超高层筒中筒结构静、动力共同工作研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地基、基础与上部结构共同工作是国内外广为开展的一项研究课题,但对共同工作引起的内力变化更为敏感的超高层筒中筒结构却研究不多。论文采用理论分析、数值模拟和工程实测相结合的方法,围绕超高层筒中筒结构静、动力共同工作问题开展了较为系统深入的研究。主要内容包括:
     (1) 以研究超高层建筑的共同工作机理为目的,对陕西省电信公司网管中心大楼进行了地基、基础与上部结构动静力共同工作的全面现场测试。对建筑物的地基沉降、桩顶反力、筏板内钢筋应力、桩土荷载分担比以及建筑物的自振特性等进行了实时监测。通过对测试结果的分析,研究了超高层筒中筒结构考虑地基、基础与上部结构共同工作的内力变化规律。
     (2) 基于子结构法提出了竖向荷载作用下考虑地基、基础与上部结构共同工作的内力计算方法。建立了能够考虑厚板中剪应力引起的横向变形及筏板配筋对筏板整体刚度影响的筏板基础分层厚筏模型;基于Drucker—Prager屈服准则建立了地基的弹塑性计算模型;提出了一种能在子结构法中考虑桩土共同工作的“二次迭代法”,将桩土界面接触的非线性迭代与共同工作体系的整体内力分析分开进行,既可以考虑竖向荷载作用下桩与桩间土之间的非线性接触状态,又不会增加整个体系的自由度数量。
     (3) 对网管中心大楼进行了竖向荷载作用下结构内力的数值模拟计算,将建筑物整体沉降、桩顶反力、筏板内力以及桩土荷载分担比的计算结果与实测结果进行了对比分析,验证了所建立计算方法的合理性。同时,通过对桩顶反力计算结果的分析,对筒中筒结构桩基础的布置提出了建议。
     (4) 提出了多遇地震作用下共同工作体系弹性动力反应的有限元/边界元耦合分析方法。将共同工作体系分成近场区域和远场区域,以分域特解边界元模拟半无限的远场地基;对于近场区域,建立了桩-土体系的简化计算模型以及基础和上部结构构件的有限元刚度矩阵、质量矩阵和阻尼矩阵。对远场区域的等效
The interaction between basement and superstructure is a popular research subject in civil engineering. But there is few people considering the tube-in-tube structure which is more sensitive to internal force change caused by soil-structure interaction. By means of theoretical analysis、 numerical simulation and field measurement, the theory of dynamic and static interaction of super high-rise tube-in-tube structure is systemic studied.(1) In order to study the interaction mechanism of super high-rise building, a comprehensive in-site measurement on the post-telecom building in Shaanxi province is carried out. The measurement include basement settlement, pile's pile-top resistant, resistant of soil among piles, internal force of raft, the carrying load rate between piles and raft, and the free vibration frequency of the structure. According to measurement results, the internal force distribution laws of tube-in-tube structure and raft basement participated soil-structure interaction are developed.(2) Based on substructure method, an internal force calculating method of basement, foundation and superstructure subjected to vertical load is developed. The layered thick raft model which can consider both the transverse deformation induced by shear stress and effect of the raft reinforce stiffness are developed. An elastic-plastic model based on Drucker—Prager yield criterion are developed for basement. The twi-iteration method suited for soil-pile interaction is developed. The method calculate the nonlinear soil-pile contact and whole structure respectively, so it can not only well consider the contact nonlinear relationship between soil and pile, but also reduce the DOF number of the model
    (3) A numerical simulation of post-telecom building subject to vertical load is carried. Comparing with results of numerical calculation and field measurement, the validity of calculating model is proved. According to analysis of calculation results of pile's pile-top resistant, some suggestions on distribution of piles are presented.(4) A FEM/BEM coupled method for dynamic elastic reaction of interaction system subjected to frequent earthquake is also developed. The whole structure is divided into near region modeled by FEM and far region modeled by sub-region particular solution BEM. A simplified model of soil-pile system is developed. The stiffness matrix, mass matrix and damping matrix of foundation and superstructure are also developed. The equivalent stiffness matrix and mass matrix of far region are symmetrized and coupled with near regions', as a result, the calculating equations of whole interaction system is built.(5) A numerical calculation on dynamic characteristics of post-telecom building is carried out. Through the comparison between the results of numerical calculation and field measurement, the validity of dynamic interaction calculation method has been proved. Simultaneously, by means of calculating the seismic reaction of the post-telecom building, the mechanism of basement, foundation and superstructure seismic interaction of tube-in-tube structure subjected to earthquake is studied.
引文
[1] 史佩栋,高大钊,桂业琨.高层建筑基础工程手册.中国建筑工业出版社.2000
    [2] 赵锡宏等.带裙房的高层建筑与地基基础共同作用的设计与实践.同济大学出版社.1999
    [3] 董建国,赵锡宏.高层建筑地基基础共同作用理论与实践.同济大学出版社.1997
    [4] 宰金珉,宰金璋.高层建筑基础分析与设计.中国建筑工业出版社.1993
    [5] 赵西安.我国高层建筑的最新发展21世纪高层建筑基础工程学术研讨会论文集.2000
    [6] 陆卫东,丘国雄,门楷.高层建筑地基基础方案的优选.中国土木工程学会第九届土力学及岩土工程学术会议论文集.2003.495~501
    [7] Meyerhof G. G. Some Recent Foundation Research And Its Application To Design. Struct. Eng. 1953, 31: 151~167
    [8] Chamecki S. Structure Rigiditt In Calculating Settlements. J. Soil Mech. And Found. Div, Asce. 1956, 82: 1~9
    [9] Grosshof H. Influence Of Flexural Rigidity Of Superstructure On The Distribution Of Contact Pressure And Bending Moments Of An Elastic Combined Footing. Proc 4th. Icsmfe. London, 1957, 1: 300~306
    [10] Sommer H. A Method Of Calculation Of Settlements. Contact Pressures And Bending Moments In A Foundation Including The Flexural Rigidity Of The Superstructure. Proc 6th. Icsmfe., Montreal, 1965, 2: 197~201
    [11] Zeinkerwicz O. C., Cheung Y. K. Plates And Tanks On Elastic Foundation An Application Of Finite Element Method. J. Solids And Sreuct. 1965, 1: 451~461
    [12] Przemieniecki J. S. Theory Of Matrix Structural Analysis. 1968
    [13] Haddadin M. J. Mats And Combined Footings Analysis By Finite Element Methods. Proc. Aci., 1971, 68(12): 945~949
    [14] Christian J. T. Soil Structure-Interaction For Tall Buildings. Planning And Design Of Tall Buildings. Lehigh U., 1972: 967~983
    [15] Hain S. J., Lee I. K. Rational Analysis Of Raft Foundation. J. Geotech. Eng. Div. Asce. 1974, 100 (12): 843~860
    [16] King G. J. W., Chandrasekaran V. S. Interactive Analysis Of A Rafted Multistory Space Frame Resting On An Inhomogeneous Clay Stratum. Proc. Int. Conf. On Finite Element Method In Engineering. Australia, 1974: 493~509
    [17] Wardle L. J., Frazer R. A. Methods For Raft Foundation Design Including Soil-Structure Interaction. Proc. Symp. On Raft Foundations, Perth, Australia, 1975: 1~11
    [18] Hooper J. A., Wood L. A. Foundation Analysis Of A Cross-Wall Structure. Proc. Int. Conf. On Performance Big, Struc., Glasgow, 1976: 229~248
    [19] Hooper J. A. Computer Analysis/Design Of Large Mat Foundations. Journal Of Structural Engineering, Asce, 1984, 110 (5): 1180~1196
    [20] Budkowska B. B., Szymczak C. Sensitivity Analysis Of Thin-Walled 1-Beams Resting On Elastic Foundation. J. Engineering Mechanics, Asce, 1992, 118(6): 1239~1248
    [21] Hooper J. A. Elastic Analysis Of A Circular In Adhesive Contact With A Transversely Isotropic Medium, J. Geotechnique, Asce, 1975, 25 (4):779~793
    [22] King G. J. W. An Introduction To Superstructure-Raft Soil Interaction, Int. Sym. In Soil-Structure Interaction University Of Roorkee, Roorkee, India: 1977, 200~231
    [23] Noorzaei J., Viladkar M. N., And P. N. Godbole. Soil-Structure Interaction of Space Frame-Raft-Soil System-A Parametric Study. Comput. Struct., 1991, 40(5): 1235~1247.
    [24] Zaho C., Valliapan S., and Wang Y. C. An approximate method for simulating infinite media. Comput. Struct., 40(5), 1991, 41(5): 1041~1049.
    [25] Stavridis L. T. Simplified Analysis of Layered Soil-Structure Interaction, J. Struct. Eng., 2002, 128(2): 224~230
    [26] Duncan J. M., Chang C. Y. Nonlinear Analysis of Stress and Strain in Soils. J. SMFE, ASCE, 1970, 96(5): 1629~1653
    [27] Domaschuk L. and Volliappan P. Non-linear Settlement Analysis by Finite Element. Proc. ASCE, J. GT. 1975, 101 (GT7): 103~133
    [28] Roscoe K. H., Burland J. B. On the Generalized Stress-strain Behavior of "Wet" Clay. Engineering Plasticity, Cambridge, Cambridge Univ. Press. 1968: 535~609
    [29] Lade P. V. Elasto-plastic Stress-strain Theory for Cohesionless Soil with Curved Yield Surfaces. Int. J. Solids and Struc. 1977, 13(1): 1019~1035
    [30] Desai C. S., Gallagher R. H. Mechanics of Engineering Materials. London, J. Wiley and Sons, 1984
    [31] Zienkiewicz O. Z. The Finite Element Method. 3rd. Mcgraw-Hill. 1977
    [32] Jardine R. J., Potts D. M., Fourie A. B., Burland J. B. Studies of the influence of non-linear stress-strain characteristics in soil-structure interaction. Geotechnique 1986, 36(3): 377~396
    [33] Viladkar M. N., Godbole P.N., Noorzaei J. Soil-structure interaction in plane frames using coupled finite infinite elements. Comput Struct 1991, 39(5): 535~546
    [34] Noorzaei J., Viladkar M. N., Godbole P. N. Elasto-Plastic Analysis for Soil-Structure Interaction in Framed Structures. Comput. Struct. 1995, 55(5): 797~807.
    [35] Varadrajan A., Ray S. Non-Linear soil-structure interaction analysis of a raft foundation, Indian Geotech. Conf. 1999: 71~84.
    [36] Mandal A., Moitra D., Dutta S. C. Soil-structure interaction on building frame: a small scale model study. Int. J. Struct., 1998, 18(2): 93~109
    [37] Roy R., Dutta S. C., Moitra D. Behaviour of Grid Foundation Supporting Multistorey Frames: A Study through Idealized Model. Proceedings of the International Conference on Mathematical Modelling. University of Roorkee, 2001: 452~467.
    [38] Poulos H. G., Mattes N. S. The behavior of axially loaded end-bearing piles. Geotechnique, 1969, 19: 285~300
    [39] Randolph M. F. and Wroth C. P. Analysis of deformation of vertically loaded piles. J. Geotech. Eng., 1978, 104(12): 1465~1488
    [40] Lee C. Y. Pile group settlement analysis by hybrid layer approach. J. Geotech. Eng., 1993, 119(6): 984~997
    [41] Randolph M. F. Design method for pile group and piled raft. Proc., 13th Int. Conf. on SMFE, New Delhi, 1994, 5: 61~82
    [42] Clancy P., Randolph M. F. Simple design tools for pile draft foundations. Geotechnique, 1996, 46(2): 313~328
    [43] Horikoshi K., Randolph M. Estimation of overall settlement of piled raft. Soils Found., 1999, 39(2): 59~68
    [44] Castelli F., Maugeri M., Motta E. Nonlinear analysis of a single pile settlement. Riv. Ital. Geotec., 1992, ⅩⅩⅥ(2): 115~135,
    [45] 张问清,赵锡宏,宰金珉.任意力系作用下层状弹性半空间的有限元分析方法.岩土工程学报,1981(2):15~23
    [46] 宰金珉,张问清.高层空间剪力墙结构与地基共同作用三维问题的双重扩大子结构有限元—有限层分析.建筑结构学报,1983(5):35~40
    [47] 宰金珉,张问清,赵锡宏.平面形状为L形的空间剪力墙结构与不均匀地基的共同作用.岩土工程学报.1983(2):13~21
    [48] 朱百里,曹名葆,魏道垛.框架结构与地基基础共同作用的数值分析同济大学学报.1981(4):15~31
    [49] 裴捷,张问清,赵锡宏.考虑砖填充墙的框架结构与地基基础共同作用的分析方法.建筑结构学报 1984(4):58~69
    [50] 董建国,杨敏,赵锡宏.筏式和箱式承台弯矩的计算.岩土工程学报,1992(4):32~37
    [51] 张问清,赵锡宏.上海四栋高层建筑箱形基础测试的综合研究.岩土工程学报,1980(1):12~26
    [52] 何颐华,金宝华,王秀珍,雷克木.高层建筑箱基加满堂摩擦桩的研究.第五届土力学及基础工程学术会议论文集,中国建筑工业出版社.1986
    [53] 董建国,钱宇平,赵锡宏.小雁塔宾馆高层建筑剪力墙一箱基一地基共同作用的分析.结构工程师,1986(2):31~36
    [54] 殷永安,赵锡宏,钱宇平.上海某栋框筒结构与超长桩基础的现场测试研究.上海高层建筑桩筏与桩箱基础设计理论,同济大学出版社,1989:23~42
    [55] 董建国,赵锡宏,石安康.上海某栋剪力墙结构桩箱基础的现场测试研究.见;上海高层建筑桩筏与桩箱基础设计理论,同济大学出版社,1989:55~69
    [56] 董建国,赵锡宏.高层剪力墙结构与超长桩箱基础的现场测试研究.第四届全国岩土力学数值分析与解析方法讨论会论文集,武汉测绘科技大学出版社,1991:646~650
    [57] 姚仰平,张保印,张国强.黄土地区高层框剪结构-桩筏-地基共同工作.岩土工程学报,2002,23(3):45~52
    [58] 姚仰平,张保印,张国强.湿陷性黄土地区高层建筑桩-土共同工作的测试研究.第五届中日建筑结构技术交流会论文集:902~909
    [59] Zhang Baoyin. Measured Analysis and Researsh on Foundation and Superstructure of Butterfly Tall Residential Building. 2nd International Conference on Highrise Building, 1993: 210~215
    [60] Zhang Baoyin. Dynamic Analysis And Test of Tall Building. 2nd International Conference on Highrise Building, 1993: 216~221
    [61] 张国强.湿陷性黄土地区高层建筑上部结构与桩筏基础和地基共同作用研究.1998,西安建筑科技大学硕士论文,导师,张保印
    [62] 张保印.高层建筑地基基础及上部结构实测分析与应用.兰州铁道学院学报,1994(3):34~42
    [63] 王振宇,张保印,高歌.砂卵石地基高层建筑箱基基底反力实测研究.建筑结构学报,2000(4):72~75
    [64] 王振宇,张保印.高层建筑上部结构与箱基和砂卵石地基共同作用的数值模拟.建筑结构,2000(11):3~9
    [65] 张保印,赵同春.点式高层住宅卵石地基、箱形基础及上部结构的测试分析与研究.第12届全国高层建筑结构学术交流会论文集,1992,2:535~541
    [66] Kashio J. Steady state response of a circular disk resting on a layered medium. Ph. D. dissertation, Rice University, Houston, TⅩ, 1970.
    [67] Luco J. E. Impedance functions for a rigid foundation on a layered medium. Nucl. Engrg. Des., 1974, 31: 204~231
    [68] Kausel E., Roesset J. M. Dynamic stiffness of circular foundations. J. Engng. Mech. Div., ASCE, 1975, 101: 771~785.
    [69] Waas G Linear two-dimensional analysis of soil dynamics problems in semi-infinite layered media. Ph. D dissertation. University of California at Berkeley, 1972.
    [70] Lysmer J. Analytical procedures in soil dynamics. Earthquake Engrg. Soil Dyn., 1978 (3): 1267~1316.
    [71] Smith W. D. A nonreflecting plane boundary for wave propagation problems. J. Comp. Phys., 1974, 15(4): 492~503.
    [72] Lysmer J., Kuhlemeyer R. L. Finite dynamic model for infinite media. J. Engng. Mech. Div, ASCE 1974, 95: 859~877.
    [73] Cole D. L., Kosloff D. D., Minster J. B. A numerical boundary integral equation method for elastodynamics Int. Bulletin of the Seismological Society of America, 1978, 68: 1331~1357
    [74] Dominguez J. Dynamic stiffness of rectangular foundation. Report of Civil-engineering Department, MIT, MA, USA, 1978.
    [75] Von Estorff O., Schmid G. Application of the boundary element method to the analysis of the vibration behavior of strip foundations on a soil layer. Proc Int. Symp. on Dynamic Soil-Structure Interaction, Minneapolis, MI. Rotterdam: A. A. Balkema, 1984: 11~17
    [76] Wong H. L., Luco J. E. Tables of impedance functions for square foundation on layered media. Soil Dynamics and Earthquake Engrg. 1985, 4(2): 64~81.
    [77] 廖振鹏,黄孔亮,杨柏坡,袁一凡.瞬态波透射边界.中国科学,A辑,1988,6(27):556~564
    [78] Wolf J. P. Dynamic soil-structure interaction in time domain. Englewood Cliffs, NJ, Prentice-Hall, 1988.
    [79] Beer G., Meek J. L. The coupling of the boundary and finite element methods for infinite domain problems in elastoplasticity, In: C. A. Brebbia, editor. Boundary element methods, Berlin, 1981: 575~591.
    [80] Beskos D. E. Boundary element methods in dynamic analysis. Appl. Mech. Rev., 1988, 40: 1~23
    [81] Medina F., Penzien J. Infinite elements for elasto-dynamics. Earthquake Eng. Struct. Dyn. 1982, 10: 699~709.
    [82] Wolf J. P., Song C. H. Dynamic stiffness matrix of unbounded soil by finite element multi-cell cloning. Earthquake Engineering and Structural Dynamics, 1994, 23: 233~250.
    [83] Wolf JP, Song C. H. Finite-element modelling of unbounded media. Chichester: Wiley, 1997.
    [84] Wolf J. P., Song C. H. The guts of dynamio soil-structure interaction. Proceedings of the International Symposium on Earthquake Engineering ISEE99, Budva, Monte-Negro: 1999.
    [85] Savidis S. A., Bode C., Hirschauer R. Three-dimensional structure-soil-structure interaction under seismic excitation with partial uplift. Proceedings of the 12.th World Conference on Earthquake Engineering 12WCEE, New Zealand, 2000.
    [86] Savidis S. A., Hirschauer R. Dynamic soil-structure interaction of adjacent structures. Proceedings of the International Conference on Soil-Structure Interaction in Urban Civil Engineering, Darmstadt, 1998.
    [87] Von Estorff O., Prabucki M. J. Dynamic response in the time domain by coupled boundary and finite elements, Comput. Mech. 1990(6): 35~46
    [88] Von Estorff O., Antes H. On FEM-BEM coupling for fluid-structure interaction analysis in the time domain. Int. J. Numer Meth. Engng. 1991, 31: 1151~1168
    [89] Von Estorff O. Coupling of BEM and FEM in the time domain-some remarks on its applicability and efficiency. Comput. Struct. 1992, 44: 325~337
    [90] Von Estorff O., Firuziaan M. Nonlinear dynamic response by coupling BEM and FEM. Proceedings of the European Conference on Computational Mechanics (EC, CM 99), Munich, 1999
    [91] von Estorff O., Firuziaan M. Coupled BEM/FEM approach for nonlinear soil-structure interaction, Engineering Analysis with Boundary Elements, 2000, 24: 715~725
    [92] Coda H. B., Venturini W. S. Three! dimensional transient BEM analysis. Computer and Structures, 1995, 45 (4): 640~657
    [93] Coda H. B., Venturini W. S. None-singular time-stepping BEM for transient elastodynamic analysis. Engineering Analysis with Boundary Elements, 2000, 15: 11~18
    [94] Coda H. B., Venturini W. S. On the coupling of 3D BEM and FEM frame model applied to elasto-dynamic analysis. Int. J. of Solids and Strut., 1999, 36: 4789~4804
    [95] Yazdchi M., Khalili N., Valliappan S. Dynamic soil-structure interaction analysis via coupled finite-element-boundary-element method. Soil Dynamics and Earth- quake Engineering, 1999 (18): 499~517
    [96] Chopra A. K. Tan H. Modelling of dam-foundation interaction in analysis of arch dams. Proceedings of the 10th World Conference on Earthquake Engineering, Madrid, 1992(8): 4623~4626.
    [97] Touhei T., Ohmachi T. A FE-BE method for dynamic analysis of dam-foundation-reservoir systems in the time domain. Earthquake Engineering and Structural Dynamics 1993(22): 195~209.
    [98] Chuhan Z., Feng J., Pekau O.A. Time domain procedure of FE-BE-IBE coupling for seismic interaction of arch dams and canyons. Earthquake Engineering and Structural Dynamics 1995(24): 1651~1666.
    [99] Chongbin Zhao, Valliappan S. Dynamic analysis of a reinforced retaining wall using finite and infinite elements coupled method. Computers & Structures, 1993, 47(2): 239~244
    [100] Khalili N., Yazdchi M. and Valliappan S. Wave propagation analysis of two-phase saturated porous media using coupled finite-infinite element method. Soil Dyna. and Earthquake Engineering, 1999, 18(8): 533~553
    [101] Yun, C. B., Kim, J. M., and Hyun, C. H. Axisymmetric elastodynamic infinite elements for multi-layered half-space. Int. J. Numer. Methods Eng., 1995, 38: 3723~3743.
    [102] Hangai Y., Akino K., Kurimoto O. Model test of base-mat uplift of nuclear reactor building (Part 1: Laboratory test). Transactions of the 10th Structural Mechanics in Reactor Technology Conf., Vol., Kl., Anaheim, 1989: 169~174.
    [103] Onimaru S., Imazawa T., Hangai Y., Akino K. Model test on base-mat uplift of nuclear reactor building (Part 2: Field tests on actual ground). Transactions of the 11th SMiRT, Vol. Kl, KO8: 2. Tokyo, 1991, 177~182
    [104] Fukuoka A., Ohtsuka Y., Miyamoto Y., Kase H., Taira T., Kusakabe K. Dynamic soil-structure interaction of embedded structure. Transactions of the 13th Structural Mechanics in Reactor Technology, Vol., Ⅲ., Porto Alegre: 1995, 85~90.
    [105] Kurimoto O., Tunodo T., Akino H. Minami T. M. Input motions for rigid foundations to observed seismic waves. Transactions of the 13th Structural Mechanics in Reactor Technology, vol. Ⅲ. Porto Alegre: 1995, 85~90.
    [106] Ohtsuka Y., Fukuoka A., Akino K., Ishida K. Experimental studies on embedment effects on dynamic soil-structure interaction. In: Proceedings of the 11-9th World Conference on Earthquake Engineering, Acapuleo: 1996, 59~66
    [107] 宰金珉,宰金璋.高层建筑基础分析与设计-土与结构物共同作用的理论与应用[M].北京:中国.建筑工业出版社.1993.
    [108] 赵西安,李国胜,李国强,戴振国.高层建筑结构设计与施工问答.同济大学出版社.1991
    [109] 张保印,张琪玮.陕西省邮政电信局网管中心内力检测阶段性报告(一).西安建筑科技大学.2001
    [110] 张保印,张琪玮.陕西省邮政电信局网管中心内力检测阶段性报告(二).西安建筑科技大学.2002
    [111] 陕西省邮政电信局网管中心大楼工程地质勘察报告.机械工业部第一勘察研究院.1997
    [112] 陕西省邮政电信局网管中心沉降观测阶段性报告.西安建筑科技大学工程测量研究所.2001
    [113] 张保印,彭修宁.高层建筑箱形基础下砂卵石地基反力大小及分布规律理论研究与测试分析.西安建筑科技大学学报,1996(2):18~21.
    [114] 钱家欢,殷宗泽.土工原理与计算.中国水利水电出版社.1996
    [115] Drnckcr D. C., Prager W. Soil Mechanics and plastici Analysis or Limit Design. Q. Appl. Math., 52, 10(2): 157~165.
    [116] 张学言.岩土塑性力学.人民交通出版社.1993
    [117] Reissner E. On small bending and stretching of sandwich-type shells. International Journal of Solids and Structures, 1977, 13(12): 1293~1300
    [118] Benson, David J. and Hallquist, John O. A Single Surface Contact Algorithm for the Post-Buckling Analysis of Shell Structures. Computer Methods in Applied Mechanics and Engineering, 1990, 78(2): 332~345.
    [119] Clough G. W., Duncan J. M. Finite Element Analysis of Retaining Wall Behavior. J. Soil Mech. And Found. Div., ASCE, 1971, 97(Sm12): 1657~1674
    [120] Laursen T. A., Simo, J. C. Algorithmic Symmetrization of Coulomb Frictional Problems Using Augmented Lagrangians. Computers Methods in Applied Mechanics and Engineering, 1993, 108(1): 133~146
    [121] 刘俊龙.大口径灌注桩竖向承载力的影响因素及其评价.工程勘察
    [122] Lehane B. M., Jardine R. J., Brand L., Frank R. Mechanisms of shaft friction in sand instrumented pile tests. Ocean Engineering, 1994(1): 110~117
    , #140
    [123] Massakiro K., Tamootsu M., Kenji M. Vertical Loading Tests of Large Bored Piles and Their Estimation. Proc., 1st International Geotechnical Seminar on Deep Foundations on Bored and Auger Piles. 1988
    [124] 中华人民共和国行业标准.建筑桩基技术规范(JGJ-94-44).中国建筑工业出版社.1994
    [125] 刘金砺,黄强,李华,高文生.竖向荷载下群桩变形性状及沉降计算.岩土工程学报,1996,17(6):1~13
    [126] Cooke R. W., Price G., Tarr K. Piles in London Clay: Interaction and Group Behavior under Working Conditions, J. Geotech. Eng. Div. Asce, 1980, 30(2): 103~115
    [127] 刘国庆,杨庆东.ANSYS工程应用教程.中国铁道出版社
    [128] 刘涛,杨凤鹏.精通ANSYS.清华大学出版社
    [129] 张琪玮,牛荻涛.结构物在动力荷载作用下共同工作分析理论的回顾与展望.西安建筑科技大学学报(自然科学版),2003,35(2):151~154
    [130] 中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001).中国建筑工业出版社.2002
    [131] Eringen A. C., Suhubi E. S. Elastodynamics. Vol. Ⅱ. Linear Theory. Academic Press. London. 1975
    [132] 李庆斌,周鸿钧,林皋,董耀星.特解边界元法及其工程应用.科学技术文献出版社.1992
    [133] 嵇醒,臧跃龙,程玉民.边界元法进展及通用程序.同济大学出版社.1997
    [134] Brebbia B. A. The Boundary Element Method for Engineers. Pentech Press. London. Halstead Press. New York. 1978
    [135] 王元淳.边界元法基础.上海交通大学出版社出版.1990
    [136] Chien C. C., Wu T. Y. A particular integral BEM/time-discontinuous FEM methodology for solving 2-D elastodynamic problems. Int. J. of Solids and Struct. 2001(38): 289~306
    [137] Banerjee P. K. The Boundary Element Methods in Engineering. 1994. McGraw-Hill. London.
    [138] Penzien J. et. al. Seismic analysis of bridges on long piles. ASCE,1964(EM3): 223~253.
    [139] 龚晓南.土工计算机分析.中国建筑工业出版社.2000
    [140] 江见鲸.钢筋混凝土非线性有限元分析.陕西科学技术出版社.1991
    [141] 钱家欢.殷宗泽.土工数值分析.中国铁道出版社.1993
    [142] 陈生水.土的本构模型研究之浅见.岩土工程学报,1992,14(2):89~92.
    [143] 李景勇.有限元法.北京邮电大学出版社.1999.2
    [144] 沈亚鹏,何福保.板壳理论.西安交通大学出版社.1993
    [145] Simo J. C., VuQuoc L. A Three Dimensional Finite Strain Rod Model. Part Ⅱ: Computational Aspects. Computer Methods in Applied Mechanics and Engineering, 1986, 58: 79~116
    [146] Clough R. W., Penzien J. Dynamic of Structures. McGraw-hill Inc. 1991
    [147] 孙炳楠,项玉寅,张永元.工程中的边界元法及其应用.浙江大学出版社.1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700