一种基于状态转换的微网协调控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文受重庆市自然科学基金(CSTC2009BB6190)和输配电装备及系统安全与新技术国家重点实验室自主研究项目(2007DA10512709208)的资助。
     微网是由分布式电源(Distributed Generation, DG)、本地负荷和储能装置组成的独立可控系统。微网中的DG按输出功率调节特性可分为间歇性电源和连续性电源两类,间歇性电源的输出功率受天气等自然条件的影响较大,出力具有明显的波动性和间歇性,连续性电源具有相对可靠的一次能源供给和连续的出力调节能力,为满足本地用户的不同用电需求和微网运行状态的无缝平滑转换,须在微网中配置适当的储能装置。当微网的网络结构发生变化时,如何对微网中的DG、储能装置、本地负荷、开关进行有效的协调控制,以保证微网在不同运行状态下都尽可能满足本地用户的要求,是微网安全稳定和可靠运行的关键。因此研究多种能源混合微网的协调控制策略对于微网应用和研究具有重要意义。本文针对包含多种连续性和间歇性DG、敏感负荷以及储能装置的分层控制结构的微网,提出了一种基于状态转换的协调控制策略。
     ①根据微网中微源的功率调节特性将微源分为间歇性电源、连续性电源、储能装置,建立各类微源的仿真模型并研究了微源的动态响应特性。为保证可再生能源的最大利用率,间歇性电源采用最大功率跟踪控制方式(Maximum Power Point Tracking, MPPT),不参与微网系统的有功功率调节。连续性电源是微网的主要能源形式,具有充足的一次能源和有功调节能力,但微型燃气轮机和燃料电池等连续性电源有功调节速度较慢,不能响应快速的负荷变化,须配合储能装置以保证微网在各种运行状态的可靠供电。
     ②研究了两级分层控制结构微网的中央控制器(MicroGrid Central Controller, MGCC)和本地控制器,其上层为MGCC利用所采集的负荷信息、DG和储能装置燃料情况、运行状态以及外部电力市场信息,为连续性DG提供有功和无功出力设定值,以达到最优功率分配目的,同时还实现微网运行状态转换;底层包括微源控制器(Microsource Controller, MC)和负荷控制器(Load Controller, LC)为执行MGCC具体操作指令的本地控制单元。分析了微网中电力电子接口微源本地控制器的三种控制方式,包括恒功率控制(PQ control)、下垂控制(Droop control)和恒压恒频控制(V/f control);阐述了中央控制器的结构和功能,研究了中央控制器的功率管理单元、同步并网单元和运行状态管理单元。
     ③提出一种基于状态转换的微网协调控制策略。根据本地负荷的用电需求对微网可能出现的运行状态进行简化组合,得到微网中允许出现的有效运行状态。通过将微网当前运行状态和触发事件作为中央控制器的输入变量,各可控元件的控制方式作为输出变量,制定微网运行状态转换方案。为保证敏感负荷的不间断供电,同时考虑微网所有运行状态下系统频率无差调节和储能装置的容量限制,提出了本文定义运行状态下各元件相应的控制方式和触发事件。
     ④利用PSCAD/EMTDC软件仿真分析了典型状态转换过程中的动态响应特性,验证了所设计的微网协调控制策略的可行性。针对本文提出的微网状态转换控制策略,对微网从连续性连状态转换到连续性支持状态、综合支持状态转换到综合连接状态和综合稳定状态转换到间歇性稳定状态等三种典型状态转换过程进行仿真分析。仿真结果表明所提出的协调控制策略能够实现微网状态平滑转换和频率无差调节,保证了敏感负荷的不间断供电和供电质量。同时,也尽可能得延长了储能装置的使用时间。
This thesis was supported by Natural Science Foundation of Chongqing (CSTC 2009BB6190) and independent research project of State Key Laboratory of Power Transmission Equipment & System Security and New Technology(2007DA1051270 9208).
     As an independent controllable unit, microgrid comprises Distributed generation (DG), local loads and energy storage device. There are two categories of DGs in microgrid according to their power characteristics, intermittent DGs and continuous DGs. Since the output power of the former is greatly affected by physical conditions such as weather, their fluctuation and intermittence are distinct. On the other hand, the continuous DGs are capable of outputting comparative secure power and are with better power control ability. In order to satisfy the local customers’diversified demands and to realize the seamless operation mode switches, a proper Distributed Storage (DS) device is required in microgrid. For a microgrid contains several DGs, the key of a secure and stable operation is how to control the DG, DS, local loads and switches coordinately and effectively so as to meet the local customers’demands as much as possible when the microgrid structure changes. Furthermore, the coordinated control is also a necessary for an economical operation of microgrid. So the study of coordinated control strategy of a microgrid with multi-energy generation systems is significant for applications and research of microgrid. This paper designs a coordinated control strategy of microgrid based on state transition, which targets the hierarchical microgrid containing DGs, local loads and energy storage devices.
     ①According to their power characteristics, DGs in microgrid are divided into three categories, intermittent DGs, continuous DGs and DSs. Simulation models are established to study the dynamic response characteristics of the DGs. Maximum Power Point Tracking (MPPT) is implemented in intermittent DGs, which, in turn, does not participate in the active power regulation, in order to obtain the maximum utilization rate of renewable energy. As a primary energy source in microgrid, continuous DGs are adept at energy and active power regulation, but some continuous DGs, namely micro turbine and fuel cell, are with relatively slow regulation rate. Consequently, they are unable to response promptly to rapid changes in loads unless it cooperates with a proper DS device.
     ②Microgrid central controller (MGCC) and local controller of a two-stage hierarchical control microgrid is studied. The upper structure, MGCC, aims to determine set value of active and reactive power through collected load information, fuel data of DG and DS, operation state and external electricity market information in order to achieve optimal power allocation as well as microgrid mode switches. The infrastructure includes microsource controller (MC) and load controller (LC), which are local controller units to carry out the operational command from MGCC. Three control methods used in local controllers of power-electronics interfaced DG are analyzed, including PQ control, Droop control and V/f control. And then the power management unit and synchronization unit of MGCC are studied after the expatiation of structure and functions of MGCC.
     ③This paper proposed a coordinated control strategy of microgrid based on state transition. An allowable effective operation state is obtained through simplified combination of the possible operation modes in accordance with local power demands. By taking current operation state and trigger events as input variables of MGCC and the control methods of components as outputs, a real-time adjustment scheme of microgrid operation state is achieved. For the uninterruptible power supply of sensitive loads and with the consideration of no-deviation regulation for frequency under all operation states and the capacity limitation of energy storage devices, the corresponding control methods and trigger events of all components are proposed under the defined operation states in this paper.
     ④Simulation model is established in PSCAD/EMTDC to analyze dynamic response in the process of typical state transition. The feasibility of the proposed coordination control strategy is verified. According to the proposed control strategy, three typical state transition progresses are simulated and analyzed in detail, namely from continuity connection state to continuity support state, from comprehensive support state to comprehensive connection state and from comprehensive standby state to intermittent standby state. The simulation results show that the coordinated control strategy is able to achieve smooth state transition and no-deviation regulation for frequency, to ensure a uninterruptible power supply and good power quality of sensitive loads and to extend the life of energy storage devices as much as possible.
引文
[1]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术, 2003, 27(12): 71-75, 88.
    [2]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化, 2005, 29(24): 90-97.
    [3] Lasseter R H, Paigi P. Microgrid: a conceptual solution[C]. Proceedings of IEEE 35th Annual Power Electronics Specialists Conference, June 20-25, 2004, Aachen, Germany: 4285-4290.
    [4] Kariniotakis G N,Soultanis N L,Tsouchnikas A I,et al. Dynamic modeling of microgrids[C]. Proceedings of International Conference on Future Power Systems, November 18, 2005: 1-7.
    [5] Lasseter R H. Microgrids[C]. Proceedings of IEEE Power Engineering Society Winter Meeting, January 27-31, 2002: 305-308.
    [6]盛鹍,孔力,齐智平,等.新型电网—微电网(Microgrid)研究综述[J].继电器, 2007, 35(12): 75-81.
    [7]鲁宗相,王彩霞,阂勇,等.微电网研究综述[J].电力系统自动化, 2007, 31(19): 100-105.
    [8]王成山,肖朝霞,王守相.微网综合控制与分析[J].电力系统自动化, 2008, 32(7): 98-103.
    [9] Dimeas A L, Hatziargyriou N D. Agent based control for microgrids[C]. Proceedings of 2007 IEEE Power Engineering Society General Meeting, June 24-28, 2007, Tampa, FL, USA: 1-5.
    [10]郭力,王成山.含多种分布式电源的微网动态仿真[J].电力系统自动化, 2009, 2(33): 82-86.
    [11] Nikos H, Antonis T, John V, Kyriakos P. Microgrids-large scale integration of micro-generation to low voltage grids[C]. Session CIGRE 2006-International Council of Large Electric Systems.Paris, France, 2006: 1-6.
    [12] IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems. IEEE Standards Coordinating Committee 21(IEEE SCC21) 1547-2003, 2003.
    [13] Lasseter R H, Akhil A, Marnay C, et al. White paper on integration of distributed energy resources. The CERTS microgrid concept[R/OL], [2009-05-26]. http://certs.lbl.gov/pdf/ 50829-app.pdf.
    [14] Barnes M, Dimeas A, Engler A, et al. Microgrid laboratory facilities[C]. International Conference on Future Power Systems, Amsterdam, Holland, 2005.
    [15] Morozumi S. Micro-grid demonstration projects in Japan [C]. Proceedings of the IEEE Power Conversion Conference, Nogoya, Japan, 2007.
    [16]盛鹍,孔力,齐智平,等.新型电网-微电网(Microgrid)研究综述[J].继电器, 2007, 35(12):75-81.
    [17] Barnes M, Kondoh J, Asano H, et al. Real-world microgrids-an overview[C]. IEEE International Conference on System of Systems Engineering, San Antonio, USA, 2007.
    [18] Lopes J A P, Moreira C L, Madureira A G. Defining control strategies for MicroGrids islanded operation[J]. IEEE Transactions on Power Systems, 2006, 21(2): 916-924.
    [19] N Jayawarna, M Barnes, C Jones, and et al. Operating MicroGrid Energy Storage Control during Network Faults[C]. IEEE International Conference on System of Systems Engineering, USA, 2007, Z479-Z485.
    [20] Z Wang, X Huang, and J Jiang, Design and Implementation of a Control System for a Microgrid involving a Fuel Cell Power Module[C]. Electrical Power Conference, Canada, 2007: 207-212.
    [21] P Biczel. Power Electronic Converters in DC MicroGrid[C]. 5th International Conference Workshop. Compatibility in Power Electronics, Poland, 2007, 208-213.
    [22] B Kroposki, C Pink, J Lynch, and et al. Development of a high-speed static switch for distributed energy and Microgrid applications[C]. Fourth Power Conversion Conference-Nagoya, Japan, 2007: 1418-1423.
    [23] C K Sao, and P W Lehn. Intentional islanded operation of converter fed microgrids[C]. IEEE Power Engineering Society General Meeting, Canada, 2006: 1-6.
    [24] G Venkataramanan, C Marnay. A larger role for microgrids[J]. IEEE Power and Energy Magazine, 2008, 6(3): 78-82.
    [25] C L Moreira, and J A Pecas Lopes. MicroGrids Dynamic Security Assessment[C]. 2007 International Conference on Clean Electrical Power, Italy, 2007: 26-32.
    [26] B Kroposki, R Lasseter, T Ise, et al. Making microgrids work[J]. IEEE Power and Energy Magazine, 2008, 6(3): 40-53.
    [27] N Jayawarna, N Jenkins, M Barnes, and et al. Safety analysis of a Micro Grid[C]. International Conference on Future Power Systems, Netherlands, 2005: 1600501.
    [28] F Katiraei, R Iravani, N Hatziargyriou, et al. Microgrids management[J]. IEEE Power and Energy Magazine, 2008, 6(3): 54-65.
    [29]王成山,杨占刚,王守相,等.微网实验系统结构特征及控制模式分析[J]. 2010, 34(1): 99-105.
    [30] Nikkhajoei H, Lasseter R H. Distributed generation interface to the CERTS microgrid[J]. IEEE Transactions on Power Systems, 2009, 24(3): 1598-1608.
    [31] Katiraei E, Iravani M R. Power management strategies for a microgrid with multiple distributed generation units[J]. IEEE Trans on Power Systems, 2006, 21(4): 1821-1831.
    [32] Pecaslopes J A, Moreira C L, Resende F O. Control strategies for microgrids black start and islanded operation[C]. International Journal of Dist ributed Energy Resources, 2005, 1(3): 241-261.
    [33] Dimeas A L, Hatziargyriou N D. Operation of a multi-agent system for microgrid control[J]. IEEE Trans on Power Systems, 2005, 20 (3): 1447-1455.
    [34] Tsikalakis A G, Hatziargyriou N D. Centralized control for optimizing microgrids operation[J]. IEEE Trans on Energy Conversion, 2008, 23(1): 241-248.
    [35] Dimeas A L, Hatziargyriou N D. A MAS architecture for microgrids control[C]. Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems, November 6-10, 2005, Washington, USA: 402-406.
    [36]章健,艾芊,王新刚.多代理系统在微电网中的应用[J].电力系统自动化, 2008, 32(24): 80-82, 87.
    [37] Muhammad S K. Supervisory hybrid control of a wind energy conversion and battery storage system[D]. Toronto: University of Toronto, 2008.
    [38] Salomonsson D, Soder L, Sannino A. An adaptive control system for a DC microgrid for data centers[J]. IEEE Transactions on Industry Applications, 2008, 44(6): 1910-1917.
    [39]闫立伟.微电网中光伏发电动态特性研究[D].重庆:重庆大学, 2010.
    [40] Valenciaga F, Puleston P F. Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy[J]. IEEE Transactions on Energy Conversion, 2005, 20(2): 398-408.
    [41] Saha A K, Chowdhury S, Chowdhury S P, et al. Modeling and performance analysis of a microturbine as a distributed energy resource[J]. IEEE Transactions on Energy Conversion, 2009, 24(2): 529-538.
    [42] Hall D J, Colclaser R G. Transient modeling and simulation of a tubular solid oxide fuel cell. IEEE Transactions on Energy Conversion, 1999, 14(3): 749-753.
    [43]付勋波,鄂春良,李建林,等.直驱风电系统中并联逆变器的仿真建模与分析[J].高电压技术, 2008, 34(10): 2228-2233.
    [44]徐科,胡敏强,杜炎森,等.直流母线电压控制实现并网与最大风能跟踪[J].电力系统自动化, 2007, 31(11): 53-58.
    [45]吴子平.基于微型燃气轮机发电系统的微网控制与分析[D].北京:华北电力大学, 2009.
    [46] Amer Al-Hinai, Karl Schoder, Ali Feliachi. Control of Grid-Connected Split-Shaft Microturbine Distributed Generator[C]. IEEE Proceedings of the 35th Southeastern Symposium on System Theory, 16-18 March 2003: 84-88.
    [47] Nichols D K, Loving K P. Assessment of Microturbine Generators[C]. IEEE PowerEngineering Society General Meeting, July 2003, 4: 2308-2315.
    [48] Jurado F, Carpio J. Modeling Microturbines on the Distribution System Using NARX Structures[C]. IEEE Power Engineering Society General Meeting, June 2004, 2: 1504-1509.
    [49]马力. CCHP及其所构成微网的运行特性研究[D].天津:天津大学, 2008.
    [50]王成山,黄碧斌,李鹏,等.燃料电池3种典型仿真模型的适应性分析[J].电力系统自动化, 2010, 34(22): 103-107.
    [51] Hall D J, Colclaser R G. Transient modeling and simulation of a tubular solid oxide fuel cell. IEEE Transactions on Energy Conversion, 1999, 14(3): 749-753.
    [52] Fleming E M, Hiskens I A.Dynamics of a Miccrogrid Supplied by Solid Oxide Fuel Cells[C]. IREP Symposium on Power System Dynamics and control, 2007.
    [53] Zhu Y, Tomsovic K. Development of models for analyzing the load-following performance of microturbines and fuel cells. Electric Power System Research, 2002, 62: 1-11.
    [54] Miller J R. Development of equivalent circuitmodels for batteries and electrochemical capacitors[C]. Battery Conference on Applications and Advances, 1999: 107-109.
    [55] Ceraolo M. New dynamical models of lead-acid batteries[J]. IEEE Transactions on Power Systems, 2000, 15(4): 1184-1190.
    [56]肖朝霞.微网控制及运行特性分析[D].天津:天津大学, 2008.
    [57]陈培青.基于双闭环控制的逆变器数字波形控制技术研究.武汉:华中科技大学, 2007.
    [58]彭力.基于状态空间理论的PWM逆变电源控制技术研究.武汉:华中科技大学, 2004.
    [59] K Brabandere, K Vanthournout, J Driesen, G Deconinck, and et al.Control of Microgrids[C]. IEEE Power Engineering Society General Meeting, USA, 2007: 4275808.
    [60] M C Chandorkar, D M Divan, and R Adapa. Control of parallel connected inverters in standalone ac supply systems[J]. IEEE Trans on Industry Applications, 1993, 29(1): 136-141.
    [61]王志群,朱守真,周双喜.逆变型分布式电源控制系统的设计[J].电力系统自动化, 2004, 28(24): 61-66.
    [62]吴婷婷.分布式发电系统并网逆变器控制方法研究[D].西安:长安大学, 2007.
    [63]杨文杰.光伏发电并网与微网运行控制仿真研究[D].成都:西南交通大学, 2010.
    [64]吴蓓蓓.微网系统逆变电源的组网协调控制及稳定性研究[D].合肥:合肥工业大学, 2010.
    [65]杨为.分布式电源的优化调度[D].合肥:合肥工业大学, 2010.
    [66] Madureira A, Moreira C, Lopes J A P. Secondary load-frequency control for microgrids in islanded operation[C]. Proceedings of International on Conference Renewable Energy Power Quality, Spain, 2005.
    [67]张涛.微型电网并网控制策略和稳定性分析[D].武汉:华中科技大学, 2008.
    [68]杨冠城.电力系统自动装置原理[M].北京:水利电力出版社, 1982: 29-31.
    [69]杨向真,苏建徽,丁明,等.微电网孤岛运行时的频率控制策略[J].电网技术. 2010, 34(1): 164-168.
    [70] Li Yunwei, Vilathgamuwa D M, Loh P C. Design, analysis, and real-time testing of a controller for multibus microgrid system[J]. IEEE Transactions on Power Electronics, 2004, 19(5): 1195-1204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700