SAC13沥青混合料的设计与施工
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SAC矿料级配设计与检验方法不仅能计算粗集料、细集料任意筛孔的通过量,还可以根据不同种类岩石将矿料级配调整到所需结构类型。论文首先从分析影响粗集料VCA的因素出发,提出了判定沥青混合料结构类型的方法,研究了SAC13和目前常用沥青混合料的强度构成。论文通过SAC13、SAC20和SAC25的级配设计过程详细介绍了SAC矿料级配设计与检验方法,提出了应用VCAAC检验方法的技巧和保证沥青混凝土性能稳定的不同筛孔通过量的误差范围。并通过对比三种组成类型的SAC13沥青混合料和AC13、SMA13、SUP13沥青混合料的力学性能和路用性能,证实了SAC矿料级配设计与检验方法设计的骨架密实结构沥青混合料具有良好的性能。此外,针对施工单位普遍认为的粗集料断级配沥青混合料难于压实的问题,研究了SAC13等沥青混合料的压实特性,提出了紧密骨架密实结构SAC13同样具有较好的压实性能。
     一方面,通过SAC13沥青混合料的施工,证实SAC矿料级配设计与检验方法简单、灵活,适用性强;在合理的碾压方式下,SAC13沥青混合料的压实性能良好。另一方面,通过分析施工过程中存在的问题,提出了提高施工质量的主要措施。此外,试验段的跟踪观测数据表明,SAC13沥青混合料的使用性能良好。
The highway construction in our country enters into new times, in which High grade highway such as expressway and first class highway give priority since Shenyang-Dalian and Shanghai-Jiading expressway have been set up to be open to traffic in 1988. The total expressway mileage is up to 24,700 kilometers in the period of“tenth five”. The newly built highway mileage will be up to 24,000 kilometers till 2010. And the total highway mileage of the national expressway will add up to 65,000 kilometers. The condition of most asphalt pavement is good during the highway set up already. However, the damaged phenomenon of earlier period appeared in some highway asphalt pavement. The data show that aggregate gradation and homogeneity of the material are the two most critical factors that can improve asphalt pavement performance and durability. Therefore,the workers engaged in asphalt pavement have been studying on aggregate gradation design method and construction technology in recent years. Whatever methods are used to design aggregate gradation, asphalt mixture performance must be tested and studied by suitable equipment in laboratory in order to prove that its performance really meets the request. Above all, the gradation has to be tested by engineering practice to verify the performance satisfying the request.
     Aggregate gradation design and test method of SAC is put forward by academician Qinglin-Sha in recent two years. This method is more superior not only lies that it can calculate the passing quantity of arbitrary sieve pore for coarse and fine aggregate,but also it can adjust aggregate gradation to the structure type needed according to the different category rock class and judge performance of aggregate gradation offered in advance. In combination with actual engineering, the paper deeply studied gradation design and construction technology of SAC13 asphalt mixture, aiming at making this creative result widely used and resolving the insufficiency in the current aggregate gradation design methods. This paper draws main conclusions as follows:
     (1) According to the amount of coarse aggregate in asphalt mixture and relationship of VCA_(DRL),VCADRV and VCA_(AC), the criteria using to judge structure type of asphalt mixture is put forward distinctly, that are compact skeleton-dense structure (VCA_(AC)=VCADRV), general skeleton-dense structure (VCADRV VCA_(DRL)) and skeleton-gap structure (VCA_(AC) < VCADRV); Based on filled-theory, skeleton formed by coarse aggregate of asphalt mixture when VCA_(AC) is less than VCADRV. However, SMA aggregate gradation itself is not dense. Denseness of SMA asphalt mixture is achieved by using more asphalt. Consequently, SMA asphalt mixture is extremely sensitive to asphalt content;
     (2) The methods used to test coarse aggregate deposit density method in loose condition, pestle denseness condition and vibratory denseness condition have some defect in some extent through the analysis result of testing regulations. Aggregate deposit density tested under vibroplatform setting which maintains unaltered is below pestle denseness of 2kg weight and 3min vibration time, through which coarse void is calculated and gained in order to study how skeleton forms;
     (3) The value of VCADRV and VCA_(DRL) is definitely influenced by size of container. The bigger is containers diameter, the smaller is their values. If the ratio of the container diameter and the largest diameter of coarse aggregate is more than 10 times, the influence of the size of container for VCA is very little and can be ignored;
     (4) VCA of coarse aggregate will primarily depends on the nature of aggregate. And there is little correlation with the proportion of each grade coarse aggregate and VCA. In this paper, VCA of seven different gradation fall within positive and minus two times of average value standard deviation;
     (5) The example in the paper confirm that the correlation coefficient of them is above 0.8761, namely VCA_(AC) strongly depends on coarse aggregate content of aggregate gradation, and it reduces with the coarse aggregate content increases through analyzing the irrespective many coarse aggregate content of asphalt mixture that is mould by big or small Marshall equipment and the corresponding VCA_(AC). Thus, as long as VCA_(DRV) and VCA_(DRL) value of coarse aggregate are determined by test when the raw material is selected. Then according to the relation between aggregate gradation VCA_(AC) and content of the coarse aggregate, coarse aggregate content required by the design asphalt mixture corresponding component types can be calculated. And then every sieve opening passing amount of coarse and fine aggregate is calculated according to SAC aggregate grading design method;
     (6) Analysis of asphalt mixture intensity form shows that the effect of coarse aggregate in intensity composition shows more distinct with the gradual formation of stable framework, from less than 85% contribution rate of suspended dense structure of up to 85% of general skeleton-dense structure and up to 90% of compact skeleton-dense structure;
     (7) The aggregate gradation design of three different specification-SAC13,SAC20 and SAC25 verifies SAC aggregate gradation design and test method are simple, flexible and strongly applicable, and are generalized and applied expediently. Examples in this paper provide a model for design method for the user;
     (8) By testing dynamic split test parameters of common asphalt mixture surface course (SAC composed of three types, AC, SMA, SUP) under different temperature, the value scope of dynamic indirect tensile stiffness modulus and relational expression of modulus along with temperature changing are gained. As it has good correlation between temperature and modulus, modulus in different and standard temperature can be deduced by the tested temperature, which is proposed for reference in design. This provides a convenient condition for test conditions and has better practical value;
     (9) Asphalt mixture dynamic modulus drops distinctly as the temperature increases. Among three SAC aggregate gradation, the dynamic modulus SAC1 of compact skeleton-dense structure sensitivity to temperature is least with temperature changing. General skeleton-dense structure SAC2 is the second. Suspended dense structure SAC3 is largest. And compared with AC, SMA, SUP, SAC1 and SMA are closer and better than AC and SUP. SAC2 is between AC and SUP, SAC3 is the worst
     (10) Through test study on pavement performance of three composing types asphalt mixture which are designed by SAC aggregate gradation method and AC SMA, SUP asphalt mixture which are commonly used. The results show:
     ①Compared with asphalt mixture which takes asphalt mixture of hydrated lime as filler instead of slag filler cement as filler, high temperature resistant permanent deformation capacity is high, the anti-aging performance is low and water stability performance of the same grading is lower. But the low temperature performance can not be determined;
     ②High temperature resistant permanent deformation capacity is classified from high to low as follows: compact framework dense structure, the general framework dense structure, suspended dense structure judging by the indexes of high temperature resistant permanent deformation capacity corresponding to rutting test, SGC test and GTM test;
     ③It is more reasonable to use permanent deformation value and deformation speed in rutting test together to evaluate high temperature resistant permanent deformation capacity. And evaluation index is more effective by extending test time of wheel rutting;
     ④In hypothermia bending test, prepared methods of sample will greatly influence the largest bending strain and bending stiffness modulus of asphalt mixture destruction in low-temperature. Relational rules for prepared methods of sample should be added in test methods;
     ⑤The results of hypothermia bending test and dynamic indirect tensile test modulus differ obvious. Therefore, asphalt mixture low temperature performance is very difficult to evaluate. The effectiveness of asphalt mixture low-temperature performance index evaluation should be taken into accout;
     ⑥The results of residual stability test and freeze-thaw split test show simultaneous that asphalt mixture water stability of three SAC aggregate gradation which are designed by the same methods is classified from high to low as follows: compact framework dense structure SAC1, the general framework dense structure SAC2, suspended dense structure SAC3. However, residual stability of them is less than AC, SMA and SUP. Only the splitting freeze-thaw test intensity ratio of SAC1 is higher than all other grading;
     ⑦The initial structure depth of framework dense structure asphalt mixture is deep and decay slowly. And the initial structure depth of suspended dense asphalt mixture is low and decay fast. However, the structure depth decays faster than that of SAC due to the special structure of SMA;
     ⑧The order of asphalt mixture anti-aging performance when fillers are the same is: suspended dense structure is greater than general framework dense structure, and the latter is greater than the compact framework dense structure;
     (11) Compact performance of compact framework dense structure is comparative to SMA and SUP and general framework dense structure SAC2 is comparative to SAC3, asphalt mixture of AC grading is compacted easily by synthetically considering compact performance parameters gained by asphalt mixture gyration curve;
     (12) Samples are made by different compaction methods of GTM, SGC and Marshall Compaction when asphalt content is equal. Bulk density of SGC is largest, bulk density of GTM take the second place, bulk density of Marshall compaction is the least. The corresponding size parameters (Va., VMA) parameters of SGC is the least, the size parameters of GTM times takes the second place, the size parameters of Marshall compaction are the largest. The higher is coarse aggregate content, the smaller is the gap between them. And results gained are contrary to some research results in exists;
     (13) Adjustment of grading in construction process validates the applicability of SAC aggregate grading design method. Particularly test methods of VCADRF and VCA_(AC) are validated flexible once again. Responding construction course to which should be paid more attention is proposed. And consistency of aggregate grading is ensured and the quality of asphalt concrete pavement is improved at the same time;
     (14) The tracking and observing data of test section show that initial deformation of asphalt mixture which is designed by SAC aggregate gradation design method develops very fast. But the reduce degree of deformation rate with continuous load is less than AC grading, which is same with the research conclusion in laboratory. But the permanent deformation at present is equivalent to it and requires to be observed further. In addition, the structure depth and the friction coefficients of the asphalt mixture designed by SAC aggregate gradation design method are both far larger than and AC. However the roughness degree is the same as AC.
     It can be drawn from the conclusions above that new SAC13 designed by SAC aggregate gradation design and test possesses technical and economic characteristics as follows: Va is small and adjustable and not easily to suffer water damage. It also has the following advantage: strong high temperature resistance to permanent deformation capability, deep structure depth, and good skid-resistant. Also, it is easily to be compacted. The asphalt content is smaller and can save investment etc.
     Aiming at the key index of determining asphalt mixture structure type and SAC aggregate grading design method coarse aggregate VCA, the paper proposes vibroplatform recommended in specification, VCA_(DRV) test method is determined in condition of 2kg weight and 3min vibration time. And this can avoid the influence of different personnel operating to test data. Reference for the revision of test methods is provided. VCA_(AC) reduce along with coarse aggregate content of aggregate gradation increasing is proposed and relationship between VCA_(AC) and coarse aggregate content is established. When VCA_(DRL) and VCA_(DRV) of raw materials test are determined, coarse aggregate content of different component asphalt mixture can be calculated through the relationship between coarse aggregate content and VCA_(AC). The passing quantity of sieve pore for coarse and fine aggregate can be calculated by SAC aggregate gradation design method. Thereby, primary grading is gained and tested by VCADRF and VCA_(AC), and design steps of final grading which is produced and used are finally determined. Correspondingly, it can provide theoretical basis for selecting coarse aggregate content. Standards for determining asphalt mixture structure type are proposed: compact framework dense structure (VCA_(AC)=VCA_(DRV)), general framework dense structure (VCA_(DRV)VCA_(DRL)) and framework gap structure (VCA_(AC)     Tracking observation of test sections on which SAC grading design method systematically studied and applied combination with the practical engineering firstly have confirmed that asphalt concrete designed by SAC aggregate gradation design test method has better engineering practicality. And provide mode for popularization and application of design method. The applied skill of VCA_(AC) aggregate gradation test method is proposed in this paper. After aggregate grading which is tested by VCADRF test method meet requirements and when Va which is calculated by the selected specimen density meet 3%-4% of design requirement, VCA_(AC) test of the aggregate gradation is determined to meet requirements for the structure type, and this makes the method more simple and flexible. The error scope of passing quantity of different sieve pore is proposed and this can assure the consistency of asphalt mixtures.
     In addition, rutting test time should be properly extended. And the permanent deformation and deformation rate are both used to evaluate the asphalt mixture high-temperature resistance to permanent deformation. In low temperature bending test, considering the great influence of prepared methods of sample to the largest bending strain and bending stiffness modulus of asphalt mixture destruction in low-temperature, relational rules for prepared methods of sample should be added in test methods. The sample short-term aged in condition of 163℃, 4h oven. The discuss of evaluation method and test index for pavement performance above provides some suggestions for the revision of test methods.
引文
[1] 沙庆林.我国高速公路沥青路面技术的发展[J].中国高速公路,2006,11:32-35.
    [2] 沙庆林.高速公路沥青路面早期破损现象及预防[M].人民交通出版社.2001,5:21-133.
    [3] 沙庆林.高速公路沥青路面的水破坏及其防治措施(上)[J].中外公路,2000,20(3):1-4.
    [4] 沙庆林.高速公路沥青混凝土路面的早期破坏[J].公路,2004(11):76-82.
    [5] 沙庆林.高速公路沥青路面早期损坏与对策[J].长沙理工大学学报,2006,3(9):1-6.
    [6] 李福普.解决高速公路沥青路面早期损坏的技术途径[J].石油沥青,2006,20(12):1-9.
    [7] 沈金安.解决高速公路沥青路面水损害早期损坏的技术途径[J].公路,2000(5):72-75.
    [8] 沈金安,李福普等.高速公路沥青路面早期损坏分析与防治对策[M].人民交通出版社.2004.
    [9] G.W.Maupin,Jr.,Assessment of Stripped Asphalt Pavement[J].Report FHWA/VA-89/14,Virginia Transportation Research Council,1989.
    [10] R.G.Hicks and J.P.Mahoney,Collection and Use of Pavement Condition Data[J].NCHRP Synthesis 126,Transportation Research Board,1986.
    [11] 谭忆秋.基于沥青路面应力场分布沥青混合料抗剪特性的研究[D]:[同济大学博士后出站论文]. 上海:同济大学,2002,10:1-2.
    [12] 沙庆林.多碎石沥青混凝土 SAC 系列的设计与施工[M].人民交通出版社.2005,7.
    [13] 沙庆林.SAC 和其他粗集料断级配的矿料级配设计方法[J].公路,2005(1):143-150.
    [14] 沙庆林.提高沥青路面使用性能和耐久性的最关键因素[J].中外公路,2005,25(2):17-19.
    [15] 王新明.高性能沥青路面 Superpave 级配设计方法分析[J].石油沥青,2003(增刊):61-64.
    [16] 贾渝. Superpave 混合料设计方法最新进展[J].中外公路,2001,21(6):58-61.
    [17] 郝培文,王海林,包斌. Superpave 级配禁区对沥青混合料性能影响[J].中外公路,2005,25(4):167-170.
    [18] Westrack Forensic Team Consensus Report. Superpave Mixture Design Guide[R].FHWA-RD-01-052,2001.
    [19] 沈金安,盖振娥.国际上对美国 Superpave 的反应及我国的对策[J].石油沥青,2003,15(1):1-7.
    [20] 马德宏.Superpave 混合料设计试验方法和要求[J].山西交通科技,2003 (1):10-11.
    [21] 于新,吴建浩.贝雷方法应用探讨[J].公路,2003 (8):83-87.
    [22] William R.VaVik,William J.Pine,and Samuel H.Carpenter.Aggregate Blending for Asphalt Mix Design:Bailey Method[J].TRB02-3629,2002:146-153.
    [23] William R.VaVik,William J.Pine,and Samuel H.Carpenter. Bailey Method for Gradation Selection in Hot Mix Asphalt Mixture Design[R].Transportation Research Circular,Number E-C044,2002.
    [24] Pine W J,Gerald P E,Huber A.The Bailey Method of Gradation Selection Heritage Research Group[M].Indianapolis,Indiana,2000.
    [25] Vavrik W R,Pine W J,Huber G,Carpenter S H,Robert Bailey.The Bailey Method of Gradation Evaluation:The Influence of Aggregate Gradation and Packing Characteristics on Voids in the Mineral Aggragate[J].Journal of the Association of Asphalt Paving Technologists,2001.
    [26] 郝培文,徐金枝,周怀治. 应用贝雷法进行级配组成设计的关键技术[J]. 长安大学学报(自然科学版),2004,26(6):1-6.
    [27] 吕文江,陈爱文,郝培文,戴经梁.贝雷法参数 CA 比对沥青混合料性能的影响[J]. 长安大学学报(自然科学版),2005,25(4):5-8.
    [28] 陈爱文,郝培文.应用贝雷法设计和检验级配[J].中外公路,2004,24(5):101-103.
    [29] 林绣贤.柔性路面结构设计方法[M].人民交通出版社,1988,11.
    [30] 袁万杰.多级嵌挤密实级配设计方法与路用性能研究[D]:[长安大学硕士论文].陕西:长安大学,2004,5:31-69.
    [31] 刘忠根.SMA 矿料级配及配合比优化设计研究[D]:[长安大学博士论文].陕西:长安大学,2002,6:39-59.
    [32] 张宗涛,刘中林,郝培文,张登良.间断密级配沥青混合料配合比设计方法[J]. 西安公路交通大学学报,2001,21(10):22-25.
    [33] 张宗涛. 沥青混合料级配优化[D]:[长安大学硕士论文].陕西:长安大学,2000,6.
    [34] 杨旭东,马良,张争奇.粗集料粒径对矿质混合料骨架稳定性影响分析[J].西安科技大学学报,2006,26(4):480-484.
    [35] 胡曙光,李春,任飞,丁庆军.骨架密实型沥青混合料配合比设计[J]. 武汉理工大学学报,2003,25(6):4-6.
    [36] 张肖宁等.按体积法设计沥青混合料[J].哈尔滨建筑大学学报,1995,2(28):28-36.
    [37] 张肖宁,王绍怀,吴旷怀,王端宜.沥青混合料组成设计的 CAVF 法[J].公路,2001(12):17-21.
    [38] 吴旷怀,张肖宁.沥青混合料设计综述[J].广州大学学报(自然科学版),2005,5(4):456-461.
    [39] 沙庆林.矿料级配检验方法之一 VCADRF 方法[J].公路,2005(2):89-99.
    [40] 沙庆林.矿料级配检验方法之二 VCAAC 方法[J].公路,2005(4):121-132.
    [41] 沙庆林.矿料级配检验方法之二 VCAAC 方法[J].公路,2005(5):106-116.
    [42] 沙庆林.公路压实和压实标准[M].人民交通出版社.1999:25-29.
    [43] 卢发亮.Superpave 混合料施工技术研究[J].山东交通学院学报,2002,10(3):50-52.
    [44] 王海燕,王新明.高性能沥青路面 Superpave 的施工工艺[J].石油沥青,2003,17(增刊):55-60.
    [45] 马士杰,王林.Superpave 混合料施工技术初探[J].石油沥青,2003,17(增刊):134-136.
    [46] 沙庆林.沥青面层的技术状况和发展方向[J].公路,2003(8):1-4.
    [47] 沙庆林.提高沥青路面使用性能和耐久性的最关键因素(续)[J].中外公路,2005,25(2):17-19.
    [48] 张登良.沥青路面[M].人民交通出版社,1998,12:16-22.
    [49] 张登良,郝培文等.沥青混合料配合比设计方法研究报告[J].西安公路交通大学,1996,10.
    [50] 沈金安.沥青及沥青混合料路用性能[M].人民交通出版社,2001,5:275-279.
    [51] H.Christoffersion , M.Mehrabadi , S.NematNasser.A micromechanical description of granular material behavior[M].J.Appl.Mech,1981:339-344.
    [52] William Robert Vavrik.Asphalt Mixture Design Concepts To Develop Aggregate Interlock[J].UMI,2000,No.9990175.
    [53] G.K.Chang,N.J.Meegoda. Simulation of the Behavior of Asphalt Concrete Using Discrete Element Method[J].Proc.2nd Intl.Conf.On Discrete Element Methods,1993:437-448.
    [54] E.Ray Brown,John E.Haddock. A Method to Ensure Stone-on-Stone Contact in Stone Matrix Asphalt Paving Mixtures[R].NCAT Report , No.97-2.
    [55] P.Goltermann,V.Johansen,L.Palbol.Packing of Aggregates:an Alternative Tool to Determine the Optimal Aggregate Mix[J].ACI Mat.J., 1997,94/5:435-443.
    [56] 陈旭庆,黄晓明,杨军.沥青混合料骨架形成问题的研究[J].城市道桥与防洪,2003(5):23-27.
    [57] 杨旭东,马良,张争奇.粗集料粒径对矿质混合料骨架稳定性影响分析[J].西安科技大学学报,2006,26(4):480-484.
    [58] 邹桂莲,张肖宁,王绍怀,王端宜.富沥青混合料的 CAVF 法设计[J].公路,2002(3):76-79.
    [59] 赵永利,黄晓明.矿料级配基本性能的试验研究[J].公路交通科技,2004,21(6):1-4.
    [60] 田波等.沥青混合料中骨架结构特征的评价[J].同济大学学报,2001,29(5):541-545.
    [61] 沈金安.改性沥青与 SMA 路面[M],人民交通出版社.1999,7:206-219.
    [62] 卢永贵.沥青玛蹄脂碎石混合料研究[D]:[长安大学博士论文].陕西:长安大学,2001,6:74-95.
    [63] 卢永贵,赵可.SMA 骨架标准研究[J].西南交通大学学报[J]. 2002,37(1):14-18.
    [64] 卢永贵,赵可,张登良.SMA 骨架标准研究[J].长安大学学报(自然科学版),2002,22(1):4-9.
    [65] 吕文江.沥青路面结构与材料设计一体化研究[D]:[长安大学博士论文].陕西:长安大学,2006,6:94-125.
    [66] 刘中林.大粒径沥青混合料 LSAM 组成设计与路用性能的研究[D]:[长安大学博士论文].陕西:长安大学,2002,6:59-68.
    [67] 刘中林.大碎石沥青混合料 LSAM 骨架密实型综合设计法[J].公路,2003(3):93-96.
    [68] 刘中林,王富玉等.大粒径沥青混合料组成结构的研究[J].土木工程学报,2004,37(7):59-63.
    [69] 刘中林,李志刚.大碎石沥青混合料骨架密实型级配设计理论与方法研究[J].中南公路工程,2005,30(1):77-79.
    [70] 刘中林,田文,史建方.大碎石沥青混合料组成结构研究[J].中外公路,2003,23(8):102-105.
    [71] 盛晓军.沥青混合料骨架研究[D]:[长安大学硕士论文].陕西:长安大学,2006,6:60-67.
    [72] 中华人民共和国行业标准.公路工程集料试验规程(JTG E42-2005)[S] 人民交通出版社,2005,8:31-34.
    [73] 刘忠根,张登良等.均匀设计在 SMA 骨料级配设计中的应用[J].长安大学学报(自然科学版),2003,23(1):1-6.
    [74] 王富玉.大粒径沥青混合料的路用性能研究[D]:[长安大学硕士论文].陕西:长安大学,2001,6:6-23.
    [75] 薛小刚.沥青混合料级配优化及配合比设计方法研究[D]:[长安大学硕士论文].陕西:长安大学,2005,5:73-74.
    [76] 严家及.道路建筑材料[M].人民交通出版社,1996,6:182-189.
    [77] 张登良.沥青与沥青混合料[M].人民交通出版社,1993,6:99-112.
    [78] 延西利.沥青混合料的强度形成机理的分析研究[J].西安公路学院学报,1994,14(3):1-5.
    [79] 孙立军.沥青路面结构行为理论[M].人民交通出版社,2005,11:322-377.
    [80] 毕玉峰,孙立军.沥青混合料抗剪试验方法研究[J].同济大学学报(自然科学版),2005,33(8):1036-1040.
    [81] 中华人民共和国行业标准.公路工程沥青及沥青混合料试验规程(JTJ 052-2000)[S].人民交通出版社,2000,8.
    [82] 许志鸿,陈兴伟,刘红,李淑明.Superpave 级配范围[J].交通运输工程学报,2003,3(3):1-6.
    [83] 中华人民共和国行业标准.公路沥青路面施工技术规范(JTG E40-2004)[S]. 人民交通出版社,2004,11.
    [84] 王旭东,沙爱民,许志鸿.沥青路面材料动力特性与动态参数[M].人民交通出版社,2002,1:1-119.
    [85] 许志鸿.沥青混合料动态性能研究[J].同济大学学报,2001,29(8):893-897.
    [86] 许志鸿,丰晓等.沥青混合料动态性能影响因素的研究[J].建筑材料学报,2001,4(3):238-243.
    [87] 应荣华,张起森.沥青混合料设计参数测定对比试验研究[J].中南公路工程,1999,24(2):1-3.
    [88] 刘朝晖,郑健龙.沥青混合料劈裂试验参数研究[J].石油沥青,1995,9(2):31-34.
    [89]K E Cooper,Interpretation of Nottingham Asphalt Tester Results[R].2002,12.
    [90] 沙庆林.高等级公路半刚性基层沥青路面[M].人民交通出版社,1998,9:89-438.
    [91] 陈佩茹,李立寒,刘炤宇.沥青高温性能指标评价[J].石油沥青,2002,16(3):27-30.
    [92] 陈忠达,袁万杰等.沥青混合料高温性能评价指标[J]. 长安大学学报(自然科学版),2006,26(5):1-4.
    [93] 郑向雷.沥青混合料高温特性研究[D]:[长安大学硕士论文].陕西:长安大学,2006,6:1-9.
    [94] 赵可.不同评价体系间改性沥青高温性能指标的相关分析[J].石油沥青,2002,16(2):26-31.
    [95] 牛晓霞,牛玉琴,时占君.改性沥青高温性能评价指标的探讨[J].广东公路交通,2002(2):14-17.
    [96] 薛小刚,李宁利等.改性沥青高温指标可靠性评价[J].内蒙古公路与运输,2004(1):6-8.
    [97] 王旭东,何兆益.沥青混凝土动稳定度和相对变形指标的研究[J].重庆交通学院学报,2000,19(3):44-46.
    [98] 彭余华,沙爱民,廖志高.车辙试验的影响因素分析研究[J].中外公路,2005,25(1):18-22.
    [99] 李德超.动稳定度数据处理方法研究[J].公路,2005(1):163-167.
    [100] 闫其来,黄晓明,赵永利.环境温度对沥青混合料高温稳定性的影响[J].黑龙江工程学院学报(自然科学版),2005,19(4):25-28.
    [101] 郑建东,田见效.水泥对沥青混凝土性能影响的研究[J].山东交通科技,2002(3):10-12.
    [102] 王发洲,丁庆军.水泥替代矿粉对沥青混凝土性能的影响[J].河南建材,2000(3):3-5.
    [103] 田见效,李万军.水泥替代矿粉对沥青混凝土性能影响研究[J].东北公路,2003,26(4):13-15.
    [104] 王旭东,戴为民.水泥、消石灰在沥青混合料中的应用[J].公路交通科技,2001,18(4):20-24.
    [105] 叶遇春.沥青混合料高温稳定性评价指标的试验研究[J].中外公路,2004,24(3):87-90.
    [106] 周卫峰,魏如喜,赵可.SMA 的 GTM 设计方法、路用性能及施工工艺[J].中国市政工程,2003(5):15-19.
    [107] 于洪兴,魏连雨等.采用 GTM 方法设计的沥青混合料高温稳定性研究[J].公路交通科技,2005,22(9):23-26.
    [108] 郭永辉.美国工程兵旋转压实剪切试验机设计的沥青混凝土性能[J].公路,2002(4):74-77.
    [109] 周卫峰. 基于 GTM 的沥青混合料配合比设计方法研究[D]:[长安大学博士论文].陕西:长安大学,2006,6.
    [110] 谭忆秋.基于粘性流动沥青低温流变特性的研究与应用[D]:[哈尔滨建筑大学博士论文].黑龙江:哈尔滨建筑大学,1999,11:1-15.
    [111] N.W.Mcleod.A 4-year Survey of Low Temperature Transverse Pavement Cracking on the Three Ontario Roads[J].Proceedings of the Association of Asphalt Paving Technologists,1972,41:424-436.
    [112] Duanyi Wang,Helen Tetteh-Wayoe,Kenneth O Anderson.Some Low Temperature Properties of Asphalt Cement and Mixtures Used in the Lamont Test Road in Alberta[J].Paving in Cold Area Workshop,PICA V,1993.
    [113] 交通部公路科学研究所等.黑龙江肇东试验路研究报告[R].1982.
    [114] 沙庆林.高速公路沥青路面的水破坏及其防治措施(下)[J].中外公路,2000,20(4):1-5.
    [115] Stevens,D E.Raveling,Proc.Asphalt Paving Technol[J].1943,28.
    [116] 王文武,李迁生.高速公路安全管理[M].人民交通出版社,2001,3.
    [117] 陕西省公路学会.抗滑表层技术[R]. 1990,5.
    [118] Christopher K.Kennedy,Arthur E.Young,and Ian C.Butler. Measurement of Skidding Resistance and Surface Texture and the Use of Results in the United Kingdom. Surface Characteristics of Roadways : International Research and Technologies. ASTM 1031,1990:87-102.
    [119] 上海市市政工程研究所.沪闵抗滑试验路[R].“七五”国家重点科技项目(攻关)75-24-01-01(子报告 20),1990,10.
    [120] 赵战利.基于分形方法的沥青路面杭滑技术研究[D]:[长安大学博士论文].陕西:长安大学,2005,6.
    [121] 中华人民共和国行业标准.公路路基路面现场测试规程(TJT059-95)[S]. 人民交通出版社,1994,11.
    [122] Bouzid Choubane,Gale C Page,and James A Musselman.Investigation ofWater Permeability of Coarse Graded Superpave Pavements.AAPT 1995:255-276.
    [123] 沙庆林.空隙率对沥青混凝土的重大影响[J].国外公路,2001,21(1):34-38.
    [124] Rowe G M et al.Visco-elastic analysis of hot mix asphalt pavement structures , Transportation Research Record[J].Transportation Research Board,Washington,D.C.,1995:44-51.
    [125] Transportation Research Board , National Research Council. Asphalt Pavement Construction and Surface Mixtures[M].Washington,D.C.:National Academy Press,1998:24-32.
    [126] Dale S.Decker editor. Quality Management of Hot Mix Asphalt[M]. West Conshohocken,PA ASTM,1996,(1):84-92.
    [127] Brenda McCabe,Simaan AbouRizk,and Jim Gavin. Sample Size Analysis for Asphalt Pavement Quality Control[J]. J.Infrastruct.Syst.,Volume 5,Issue 4, pp.118-123,December 1999.
    [128] Guiqin Yang,Daren B.H.Cline,Robert L. Lytton,and Dallas N.Little. Ternary and Multivariate Quality Control Charts of Aggregate Gradation for Hot Mix Asphalt [J]. J.Mat.in Civ.Engrg.,Volume 16,Issue 1,pp.28-34,January/February 2004.
    [129] John J.Bowders,J.Erik Loehr,Deepak Neupane,and Abdelmalek Bouazza, Construction Quality Control for Asphalt Concrete Hydraulic Barriers [J]. J.Geotech. and Geoenvir.Engrg.,Volume 129,Issue 3,pp.219-223, March 2003.
    [130] Edward J.Jaselskis,Hsiu C. Han,Jonas Grigas,Lawrence Tan,and Daniel Fahrion. Status of Roller Mountable Microwave Asphalt Pavement Density Sensor[J]. J.Constr.Engrg. and Mgmt.,Volume 127,Issue 1,pp.46-52, January/February 2001.
    [131] 陈骁. 热态沥青合料压实过程变形特性研究[D]:[长沙理工大学硕士论文] .湖南:长沙理工大学,2006,4:21-47.
    [132] 袁迎捷. Superpave 沥青混合料设计方法与压实原理研究[D]:[长安大学硕士论文]. 陕西:长安大学,2001,4:48-68.
    [133] Mireille Bttikha. A Computer-based System for Construction Quality Management with Application to Highway Pavements[D]. Unpublished Ph.D.Dissertation,the University of British Columbia,2000,(7):101-112.
    [134] Seong-Min Kim,B.Frank McCullough.Dynamic response of plate on viscous Winkler foundation to moving loads of varying amplitude[J]. Engineering Structures,2003,(25):1421-1435.
    [135] 李宇峙,陈群,刘朝晖. 不同成型方法的对比及压实特性研究[J]. 中外公路,2003,23:82-85.
    [136] 李立寒,李新军,钟陟鑫. 沥青混合料压实特性的影响因素分析[J].中国公路学报(增),2001,14:31-34.
    [137] 李宇峙,杨瑞华,邵腊庚,李闯民. 沥青混合料压实特性分析[J]. 公路交通科技,2005,22:28-30.
    [138] 张志宏. 沥青路面压实作用及压实特性分析[J]. 网络,2006,6.
    [139] 吴永钦. 嵌挤密实型粗级配沥青混合料压实特性探讨[J]. 公路与汽运,2002,8:25-27.
    [140] 李闯民,李宇峙. 重载交通沥青混合料的压实特性探讨[J]. 公路,2002,11:86-90.
    [141] 袁迎捷,周进川,胡长顺. 沥青混合料密实性能[J]. 交通运输工程学报,2001,1(3):42-45.
    [142] 袁迎捷,胡长顺. 旋转压实原理与参数设置[J]. 广西交通科技,2003,28(2):20-23.
    [143] 郁炳生,金涛,钱喜红等. 沥青混合料旋转压实成型与马氏制件的比较[J]. 华东公路,2003,1(2):78-81.
    [144] 沙庆林. 沥青混凝土面层的不均匀性及对策[J].公路,2006(1):131-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700