen.Thermal radiation in 1D photonic crystals. Journal of Quantitative Spectroscopy &Radiative Transfer,2005,93:175-183
    71安丽萍,刘念华.一维光子晶体中多缺陷耦合导致的杂质带.光子学报, 2003,32(9): 1083- 1085
    72于天宝,刘念华.含具有双增益线原子的光子晶体中的光传播.量子光学学报, 2004,10(1):34-37
    73刘启能.一维光子晶体禁带宽度对折射率的响应.重庆工商大学学报.2006,23(6): 400-403
    74李蓉.一维光子晶体带隙结构对不同偏振态的角度和波长响应.物理学报,2004, 53(8):2520-2525
    75张会云.无序一维三元光子晶体的能带特性研究.光电子·激光,2005,16(1):67-70
    76张会云.一维无序结构光子晶体的能带特性研究.量子光学学报,2004,10(2):77-81
    77刘启能.一种简便的研究一维光子晶体禁带特征的新方法.光子学报,2007,36(6): 1031-1034
    78 Francisco Villa, J.A. Gaspar-Armenta, F. Ramos-Mendieta. One-dimensional photonic crystals: equivalent systems to single layers with a classical oscillator like dielectric function. Optics Communications ,2003,216:361-367
    79娄淑琴,王智,王目光等.一维光子晶体传输特性及其在光传感器中的应用.光电子.激光,2003,11(14):1152-1156
    80 A. Huttunen, P. Torma.Band structures for nonlinear photonic crystals. Journal of Applied Physics,2002 ,91:3988-3991
    81 K. Kertesz. Photonic crystal type structures of biological origin: Structural and spectral characterization. Current Applied Physics,2006,6:252-258
    82 Virginie Lousse. Angular and polarization properties of a photonic crystal slab mirror. OPTICS EXPRESS,2004,12(8):1575-1582
    83 K. Varis, A. R. Baghai-Wadji. A Novel 3D Pseudo-spectral Analysis of Photonic Crystal Slabs. ACES JOURNAL,2004,19(1b):101-111
    84 K. Varis, A. R. Baghai-Wadji. A 2D Pseudo-Spectral Approach of Photonic Crystal Slabs. ACES Journal, 2005,20(2):107-118
    85 Michele Belotti.Fabrication of SOI photonic crystal slabs by soft UV-nanoimprint lithography. Microelectronic Engineering,2006,83:1773-1777
    86 K.Varis.Pseudo-spectral analysis of radially-diagonalized Maxwell’s equations in cylindrical co-ordinates. Optics Express, 2003,11(23): 3048-3062
    87 W. Belhadj. Thermal properties of photonic crystals1. Synthetic Metals,2005.151:6-9
    88 Zhi-Fang Sang,Zhen-Ya Li. Optical properties of one-dimensional photonic crystals containing graded materials. Optics Communications,2006,259:174-178
    89 Huiping Tian,Jian Zi. One-dimensional tunable photonic crystals by means of external magnetic fields.Optics Communications,2005,252:321-3
    90 S.Fan. High Extraction Efficiency of Spontaneous Emission from Slabs of Photonic Crystals. Phys.Rev.lett.,1997,78(17):3294-3297
    91 V.A.Kosobukin.Optics of circularly polarized light waves in one-dimensional magneto- photonic crystals:Theory. Solid State Communications,2006,139:92-96
    92 Xue-Hua Wang, Ben-Yuan Gu, Yuri S. Kivshar. Spontaneous emission and lame shift in photonic crystals. Science and Technology of Advanced Materials2005,6:814-822
    93 Ch.Sh. Feng. Resonant modes in quantum well structure of photonic crystals with different lattice constants. Solid State Communications,2005,135:330-334
    94 P. Halevi, Ada′n S. Sa′nchez. Spontaneous emission in a high-contrast one-dimensional photonic crystal. Optics Communications,2005,251:109-114
    95 Geoffrey I.N. Waterhouse,Mark R. Waterland. Opal and inverse opal photonic crystals: Fabrication and characterization. Polyhedron 2007,26:356-368
    96 Jae-Soong I, Yeonsang Park, Heonsu Jeon. Optimal Design for One-Dimensional Photonic Crystal Waveguide. JOURNAL OF LIGHTWAVE TECHNOLOGY,2004,22(2):509-513
    97 Chigrin D N, Lavrinenko A V,et al. Observation of Total Omnidirectional Reflection From A One-Dimensional Dielectric Lattice. Appl.Phys.A.,1999,68(1):25-28
    98毕岗,王华娟,杨冬晓等.变迹和啁啾光子晶体的特性研究.光学学报,2005,25(7): 990-993
    99 Timothy M. Miller. Fabrication of a micro-scale, indium-tin-oxide thin film strain-sensor by pulsed laser deposition and focused ion beam machining. Sensors and Actuators A,2003,104:162-170
    100 Juan A. Monsoriu et al. Sloped-Wall Thin-Film Photonic Crystal Waveguides. IEEE PHOTONICS TECHNOLOGY LETTERS,2005,17(2):354-356
    101陈宪锋,沈小明,蒋美萍等.负折射率缺陷层光子晶体的缺陷模和光学增强.光电子.激光,2005,16(11):1342-1345
    102衣红钢,巩宪锋,王长松.高灵敏度光纤光栅温度传感器的研究.传感器与微系统,2006,25 (8):10-14
    103尹承平,刘念华.含负折射率材料的一维光子晶体的光学传输特性.发光学报,2005,26(2): 173-177
    104石宗华,耿继国,闫珂柱.含负折射率材料的一维光子晶体缺陷模式的研究.量子光学学报,2007,13(2):129-133
    105欧阳征标.一维缺陷光子晶体的模式特性研究.光电子·激光,2005,16(1):63-66
    106欧阳征标.光子晶体微谐振腔的调谐特性.光电子·激光,2005,16(4):399-408
    107 Ali E. Aliev et al.Thermal properties of carbon inverse opal photonic crystals. Journal of Luminescence,2007,125:11-17
    108刘建国.微结构光纤光栅谐振峰的分析.激光与红外,2006,36(5):369-373

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700