超轻金属结构与材料性能多尺度分析与协同优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构物的轻量化设计对于降低产品生产和使用成本、减少长期服役能耗、提高产品性能都具有重要的意义,随着当代能源与资源的短缺及竞争的加剧,轻量化设计受到各方的关注。而随着制备工艺的成熟,超轻金属多孔材料(点阵类桁架材料、线性金属蜂窝材料、泡沫金属)越来越多的应用于工程实践,其卓越的比刚度、比强度及多孔连通性使其成为新一代轻质多功能的结构功能材料。
     本论文围绕微结构具有周期性排布特点的超轻金属多孔材料,针对结构与材料性能分析方法与协同优化设计两方面展开了一系列的研究工作。具体内容如下:
     1.描述并实现了适用于类桁架点阵材料等效性能预测的均匀化方法及列式:研究了基于Dirichlet型、Neumann型及周期性边界条件下的代表体元法预测类桁架点阵材料等效弹性模量方法;对代表体元法所预测的弹性性能随参与计算的单胞个数n变化而变化的尺寸效应进行了研究,指出Neumman边界条件下的单胞边界变形协调性或者Dilichlet边界条件下的边界节点力的平衡性,是产生上述尺寸效应的本质原因,也可以作为判断是否产生尺寸效应的简单判据。开展了基于均匀化理论的2D桁架材料极值剪切性能的形状优化研究,并对其中出现的奇异现象进行了分析。(第二章)
     2.利用数值模拟,定量地对比了将LCAs(一种重要的类桁架点阵材料)材料等效为经典的柯西介质与微极连续体等效介质的计算精度,发现由柯西介质模型计算得到的位移和应力都存在较大的误差,具有非局部本构的微极连续体等效模型是较为合理的选择。基于能量法等效分析的结果提出了一种映射计算单胞构件微观应力的快速算法。
     将具有正方形单胞的LCAs材料等效为微极连续介质,运用拓扑优化思想,以反映材料宏观特性的材料相对密度ρ和微观特性的微单胞孔径L为设计变量,进行结构应力优化。并对经典的小孔应力集中算例,分别以最小化孔边应力、结构最大应力最小、最小化孔边应力与材料屈服强度比值为目标,给出了结构与材料一体化协同设计结果,同时探讨了材料铺角对优化结果的影响;最后根据连续体等效介质模型优化的结果,建立了细致的刚架模型,通过离散建模计算验证了本文方法的有效性。(第三章)
     3.针对可以通过基本设计模块周期性拼装而成的结构,研究了此类结构和模块协同优化设计的方法和模型,同时考察了基本设计模块的绝对尺寸对优化结果的影响。通过在结构和设计模块两个层次上分别引入独立的密度变量,实现了基于最优设计模块拼装的宏微观协同优化设计,采用拓扑优化技术和子结构分析方法,探讨了此种情况下最优的设计模块构形以及这种模块在结构尺度上的最优分布。(第四章)
     4.基于可制造性考虑,研究了由宏观上均匀的多孔材料制成的结构与材料协同优化设计问题。待设计的结构受到给定的外力和温度载荷作用,优化设计旨在给定允许使用的材料体积约束下,设计宏观结构的拓扑及多孔材料的微结构,使得结构柔度最小。建立了一种宏观结构与微观单胞构型协同优化设计的模型和方法,在此方法中,我们引入宏观密度和微观密度两类设计变量,在微观层次上采用带惩罚的实心各向同性材料法(SIMP:Solid Isotropic Material with Penalty),在宏观层次上采用带惩罚的多孔各向异性材料法(PAMP:Porous Anisotropic Material with penalty),借助均匀化方法建立两个层次间的联系,通过优化方法自动确定实体材料在结构与材料两个层次上的分配,得到优化设计。讨论了温度变化、材料体积及计算参数对优化结果的影响。研究结果表明只有机械载荷作用时,基于柔顺性指标的最优微单胞构形往往是各向同性的实体材料;而同时考虑热和机械载荷时,采用多孔材料可以降低结构柔顺性。(第五章)
     5.针对工程中常见的旋转对称结构,将它划分为有限个基本设计模块,而在设计模块内应用基于均匀化方法的结构与材料协同设计优化设计策略,对同时作用有集中力与离心力的旋转对称结构,给出了最优的模块构型以及构成这种模块的材料的最优微结构形式。研究了给定材料用量、不同载荷组合以及非可设计域对协同优化结果的影响,发现当同时作用有离心力与集中力时,多孔材料可以有效的提高系统刚度。(第六章)
Light weight design of structures can reduce products' mamufacturing cost and energy consumption, which greatly improve the quality of products. And it has been the focus and forever topics of researchers and engineers with shortage of energy and resources and intense competitions. With the rapid developments in mamufacturing techniques, more and more ultra-light metal porous materials (truss-like materials, linear celluar alloys, metal foams) are utilized in practice engineerings. They have received increasing attentions for their high stiffness-weight and strength-weight ratios together with potential of multifunctional applications.
     A serial of researches on multiscale analysis and concurrent optimization for ultra-light metal structures and materials have been carried out. And the main works are as follows.
     1. This paper compares the representative volume element (RVE) method based on Diriehlet and Neumann boundary conditions with the homogenization method for predicting the effective elastic property of truss-like materials with periodic microstructure. The formula of homogenization method are developed and implemented for truss-like materials. Numerical experiments show that, with increase of the number of unit cell, n, the results of RVE method under the Dirichlet and Neumann boundary conditions converge towards those obtained with homogenization method from the above and below sides respectively. For some specific types of the unit cell, RVE method gives the same results as those obtained with homogenization method even if only one unit cell is included. For RVE method, a simple criterion for judging existence of scale effects is whether the equilibrium of the boundary nodal forces is guaranteed under the Dirichlet boundary conditions or whether the deformation compatibility at the unit cell boundaries is satisfied under the Neumann boundary conditions. Finally, shape optimization technique is applied to find the optimal geometric shape of unit cell for truss-Iike materials with the maximum and minimum shear stiffness and the numerical singularity involved is discussed as well. (Chapter Two)
     2. For LCAs (Linear Celluar Alloys), the precision of classic Cauchy effective continumm and micropolar effective contimumm are compared with the results from exact discrete models in wich each cell wall is modeled as a beam element. Numerical simulations show that micropolar effective continumm is preferred considering either from displacement or stress results. And a fast mapping algorithm for micro-stress distribution in truss-like materials is developmented based on results with micropolar continuum representation obtained by energy method.
     Baed on the above analysis, optimum stress distribution for hollow plates composed of LCAs is investigated. To reduce the computational cost we model the material as micropolar continua representation. Two classes of design variables, relative density and cell size distribution of truss-like materials are to be determined by optimization under given total material volume constraint. And the concurrent designs of material and structure are obtained for three different optimization formulations. For the first formulation, we aim at minimization of the maximum stress which appears at the initial uniform design; for the second formulation, we minimize the highest stress within the specified point set. Since the yield strength of truss-like material is dependent on the relative material density, we minimize the ratio of stress over the corresponding yield strength along the hole boundary in our third formulation, which maximizes the strength reserve and seems more rational. And the influence of ply angle on the optimum result is discussed. The dependence of optimum design on finite element meshes is also investigated. An approximate discrete model is established to verify the method proposed in this paper and the stress concentration near a hole is reduced significantly. (Chapter Three)
     3. The optimization model and technique for modular structures and materials are discussed. The effects of acutral dimensions of basic design modules on optimization results are investigated for those structures that are composed by periodic distribution of basic design modules. The concurrent optimizations of macro structures and design modules based on modules assembling are implemented by introducing independent densities in macro and micro scale as design variables. The optimum configuration and distribution of basic design modules are discussed via to topology optimization technique and sub-structure method. (Chapter Four)
     4. An optimization technique for structures composed of uniform porous materials in macro scale is developed based on manufacturing requirements. The optimization aims at to obtain optimal configurations of macro scale structures and microstructure of materials under certain mechanical and thermal loads with specific base material volume. A concurrent topology optimization method is proposed for structures and materials to minimize compliance of thermoelastic structures. In this method macro and micro densities are introduced as the design variables for structure and material microstructure independently. Penalization approaches are adopted at both scales to ensure clear topologies, i.e. SIMP (Solid Isotropic Material Penalization) in micro-scale and PAMP (Porous Anisotropic Material Penalization) in macro-scale. Optimizations in two scales are integrated into one system with homogenization theory and distribution of base material between two scales can be decided automatically by the optimization model. Microstructure of materials is assumed to be uniform at macro scale to reduce manufacturing cost. The proposed method and computational model are validated by the numerical experiments. The effects of temperature differential, volume of base material, numerical parameters on the optimum results are also discussed. At last, for cases in which only mechanical load apply, the optimum configuration of micro structure is isotropic solid materials; for eases in which both mechanical and thermal loads apply, the configuration of porous material can help to reduce the system compliance. (Chapter Five)
     5. Cyclic-symmetry structures with both mechanical and centrifugal loads are divided into finite design modules, which have the identical configurations. Concurrent optimization techniques based on homogenization method and penalty technique are applied for cyclic-symmetry structures assembled by basic design modules considering the real dimension of design modules. The effects of solid material volume, different loads combination and nondesign fields on optimum results are discussed. Numerical simulations show that for cases in which both mechanical and centrifugal loads apply, the configuration of porous material can help to reduce the system compliance.
引文
[1] R.M.Jones著,朱颐龄译校.复合材料力学.上海:上海科学技术出版社,1981.
    [2] 杜善义,吴林志.复合材料的细观力学研究.“科学技术面向新世纪”学术年会,1998.
    [3] 杜善义,张博明.先进复合材料智能化研究概述.航空制造技术,2002,(9):17-20.
    [4] 方岱宁.先进复合材料的宏微观力学与强韧化设计:挑战与发展.复合材料学报,2000,17(2):1—7.
    [5] 胡更开,郑泉水,et al.复合材料有效弹性性质分析方法.力学进展,2001,31(3):361-393.
    [6] M. F. Ashby, A. G. Evans, et al. Metal Foams: A Design Guide. Boston: Butterworth-Heinemann, 2000.
    [7] J. C. Wallach, L. J. Gibson. Mechanical behavior of a three-dimensional truss material. International Journal of Solids and Structures, 2001,38:7181-7196.
    [8] Alethea M. Hayes, Aijun Wang, et al. Mechanics of linear cellular alloys. Mechanics of Materials, 2004,36:691-713.
    [9] 卢天健,何德坪,et al.超轻多孔金属材料的多功能特性及应用.力学进展,2006.36(4):517-535.
    [10] V. S. Deshpande, M. F. Ashby, et al. Foam topology: bending versus stretching dominated architectures. Acta Mater., 2001,49: 1035-1040.
    [11] A. G. Evans, J. W. Hutchinson, et al. The topological design of multifunctional cellar metals. Progress in Materials Science, 2001,46(3-4): 309-327.
    [12] K. Y. G. Mccullough, N. A. Fleck, et al. Uniaxial Stress-Strain Behaviour of Aluminium Alloy Foams Acta mater., 1999,47(8): 2323±2330.
    [13] J. Banhart, J. Baumeimer. Deformation characteristics of metal foams. Internatioanl Journal of Mechanical Science, 1998,33(6): 1431-1440.
    [14] C. Motz, R. Pippan. Deformation behaviour of closed-cell aluminium foams in tension. Acta Mater., 2001,49(13): 2463-2470
    [15] 吴照金,何德坪.胞状铝的压缩形变和吸能性能研究.应用科学学报,2001,19(4):358-361.
    [16] 王曦,虞吉林.泡沫铝的单向力学行为.实验力学,2001,16(4):438-443.
    [17] 刘培生,付超,et al.高孔率金属材料的抗拉强度.稀有金属材料与工程,2000,29(2):94-100.
    [18] L. J. Gibson, M. F. Ashby. Cellular Solids: Structure and Properties. Cambridge: Cambridge University Press, 1997.
    [19] B. Kim, R. Christensen. Basic two-dimensional core types for sandwich structures. Internatioanl Journal of Mechanical Science, 2002,42: 657-676.
    [20] E. W. Andrews, G. Gioux, et al. Size e!ects in ductile cellular solids. Part Ⅱ: experimental results, internatioanl Journal of Mechanical Sciences, 2001,43: 701-713.
    [21] P. R. Onck, E. W. Andrews, et al. Size e!ects in ductile cellular solids. Part Ⅰ: modeling. internatioanl Journal of Mechanical Sciences, 2001,43:681-699.
    [22] J. K. Paik, A. K. Thayamballi. The strenghth characteristics of aluminum honeycomb sandwich panels. Thin-Walled Structures, 1999,35:205-231.
    [23] 王飞,李剑荣,et al.铝蜂窝结构单向压缩、失稳和破坏机制研究力学学报,1998,33(6):741-748.
    [24] 张广成,赵景利.蜂窝夹层结构复合材料的力学性能研究.机械科学与技术,2003,22(2):280-282.
    [25] 王颖坚.蜂窝结构在面内剪力作用下的变形模式.北京大学学报(自然科学版),1991,27(3):301-307.
    [26] V. S. Deshpande, N. A. Fleck. Collapse of truss core sandwich beams in 3-point bending. International Journal of Solids and Structures, 2001,38: 6275-6305.
    [27] S. Hyun, A. M. Karlsson, et al. Simulated properties of Kagome and tetragonal truss core panels. International Journal of Solids and Structures, 2003,40: 6989-6998.
    [28] J. Wang, A. G. Evans, et al. On the performance of truss panels with Kagomé cores International Journal of Solids and Structures, 2003,40(25): 6981-6988.
    [29] E. W. Andrews, L. J. Gibson, et al. The Creep of Cellular Solids. Acta mater. , 1999.47(10): 2853-2863.
    [30] 刘岭,阎军,et al.二维类桁架材料结构弹塑性分析.力学学报,2007,
    [31] V. S. Deshpande, N. A. Fleck. Energy absorption of an egg-box material. Journal of the Mechanics and Physics of Solids 2003,51(1): 187-208.
    [32] P. J. Tan, J. J. Harrigan, et al. Inertia effects in the uniaxial dynamic compression f a closed-cell aluminium alloy foam. Materials Science and Technology 2002,18: 480-488.
    [33] Z. Xue, J. W. Hutchinson. Preliminary assessment of sandwich plates subject to blast loads, internatioanl Journal of Mechanical Sciences, 2003,45: 687-705.
    [34] Z. Xue, J. W. Hutchinson. A comparative studyof impulse-resistant metal sandwich plates. International Journal of Impact Engineering, 2004,30: 1283-1305.
    [35] 许坤,寇东鹏,et al.泡沫铝填充薄壁方形铝管的静态弯曲崩毁行为.固体力学学报,2005,26(3):261-266.
    [36] 钟万勰,程耿东,et al.群论在结构分析中的应用.大连理工大学学报,1978,(01):1-20.
    [37] 程桂萍,陈宏灯,et al.孔结构对多孔铝吸声性能的影响.机械工程材料,1997,23(2):30-31.
    [38] 朱新文,江东亮,et al.碳化硅网眼多孔陶瓷的微波吸收特性.有机材料学报,2002,17:1152-1156.
    [39] R. A. Shelby, D. R. Schultz. Experimental verification of a negative index of refraction. Science, 2001,292: 77-79.
    [40] T. Kim. Convection heat dessipation with lattice-frame materials. Mechanics of Materials, 2004,36: 767-780.
    [41] T. Kim, H. P. Hodson, et al. Fluid flow and endwall heat-transfer characteristics of latice-frame materials. International Journal Of Heat And Mass Transfer, 2004,47:1129-1140.
    [42] D. D. Symons, R. G. Hutchinson, et al. Actuation of the Kagome Double-Layer Grid. Part 1: Prediction of performance of the perfect structure Journal of the Mechanics and Physics of Solids 2005,53(8): 1855-1874
    [43] 吴照金,王艳明,et al.铝熔体泡沫化制备胞状铝的研究进展.铸造,1999,(4):1-5.
    [44] D. H. Yang, D. P. He. Porosity of porous AL alloy. Science in China(B), 2001,44(4): 411-418.
    [45] J. K. Cochran, K. J. Lee, et al. Multifunctional Metallic Honeycombs by Thermal Chemical Processing. Proc. TMS Annual Meeting, Seattle, WA, 2001.
    [46] S. T. Brittain, Y. Sugimura, et al. Fabrication and mechanical performance of a mesoscale space-filling truss system. Microelectromech. Systems, 2001,10:113-120.
    [47] V. S. Deshpande, N. A. Fleck, et al. Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids, 2001,49:1747-1769.
    [48] R. G. Hutchinson, N. Wicks, et al. Kagome plate structures for actuation International Journal of Solids and Structures, 2003,40(25): 6969-6980
    [49] C. Chen, T. J. Lu, et al. Effect of imperfections on the yielding of two-dimensional foams. Journal of the Mechanics and Physics of Solids, 1999,47: 2235-2272.
    [50] 刘岭,阎军,et al.考虑内部胞元能量等效的代表体元法.固体力学学报,2007,
    [51] A. D. Brydon, S. G. Bardenhagen, et al. Simulation of the densification of real open-celled foam microstructures Journal of the Mechanics and Physics of Solids, 2005,53(12): 2638-2660
    [52] C. Chen, N. A. Fleck. Size effects in the constrained deformation of metallic foams Journal of the Mechanics and Physics of Solids, 2002,50(5): 955-977.破
    [53] Y. C. Chen, Y. Huang, et al. Fracture analysis of cellular materials: A strain gradient model Journal of the Mechanics and Physics of Solids, 1998,46(5): 789-828
    [54] R. S. Kumar, D. L. McDowell. Generalized continuum modeling of 2-D periodic cellular solids. International Journal of Solids and Structures, 2004,41: 7399-7422.
    [55] X. L. Wang, W. J. Stronge. Micropolar theory for two-dimensional stresses in elastic honeycomb PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A455, 1999,A455:2091-2116.
    [56] C. Huet. Application of variational concepts to size effects in elastic heterogeneous bodies. Journal of the Mechanics and Physics of Solids, 1990,38:813-841,
    [57] S. Pecullan, L. V. Gibiansky, et al. Scale effects on the elastic behavior of periodic and hierarchical two-dimensional composites. Journal of the Mechanics and Physics of Solids, 1999,47(7): 1509-1542.
    [58] B. Hassani, E. Hinton. A review of homogenization and topology optimization I-- homogenization theory for media with periodic structure. Computers and Structures, 1998,69: 707-717.
    [59] J. Gudes, N. Kikuchi. Preprocessing and post processing for materials based on the homogenization method with adaptive finite element methods. Computer Methods in Applied Mechanics and Engineering 1990,83(2): 98-143.
    [60] 刘书田.复合材料性能预测与梯度功能材料优化设计:(博士学位论文).大连:大连理工大学,1994.
    [61] 刘书田,程耿东,et al.基于均匀化理论的多孔板弯曲问题新解法.固体力学学报,1999,20(3):195—200.
    [62] 王飞,庄守兵,et al.用均匀化理论分析蜂窝结构的等效弹性参数.力学学报,2002,34(6):914-923.
    [63] T. W. Chou, S. Nomura, et al. A Self-Consistent Approach to the Elastic Stiffness of Short-Fiber Composites. Journal of Composite Materials, 1980,14(3): 178-188.
    [64] R. M. Christensen, K. H. Lo. Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 1979,27(4): 315-330.
    [65] Z. Hashin, S. Shtrikman. A variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials. Journal of the Mechanics and Physics of Solids, 1963,11: 127-140.
    [66] R. Hill. New Derivations of Some Elastic Extremum Principles. Progress in Applied Mechanics-, 1963,Prager Anniversary Volume: 91 - 106.
    [67] J. M. Foster, C. B. Smith, et al. On predicting thermal conductivity of a binary mexture of solids. Journal of Spacecraft and Rockets, 1966,3: 287-288.
    [68] A. N. Norris. A differential scheme for the effective moduli of composites. Mechanics of Materials, 1985,4: 1-16.
    [69] I. A. Kunin. Elastic media with microstructure Ⅱ. Verlag: Springer, 1983.
    [70] T. Mori, K. Tanaka. Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions Acta Met., 1973,21(5): 571-574.
    [71] 程耿东.工程结构优化设计基础.北京:水利电力出版社,1984.
    [72] 钱令希.工程结构优化设计.北京:水利电力出版社,1983.
    [73] 唐焕文,秦学志.实用最优化方法.大连:大连理工大学出版社,2000.
    [74] G. D. Cheng. On Non-Smoothness in Optimal Design of Solid Elastic Plates. International Jomal of Solids and Structures, 1981,17:795-810.
    [75] M. P. Bendsoe, N. Kikuchi. Generating optimal topologies in structural design using homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988,71: 197-224.
    [76] M. P. Bendsoe, O. Sigmund. Topology Optimization: Theory Methods and Applocations. Berlin: Springer-Verlag, 2003.
    [77] G. D. Cheng, X. Guo. epsilon-relaxed approach in structural topology optimization. Structural Optimization, 1997,13(4): 258-266.
    [78] H. A. Eschenauer, N. Olhoff. Topology optimization of continuum structures Applied Mechanics Review, 2001,54(4): 331-390.
    [79] 隋允康,杨德庆,et al.多工况应力和位移约束下连续体结构拓扑优化.力学学报,2000,32(2):171-179.
    [80] 许素强,夏人伟.结构优化方法研究综述.航空学报,1995,16(4):385-396.
    [81] O. Sigmund;, J. Petersson. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization, 1998,16: 68-75.
    [82] W. H. Zhang, P. Duysinx. Dual approach using a variant perimeter constraint and efficient sub-iteration scheme for topology optimization. Computers & Structures, 2003,81: 2173-2181.
    [83] J. Petersson, O. Sigmund. Slope constrained topology optimization International Journal for Numerical Methods in Engineering, 1998,41(8): 1417-1434
    [84] O. Sigmund.Design of material structures using topology optimization Ph. D Thesis: (博士学位论文) .Copenhagen: Technical University of Denmark, 1994.
    [85] N. Wicks, J. W. Hutchinson. Optimal truss plates. International Journal of Solids and Structures, 2001,38:5165-5183.
    [86] F. W. Zok, S. A. Waltner, et al. A protocol for characterizing the structural performance of metallic sandwich panels: application to pyramidal truss cores international Journal of Solids and Structures, 2004,41(22-23): 6249-6271.
    
    [87] A. J. Wang, D. L. McDowell. Optimization of a metal honeycomb sandwich beam-bar subjected to torsion and bending, international Journal of Solids and Structures, 2003,40: 2085-2099.
    
    [88] T. Liu, Z. C. Deng, et al. Design optimization of truss-cored sandwiches with homogenization International Journal of Solids and Structures, 2006,43(25-26): 7891-7918.
    
    [89] T. Liu, Z. C. Deng, et al. Minimum weights of pressurized hollow sandwich cylinders with ultralight ight cellular cores. International Journal of Solids and Structures, 2006,
    
    [90] J. S. Liu, T. J. Lu. Multi-objective and multi-loading optimization of ultralightweight truss materials International Journal of Solids and Structures, 2004,41(3-4): 619-635.
    
    [91] O. Sigmund. Materials with prescribed constitutive parameters: an inverse homogenization problem. International Journal of Solids and Structures, 1994,31(17): 2313-2329.
    
    [92] O. Sigmund. Tailoring Materials With Prescribed Elastic Properties. Mechanics Of Materials, 1995,20:351-368.
    
    [93] O. Sigmund, S. Torquato. Design of materials with extreme thermal expansion using a three-phase topology optimization method. Journal of the Mechanics and Physics of Solids, 1997,45(6): 1037-1067.
    
    [94] O. Sigmund, S. Torquato. Design of smart composite materials using topology optimization. Smart Materials & Structures, 1999,8(3): 365-379.
    
    [95] S. Hyun, S. Torquato. Effective elastic and transport properties of regular honeycombs for all densities. Journal of Materials Research, 2000,15(9): 1985-1993.
    
    [96] S. Hyun, S. Torquato. Optimal and manufacturable two-dimensional, Kagome-like cellular solids. Journal Of Materials Research, 2002,17:137-144.
    
    [97] J. K. Guest, J. H. Prevost. Design of maximum permeability material structures Computer Methods in Applied Mechanics and Engineering, 2007,196(4-6): 1006-1017.
    
    [98] J. K. Guest, J. H. Prevost. Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability International Journal of Solids and Structures, 2006,43(22-23): 7028-7047.
    
    [99] S. Torquato, S. Hyun, et al. Multifunctional composites: Optimizing microstructures for simultaneous transport of heat and electricity. Physical Review Letters, 2002,89(26)
    
    [100] S. Torquato, S. Hyun, et al. Optimal design of manufacturable three-dimensional composites with multifunctional characteristics. Journal of Applied Physics, 2003,94(9): 5748-5755.
    
    [101] 袁振,吴长春.复合材料扭转轴截面微结构拓扑优化设计.力学学报,2003,35(1):39-41.
    
    [102] B. Wang. Design of cellular structures for optimum efficiency of heat dissipation. Structural and Multidisciplinary Optimization, 2005,30: 447-458.
    
    [103] S. Chellappa, A. R. Diaz, et al. Layout optimization of structures with finite-sized features using multiresolution analysis. Structural and Multidisciplinary Optimization, 2004,26: 77-91.
    
    [104] H. Rodrigues, J. M. Guedes, et al. Hierarchical optimization of material and structure. Structural And Multidisciplinary Optimization, 2002,24: 1-10.
    [105] W. H. Zhang, S. P. Sun. Scale-related topology optimization of cellular materials and structures International Jornal for numerical methods in engineering, 2006,68(9): 993-101 I.
    [106] S. NematNasser, M. Hori. Universal bounds for overall properties of linear and nonlinear heterogeneous solids. JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1995,117(4): 412-432
    [107] B. Balendran, S. Nematnasser. BOUNDS ON ELASTIC-MODULI OF COMPOSITES. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 1995,43(11): 1825-1853
    [108] R. D. Cook, D. S. Malkus, et al. Concepts and applications of finite element analysis. New York: Wiley, 1989.
    [109] 李芳,凌道盛.工程结构优化设计发展综述.工程设计学报,1984,9(5):229-235.
    [110] G. Cheng, G. Xu. Topology Optimization of Truss Structures. The fourth World Congress of Structural and Multiplinary Optimization, Dalian, CHINA, 2001.
    [111] N. A. Fleck, J. W. Hutchinson. Strain gradient plasticity. Adv. App. Mech., 1997,33: 295-361.
    [112] T. Adachi, Y. Tomita, et al. Computational simulation of deformation behavior of 2D-Lattice continuum. Internatioanl Journal of Mechanical Science, 1997,40: 857-866.
    [113] E. Cosserat, F. Cosserat. Theorie des corps Deformables. Paris: 1909.
    [114] R. D. Mindlin. Infleunce of couple-stress on stress concentrations Exp. Mech, 1963,3:1-7.
    [115] R. Toupin. Elastic material with couple-stresses. Arch rational mech anal, 1962,11: 385-414.
    [116] M. Rovati, D. Veber. Optimal topologies for micropolar solids. 6th World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro,Brazil, 2005.
    [117] A. C. Eringen. Microcontinuum Field Theories Ⅰ: Foundations and Solids. New York: Springer, 1999.
    [118] N. Sachio, B. Robert, et al. Finite element method for orthotropic micropolar elasticity. Int. J. Engng Sci, 1984,22: 319-330.
    [119] 牛斌,阎军,et al.周期性蜂窝材料微极等效模型.固体力学学报,2007,
    [120] J. Yan, L. Ling, et al. Comparison of and Scale effects on prediction of equivalent elastic property and the shape optimization of truss material with periodic microstructure. Internatioanl Journal of Mechanical Science, 2006,48(4): 400-413.
    [121] S. Hyun, S. Torquato. Designing composite microstructures with targeted properties. Journal of Materials Research, 2001,16(1): 280-285.
    [122] O. Sigmund, S. Torquato. Composites with extremal thermal expansion coefficients. Applied Physics Letters, 1996,69(21): 3203-3205.
    [123] H.Rodrigues, P.Fernandes. A material based model for topology optimization of thermoelastic structures. International Jornal for numerical methods in engineering, 1995,38: 1951-1965.
    [124] B. Hassani, E. Hinton. A review of homogenization and topology optimization Ⅲ-- topology optimization using optimality criteria. Computers and Structures, 1998,69: 739-756.
    [125] M. P. Bendsoe, O. Sigmund. Material interpolation schemes in topology optimization. Archive Of Applied Mechanics, 1999,69: 635-654.
    [126] B. Wang, G. Cheng. Design of cellular structures for optimum efficiency of heat dissipation. Structural and Multidisciplinary Optimization, 2005,30: 447-458.
    [127] G. D. Cheng, Y. L. Mei, et al. A Feature-based Structural Topology Optimization Method. IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, Copenhagen, 2005.
    [128] S. Liu, G. Cheng. Homogenization-based method for predictiing thermal expansion coefficients of composite materials. Journal of Dalian University of Technology, 1995,35(5): 451-457.
    [129] S. Liu, G. Cheng, et al. Mapping method for sensitivity analysis of composite material property. Structural And Multidisciplinary Optimization, 2002,24:212-217.
    [130] 刘岭.超轻质材料和结构的协同分析与优化:(博士学位论文).大连:大连理工大学,2006.
    [131] E, Moses, M. B. Fuchs. Topological design of modular structures under arbitrary loading. Structural and Multidisciplinary Optimization, 2003,24: 407-417.
    [132] 高彤,张卫红,et al.离心载荷作用下循环对称结构的拓扑优化设计.力学学报,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700