飞轮电池磁悬浮支承系统理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞轮电池由于具有一系列独特的性能,已经成为电池行列一支新生的力量,并在许多方面有取代化学电池的趋势。随着新型复合材料和稀土永磁材料、电机技术、磁悬浮技术和电力电子技术的飞速发展,其应用涉及到航空航天、电动汽车、分布式发电系统、电力质量与蓄能发电、不间断电源等等领域。本文对飞轮电池系统方案、磁悬浮支承系统的理论与计算方法和飞轮电池在分布式发电中的应用等方面进行了全面、系统的研究。
    本文所做工作和创新主要表现在如下几个方面:
    提出了一种新型的磁悬浮轴承(本文称它为电动磁力轴承)。对电动磁力轴承的工作机理、转子受力、轴承刚度以及稳定性等方面进行了深入的理论研究,提出了电动磁力轴承的悬浮力、刚度、最低稳定运转转速和临界阻尼计算的理论和方法。
    全面系统地提出了永磁体空间磁场计算的理论与方法。分别利用永磁体的两种等效物理模型(等效磁荷模型和等效电流模型),推导出永磁体空间磁场计算的数学表达式,还对具有对称形体的永磁体推导出其轴线上磁场计算的解析式。利用有限元理论,提出了包括非均匀各向异性介质在内的永磁体空间磁场计算的理论和方法。
    提出了永磁磁力轴承的构形综合,发展和完善了磁力轴承悬浮力计算的理论和方法。按照拓扑学理论研究了永磁磁力轴承的构形综合,给出了几种常用的永磁轴承构形。利用并矢、矢量和张量运算理论推导出Maxwell磁场张量,发展和完善了基于Maxwell磁场张量的永磁轴承悬浮力计算的理论和方法。利用虚功原理,结合有限元理论和矢量微分运算法则,发展和完善了基于虚功原理的永磁轴承悬浮力计算的理论和方法。
    提出了永磁磁力轴承刚度计算的理论和方法。利用标量和矢量的微分运算法则,结合有限元理论,给出了永磁轴承刚度计算的理论和方法,同时对平面磁隙和锥面磁隙两种永磁轴承的轴承特性进行了对比分析。
    利用电动磁力轴承和锥面磁隙的永磁轴承,提出了用于飞轮电池转子支承的一种全新的磁悬浮支承系统方案。结合分布式发电,提出了用飞轮电池调节小型太阳能发电站输出特性的系统控制方案;分析了用正弦波脉宽调制(SPWM)原理调节电动机/发动机输入/输出电压的幅值、频率和波形的原理和方法。以民用家庭2kW负载为例,仿真了飞轮电池储能变化、电动机/发电机的功率变化以及飞轮转子的转速变化。
Owing to many unique performances, flywheel battery has been becoming a new member of the battery family, and has been taking the place of the chemical battery in many aspects. Along with the fast development of new composite materials, rare earth permanent magnet, electrical machine technology, magnetic suspension technology and power electronics, its application has involved aerospace, electric vehicles, distributing power generation system, electric power quality and energy storage generation, uninterruptible power supplies (UPS), and so on. This paper goes deep into a thorough research on the system scheme of the flywheel battery, theories & calculation methods of the magnetic suspension system, and its application to the distribution generation.
    The primary innovations of this paper are as follows:
    A new-type magnetic bearing is proposed, and is called as the electromotive magnetic bearing. Its operational principle, rotor’s magnetic force, bearing’s stiffness and stability, and so on, are studied in detail. The calculation theories and methods of the suspension force, stiffness, lowest rotating speed and critical damping on the electromotive magnetic bearing are proposed.
    The theories and methods on the spatial magnetic field’s calculation of the permanent magnet are systemically presented. The integral formulae of the spatial magnetic field’s calculation on the permanent magnet are derived according to equivalent magnetic-charge model and equivalent electric-charge model respectively, and the analytic formulae of the spatial magnetic field’s calculation on the symmetrical permanent magnet are derived along their axes. By use of FEM, the theory and method on the spatial magnetic field’s calculation on the inhomogeneous, anisotropic medium is presented.
    The configuration synthesis is presented, and theory & method of suspension force’s calculation on the permanent magnetic bearing are proposed. According to topology, studies the configuration synthesis of the permanent magnetic bearing, and presents a few kinds of common configurations. Magnetic Maxwell stress tensor is derived by use of vector, dyadic and tensor operation, and the computing theory & method of the suspension force on the permanent magnetic bearing is developed and perfected according to Maxwell stress tensor. Combined with FEM and vector differential operation, the computing theory & method of the suspension force on the permanent magnetic bearing is developed and perfected according to virtual work principle.
    
    Theory & method of stiffness calculation on the permanent magnetic bearing are presented. By use of scalar and vector differential operation, combined with FEM, theory & method of stiffness calculation on the permanent magnetic bearing are presented. By the examples of the permanent magnetic bearing, the bearing performances with a common structure and a cone-shaped structure are analyzed respectively.
    A new-type magnetic suspension support system that is used to suspend the rotor of the flywheel battery is proposed, which is made up of the electromotive magnetic bearing and the permanent magnetic bearing with a cone-shaped magnetic gap. The system control scheme of the output on the solar energy power plant involving the flywheel battery is proposed, and the principle and method of SPWM used to adjust the breadth, frequency and waveform of the output/input voltage on the motor/generator are analysed. By the example of the civil house with 2kW load, simulate the energy variation of the flywheel battery, the power variation of the motor/generator and the speed variation of the rotor.
引文
David A. Christopher, Raymond Beach. Flywheel Technology Development Program for Aerospace Applications. IEEE AES Systems Magazine, June 1998, pp. 9-14
    Jack G. Bitterly. Flywheel Technology Past, Present, and 21st Century Projections. IEEE AES Systems Magazine, August 1998, pp. 13-16
    Michael E. Bowler. Flywheel Energy Systems: Current Status and Future Prospects. Magnetic Material Producers Association Joint Users Conference, September 1997, pp. 1-9
    Thomas J. Pieroneck, D. Ket Decker, Victor A. Spector. Spacecraft Flywheel Systems - Benefits and Issues. Aerospace and Electronics Conference, 1997, NAECON-97., Proceedings of the IEEE 1997 National, vol.2, 1997, pp. 589-593
    D. Howe, P. Mason, P.H. Mellor, Z.Y. Wu, K. Atallah. Flywheel Peak Power Buffer for Electric/Hybrid Vehicles. Electric Machines and Drives, 1999, International Conference IEMD’99, 1999, pp. 508-510
    Markus Ahrens, Ladislav Kuccra, and Rene Larsonncur. Performance of a magnetically suspended flywheel energy storage device. IEEE Transactions on Control System Technology, Vol. 4, No.5, September 1996, pp. 494-502
    Christopher D.A., Donet, C. Flywheel Technology and Potential Benefits for Aerospace Applications. Aerospace Conference, 1998 IEEE , Vol.1, Page(s): 159 –166
    Mendler, C. A Flywheel Micro-energy Storage Hybrid Vehicle Having a Direct Injection Diesel Prime-mover Engine. Proceedings of the 31st Intersociety on Energy Conversion Engineering Conference, IECEC 96, Vol.4, 1996 Page(s): 2199 –2202
    Bose, B.K.; Kim, M.-H.; Kankam, M.D. Power and energy storage devices for next generation hybrid electric vehicle. Proceedings of the 31st Intersociety on Energy Conversion Engineering Conference, IECEC 96, Vol.3, 1996 Page(s): 1893 -1898
    Berenji, H.R.; Ruspini, E.H. Automated controller elicitation and refinement for power trains of hybrid electric vehicles. Proceedings of the 4th IEEE Conference on Control Applications, 1995, Page(s): 329 –334
    Schaible, U.; Szabados, B. A torque controlled high-speed flywheel energy storage
    
    
    system for peak power transfer in electric vehicles. IEEE Industry Applications Society Annual Meeting, vol.1, 1994, Page(s): 435 –442
    T.A. Anstoos, J.P. Kajs, W.G. Brinkman, and et al. High Voltage Stator for a Flywheel Energy Storage System. IEEE Transactions on Magnetics, vol.37, no.1, January 2001, pp.242-247
    James A. Kirk, Gregory C. Walsh, Lou P. Hromada. The Open Core Composite Flywheel. Proceedings of the 32nd Intersociety on Energy Conversion Engineering Conference, IECEC-97, vol.3, 1997, pp. 594-601
    Bob G. Beaman, Gopalakrishna M. Rao. Hybrid Battery and Flywheel Energy Storage System for LEO Spacecraft. 13th Annual Battery Conference on Applications and Advances, Long Beach, CA. USA, 1998, pp. 113-116
    Michael SCHARFE, Karl MEINZER, Ralf ZIMMERMANN. Development of a Magnetic-bearing Momentum Wheel for the AMSAT Phase 3-D Small Satellite. The International Symposium on Small Satellites, Annecy, France 1996
    Jerry L. Fausz, David J. Richie. Flywheel Simultaneous Attitude Control and Energy Storage Using a VSCMG Configuration. Proceedings of the 2000 IEEE International Conference on Control Applications, Anchorage, Alaska, USA, Sept. 25-27, 2000, pp.991-995
    A. Balikci, Z. Zabar, D. Czarkowski, and et al. Flywheel Motor/Generator Set as an Energy Source for Coil Launchers. IEEE Transactions on Magnetics, vol.37, no.1, January 2001, pp.280-283
    R.L. Puterbaugh, P.P. Mongeau, B. Acharya, D. Curtiss. Pulsed Disk Alternator as Energy Storage Devices for Electrothermal Chemical Guns. IEEE TRANSACTIONS ON MAGETICS, VOL.31, NO.1, JANUARY 1995, pp.73-77
    Robert S. Weissbach. A Combined Uninterruptible Power Supply and Dynamic Voltage Compensator Using a Flywheel Energy Storage System. IEEE Transactions on Power Delivery, vol.16, no.2, April 2001
    Hirofumi Akagi, Hikaru Sato. Control and Performance of a Flywheel Energy Storage System Based on a Doubly-Fed Induction Generator-Motor for Power Conditioning. Power Electronics Specialists Conference, 1999, 30th Annual IEEE, vol.1, 1999, pp.32-39
    Istvan Vajda, Tamas Porjesz, Attila Gyore, and et al. Upgrading Electric Power Quality by Superconducting Flywheels. Physica C 341-348 (2000), pp.2609-2610
    D.R. Kelsall. Pulsed Power Provision by High Speed Composite Flywheel. Pulsed Power, IEE Symposium 2000, pp.16/1-16/5
    Roberto Cardenas, Ruben Pena, Greg Asher, Jon Clare. Control Strategies for
    
    
    Energy Recovery from a Flywheel Using a Vector Controlled Induction Machine. Power Electronics Specialists Conference, PESC00, 2000 IEEE 31st Annual, Vol.1, 2000, pp.454-459
    Roberto Cárdenas, Rubén Pe?a, Greg Asher, and Jon Clare. Control strategies for enhanced power smoothing in wind energy systems using a flywheel driven by a vector-controlled induction machine. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 3, JUNE 2001, pp.625-635
    Isao Takahashi, Yoshihisa Okita, Itaru Andoh. Development of Long Life Three Phase Uninterruptible Power Supply Using Flywheel Energy Storage Unit. Proceedings of the 1996 International Conference on Power Electronics, Drive and Energy Systems for Industrial Growth, 1996, Vol.1, 1996, pp.559-564
    Hilmar Darrelmann. Comparison of High Power Short Time Flywheel Storage Systems. 21th International Telecommunications Energy Conference, INTELEC’99, 1999, pp.2-9
    S. Earnshaw, “On the nature of the molecular forces, which regulate the constitution of the luminiferous ether”, Trans. Cambridge Philosophical Society, Vol.7, Part 1, pp.97-112, 1842
    Eugene E. Covert. Magnetic Suspension and Balance Systems. IEEE AES Magazine, May 1988, pp.14-22
    M. D. Simon and A. K. Geim, “Diamagnetic levitation,” Journal of Applied Physics, vol. 87, no. 9, 2000, pp. 6200–6204
    Kent Davey, “Analysys of an Electrodynamic Maglev System,” IEEE Transactions on Magnetics, Vol.35, No.5, September 1999, pp.4259-4267
    R. M. Harrigan, “Levitation device,” U.S. Patent 4 382 245, May 3,1983
    A. A. Kordyuk, “Magnetic levitation for hard superconductors,” Journal of Applied Physics, vol. 83, no. 1, 1998, pp. 610–612
    唐苏亚. 磁力轴承及其在工业中地应用. 微电机,1994年第4期: 28-31
    陈钢,胡业发. 磁力轴承的原理、应用及发展动向. 精密制造与自动化,1995年第4期:7-11
    R.B. Zmood, L.J. Qin, J.A. Kirk and L. Sun. A Magnetic Bearing System Design Methodology and its Application to a 50 Wh Open Core Composite Flywheel. Energy Conversion Engineering Conference, 1997, IECEC-97, Proceedings of the 32nd Intersociety, vol.4, 1997, pp. 2306-2311
    Ulrich Schonhoff, Jihao Luo, Guoxin Li, Edgar Hilton, and et al. Implementation Results of μ-Synthesis Control for an Energy Storage Flywheel Test Rig. 7th Int.
    
    
    Symp. On Magnetic Bearings, ISMB-7, Zurich, Switzerland, August 2000, pp.1-6
    J.R. Fang, L.Z. Lin, L.G. Yan, and L.Y. Xiao, “A New Flywheel Energy Storage System Using Hybrid Superconducting Magnetic Bearings.” IEEE Transactions on Applied Superconductivity, vol.11, no.1, March 2001
    K. Nagashima, T. Otani, M. Murakami, “Magnetic Interaction between Permanent Magnets and Bulk Superconductors.” Physica C 328(1999) 137-144
    Shoji TANAKA, “Status and Future Perspectives of Applications of High Temperature Superconductors.” Physica C 341-348 (2000), pp.31-35
    Hans J. Bornemann, Andrea Tonoli, Tobias Ritter, et al. Engineering Prototype of a Superconducting Flywheel for Long Term Energy Storage. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL.5, NO.2, JUNE 1995, pp.618-621
    谭庆昌,刘明洁,孟慧琴. 永磁向心轴承承载能力与刚度的计算. 摩擦学学报,1994年第四期: 337-344
    Morse N., Smith R., Paden B., Antaki, J., “Position sensed and self-sensing magnetic bearing configurations and associated robustness limitations.” IEEE the 37th Conference on Decision and Control, Volume 3, 1998, Page(s): 2599 –2604
    刘迎澍,黄田. 磁悬浮轴承研究综述. 机械工程学报,2000年第11期:5-9
    刘梦林, 方家光, 郭增, 吴振一. 超导磁悬浮的物理演示. 大学物理, 1996年第二期: 32-35
    Roger E. Horner, Neil J. Proud, “The Key Factors in the design and construction of advanced Flywheel Energy Storage Systems and their application to improve telecommunication power back-up.” 18th International Telecommunications Energy Conference, INTELEC’96, 1996, pp.668-675
    Stuart Rosenwasser, Geza Nagy and Greg Mehle, “The Design, Fabrication and Characterization of an Advanced Graphite Composite Structure for High Speed Rotating Machines.” IEEE Transactions on Magnetics, vol.35, no.1, January 1999, pp.307-311
    Jinhua Huang, Georges M. Fadel, “Heterogeneous flywheel modeling and optimization.” Material and Design 21(2000) 111-125
    Sung Kyu Ha, Dong-Jin Kim, Tae-Hyun Sung. Optimum design of multi-ring composite flywheel rotor using a modified generalized plane strain assumption. International Journal of Mechanical Sciences 43(2001), pp.993-1007
    K.A. Dulaney, J.H. Beno, and R.C. Thompson, “Modeling of Multiple Liner Containment Systems for High Speed Rotors.” IEEE Transactions on Magnetics,
    
    
    Vol.35, No.1, January 1999, pp.334-339
    J.A. Kirk, J.R. Schmidt, G.E. Sullivan, et al., “An Open Core Rotator Design Methodology.” Proceedings of the 32nd Intersociety of Energy Conversion Engineering Conference, IECEC-97, vol.3, 1997, pp.594-601
    Ries, D. M., and Kirk J.A., “Design and Manufacturing for a Composite Multi-Ring Flywheel”, Proceedings of the 27nd Intersociety Energy Conversion Engineering Conference, August 3-7,1992, San Diego, California, Vol.4, pp.4.43-4.48
    赵渠森, 申屠年. 先进复合材料制造技术. 高科技纤维与应用,1999年第5期: 1-12
    赵渠森, 申屠年. 先进复合材料制造技术. 高科技纤维与应用,1999年第6期: 22-28
    赵渠森, 申屠年. 先进复合材料制造技术. 高科技纤维与应用,2000年第2期: 8-13
    魏铭森,陈蓉娟. 三维纺织复合材料的制造技术和力学性能研究现状. 南通工学院学报, 2000年第3期: 1-5
    吴晓青, 李嘉禄, 崔振兴, 王晓生. 三维整体编织复合材料管的设计与制造. 玻璃钢/复合材料, 1998年第4期: 21-23
    焦亚男, 李嘉禄, 李学明. 二步编织法制作三维整依预制件. 玻璃钢/复合材料, 2000年第5期: 27-29
    孙慧玉. 三维编织复合材料RTM工艺和力学性能. 材料工程, 1998年第5期: 34-37
    Rory A. Cooper, Changfeng Tai., “Feasibility of Flywheel Batteries for Electric Powered Wheelchairs.” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol.20, No.5, 1998, pp.2261-2263
    Miyagawa, Y., Kameno, H., Takahata, R., Ueyama, H., “A 0.5 kWh flywheel energy storage system using a high-Tc superconducting magnetic bearing.” IEEE Transactions on Applied Superconductivity, Vol.9 No.2 Part: 1, June 1999 Page(s): 996 –999
    Ritchie B. Coryell. “SBIR Phase (: Reliable, Low Cost Support System for Flywheel Energy Storage.” U.S. National Science Funds, Award No.: a0078459. Http://www.nsf.gov/
    龙志强. 磁浮飞轮试验模型的研究. 国防科技大学学报,1995年第4期:97-103
    
    李文超,沈祖培. 复合材料飞轮结构与储能密度. 太阳能学报,2001年第1期:95-101
    解亚飞, 程三海, 王雪帆, 韦忠朝. 飞轮储能系统中的能量转换环节及其实现. 电机电器技术, 2001年第1期: 26-29
    宫能平, 夏源明, 毛天祥. 复合材料飞轮的三维应力分析. 复合材料学报, 2002年第1期: 113-116
    杨志轶,赵韩. 飞轮储能磁轴承系统结构及其悬浮特性. 机械科学与技术, 2002年第5期: 738-740
    平菊英, 刘胜忠. 卫星大动量矩飞轮的设计. 上海航天, 2002年第1期: 8-13
    Bernard, N.; Ben Ahmed, H.; Multon, B., “Semi-analytical inductance calculation on an axial-field synchronous machine for a flywheel storage system using surfacic permeances.” IEEE International Electric Machines and Drives Conference, IEMDC 2001, pp.382 –390
    Morash, R.T., “Application of Written-Pole/sup TM/ motors and generators with integrated flywheel energy storage system.” Proceedings of the 32nd Intersociety on Energy Conversion Engineering Conference, IECEC-97, Volume 3, 1997, Page(s): 1758 –1761
    Roesel, J.F., Jr.; Morash, R.T., “Advancement of power technology using written-pole/sup TM/ motors and generators-an overview.” WESCON/96, 1996 Page(s): 196 –200
    王凤翔. Halbach阵列及其在永磁电机设计中的应用. 微特电机, 1999年04期: 22-24
    易敬曾. 磁场计算与磁路设计. 成都: 成都电讯工程学院出版社, 1987年5月第一版: 54-72
    陈坚. 电力电子学-电力电子变换和控制技术. 北京: 高教出版社, 2002年1月第一版.
    Da Silva, I.; Horikawa, O. An I-D. O. F. controlled attraction type magnetic bearing. IEEE International Magnetics Conference, INTERMAG 99, 1999, Page(s): EE02 -EE02
    De Queiroz, M.S.; Dawson, D.M.; Suri, A. Nonlinear control of a large gap 2-DOF magnetic bearing system based on a coupled force model. Proceedings of the American Control Conference, vol.3, 1997, Page(s): 2165 -2169
    沈钺, 虞烈. 四自由度电磁轴承-转子系统的数学模型与仿真. 机床与液压, 2001第4期: 23-25
    
    吴贵生, 姜晓国, 韩万祥等. 五维控制磁悬浮轴承装置的试验研究. 河北煤炭建筑工程学院学报, 1996年第2期: 43-46
    De Queiroz, M.S.; Dawson, D.M.; Canbolat, H. A backstepping-type controller for a 6-DOF active magnetic bearing system. Proceedings of the 35th IEEE Conference on Decision and Control, Vol.3, 1996, Page(s): 3370 –3375
    Coombs T., Campbell A. M., Storey R. et al. Superconducting Magnetic Bearings for Energy Storage Flywheels. IEEE Transactions on Applied Superconductivity, Vol.9, No.2, 1999, pp968 –971
    方家荣, 林良真, 夏平畴, 严陆光. 超导混合磁力轴承的发展现状和前景. 电工电能新技术, 2000年第1期: 27-31
    Kent Davey. Analysis of an Electrodynamic Maglev System. IEEE Transactions on Magnetics, Vol.35, No.5, September 1999, pp4259-4267
    Benjamin C Kuo. Automatic Control Systems. New Jersey: Prentice-Hall INC, 1975: 230-242
    Alexei V. Filatov, Eric H. Maslen, and George T. Gilles. “A method of noncontact suspension of rotating bodies using electromagnetic forces”, Vol.91, No.4, 2002, pp.2355-2361
    李景天, 宋一得, 郑勤红, 刘剑虹. 用等效磁荷法计算永磁体磁场. 云南师范大学学报, 1999, Vol.19, No.2: 33-36.
    屠关镇. 非均匀充磁永磁体磁场的数值计算. 上海工业大学学报, 1989, Vol.10, No.4: 317-324.
    王志强, 张文灿, 徐美川. 积分方程法计算三维磁场. 湖北工学院学报, 1995, Vol.10, No.1: 19-25
    胡传顺. 用差分法解磁场方程求真空中场空间磁场分布. 石油化工高等学校学报, Vol.11 No.2: 64-68
    曾余庚, 徐国华, 宋国乡编著. 电磁场有限单元法. 北京: 科学出版社, 1982年6月第一版.
    李景天, 郑勤红, 宋一得, 刘剑虹. 用边界元法计算永磁体磁场. 电工电能新技术, 1998年第1期: 7-9
    Stefan Kurz, Joaching Fetzer and Gunther Lehner. Three-dimensional transient BEM-FEM coupled analysis of electrodynamic levitation problems. IEEE Transaction on Magnetics, Vol.32, No.3, May 1996, pp.1062-1065
    朱红妹. 静态永磁磁路的非线性数值计算方法. 应用科学学报, 1998, Vol.16, No.3: 300-304.
    
    冯慈璋主编. 电磁场. 北京: 高等教育出版社, 1983年10月第二版.
    彭旭麟,罗汝梅编著. 变分原理及其应用. 华中理工大学出版社,1983年7月第1版.
    王勖成, 邵敏编著. 有限单元法基本原理和数值方法. 北京: 清华大学出版社, 1997年3月第一版.
    汤双清,蔡敢为,杨家军,廖道训. 一种新型被动磁悬浮轴承的研究. 中国机械工程, 2002年, Vol.13(24): 2134-2136
    谭凤顺, 金能强. 永磁磁浮轴承的设计及其计算. 低温与超导, 2002年, Vol.30, No.1: 35-40
    Mukhopadhyay, S.C.; Ohji, T.; Iwahara, M.; Yamada, S.; Matsumura, F., “A new repulsive type magnetic bearing-modeling and control.” 1997 International Conference on Power Electronics and Drive Systems, vol.1, 1997, Page(s): 12 -18
    廖恒成, 孙国雄. 永磁材料的进展. 机械工程材料, 1999年, Vol.23,No.1: 1-5
    全国稀土永磁协作网. 中国稀土永磁产业的回顾与展望. 磁性材料及器件, 2001年, Vol32, No. 2: 18-27
    何水校. 从国际铁氧体会议(ICF)看磁学与磁性材料的发展趋势. 2001年, Vol32, No.1: 20-22,26
    Delamare J., Rulliere E., Yonnet J.P., “Classification and synthesis of permanent magnet bearing configurations.” IEEE Transactions on Magnetics , Vol.31, No.6, Part: 2, Nov. 1995, Page(s): 4190 –4192
    赵家文. 一种新型轴承-永磁体磁力轴承. 适用技术市场, 1996年第12期: 9-10
    李宏穆, 余蓉, 何萍. 永磁立轴式轴向磁力轴承的实验与动态分析. 成都大学学报(自然科学版), 1999年, Vol.18, No.4: 8-13
    郭硕鸿. 电动力学. 北京:人民教育出版社,1979年2月第一版:316-320
    阎明. 电场力、磁场力两种计算方法的讨论. 上海海运学院学报,2002年,Vol.23, No.1:82-85
    Johnson, D.; Malengret, M.; PiIlay, P., “High-speed, low-cost flywheels for energy storage in sustainable power systems with distributed generation”, 2001 Power Engineering Society Summer Meeting, Volume: 1 , 2001 Page(s): 553 –554
    Jiancheng Zhang; Zhiye Chen; Lijun Cai; Yuhua Zhao, “Flywheel energy storage system design for distribution network”, IEEE Power Engineering Society Winter Meeting, Volume: 4, 2000 Page(s): 2619 -2623 vol.4
    
    Hardan, F.; Bleijs, J.A.M.; Jones, R.; Bromley, P.; Ruddell, A.J., “Application of a power-controlled flywheel drive for wind power conditioning in a wind/diesel power system”, 1999 Ninth International Conference on Electrical Machines and Drives, 1999 Page(s): 65 –70
    Hardan, F.; Bleijs, J.A.M.; Jones, R.; Bromley, P., “Bi-directional power control for flywheel energy storage system with vector-controlled induction machine drive”, 1998 Seventh International Conference on Power Electronics and Variable Speed Drives, 1998 Page(s): 477 –482
    Iglesias, I.J.; Garcia-Tabares, L.; Agudo, A.; Cruz, I.; Arribas, L., “Design and simulation of a stand-alone wind-diesel generator with a flywheel energy storage system to supply the required active and reactive power”, 2000 IEEE 31st Annual on Power Electronics Specialists Conference, Volume: 3 , 2000 Page(s): 1381 -1386
    Reinke, L.J., “Tutorial overview of flywheel energy storage in a photovoltaic power generation system”, 1993 Canadian Conference on Electrical and Computer Engineering, 1993 Page(s): 1161 -1164 vol.2
    Kan, H.P.; Chau, K.T.; Cheng, M., “Development of doubly salient permanent magnet motor flywheel energy storage for building integrated photovoltaic system”, APEC 2001 Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition, Volume: 1, 2001 Page(s): 314 -320 vol.1
    吴国庆. 21世纪的能源—太阳能电池. 化学教育, 1999年第3期: 1-3
    李毅, 胡盛明. 非晶硅叠层太阳能电池的现状与发展方向. 真空科学与技术, 2000年第3期: 222-225
    封伟, 韦玮. 高分子光电池研究进展. 化工新型材料, 1999年第1期: 23-27
    史素姣, 钟江帆, 姜志宏. 高效率聚合物薄膜太阳能电池. 光电子·激光, 1997年第3期: 166-169
    黄昀, 吴季怀. 化学太阳能电池. 化工新型材料, 2001年第6期: 13-15
    孙宝, 郝彦忠, 李伟, 王禄. 纳米太阳能电池研究进展. 河北科技大学学报, 2002年第2期: 22-31
    毛爱华. 太阳能电池研究和发展现状. 包头钢铁学院学报, 2002年第1期: 94-99
    梁宗存, 沈辉, 李戬洪. 太阳能电池研究进展. 能源工程, 2000年第4期: 8-11
    徐明生, 季振国, 阙端麟, 汪茫, 陈红征. 有机太阳能电池研究进展. 材料科学与工程, 2000年第3期: 92-100
    
    陈坚编著. 电力电子学-电力电子变换与控制技术. 高等教育出版社, 2002年1月第1版.
    Shengming Li; Longya Xu, “Fault-tolerant operation of a 150 kW 3-level neutral-point clamped PWM inverter in a flywheel energy storage system”, Thirty-Sixth IAS Annual Meeting on Industry Applications Conference, Conference Record of the 2001 IEEE, Volume: 1, 2001 Page(s): 585 -588
    何春生. PWM波形的谐波分析. 应用科技, 2002年09期: 24-26
    D. Kagan, “Building a magnetic levitation toy”, Physics Teaching, 31, 1993, pp.432-433
    Ron Edge, “Levitation using only permanent magnets”, Phys. Teach., 33, 1995, pp.252-253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700