肾透明细胞癌循环microRNA表达变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究肾透明细胞癌(ccRCC)患者血循环microRNA的表达,初步建立肾透明细胞癌特征性的循环microRNA表达谱。
     方法:实验组共收集2008年8月到2009年6月期间肾透明细胞癌20例。其中14例接受根治性肾切除术,5例接受保留肾单位肾部分切除术,1例行肾穿刺活检。所有患者均经病理检查证实为肾透明细胞癌。AJCC肾癌临床分期:Ⅰ期8例,Ⅱ期3例,Ⅲ期5例,Ⅳ期4例。对照组20例为门诊体检健康人群。所有对照组均排除了肾脏疾病和其他部位肿瘤。实验组和对照组均于清晨空腹抽血,在无菌条件下操作,离心吸取血浆,再放入-80℃冰箱保存。挑选实验组和对照组血浆样本各8例,将每组的8例样本等体积混合,取混合后每组血浆2ml,用mirVana PARIS试剂盒分别抽提实验组和对照组的总RNA。测定浓度后使用TaqMan MicroRNA低密度芯片分别检测实验组和对照组的microRNA谱。使用SDS 2.3软件分析TLDA芯片数据;采用SPSS15.0软件进一步统计分析。对比分析两者之间microRNA表达的差异。
     结果:在肾透明细胞癌组和对照组的血浆中共检测到83种microRNA分子。其中ccRCC组73种表达阳性,对照组55种表达阳性。根据判断标准,我们找到48种在ccRCC组中表达显著上调的microRNA,其中有24种microRNA为肾透明细胞癌组特异性表达,24种表达明显上调。12种microRNA在肾透明细胞癌组中表达下调,其中10种为无表达,2种为表达明显下调。
     结论:[1]肾透明细胞癌患者血循环microRNA较正常人群有特征性改变。[2]肾透明细胞癌患者血microRNA改变以表达上调为主,这些microRNA改变可以用来区分肾透明细胞癌和正常人群,初步建立了肾透明细胞癌的循环microRNA表达谱。
     目的:验证miR-21,miR-142-5p和miR-34a在肾透明细胞癌患者血浆中的表达增加,分析其增加的程度与临床分期之间的关系。
     方法:实验对象同第一部分,包含全部实验组和对照组各20例。我们利用芯片结果结合相关文献筛选出miR-21, miR-142-5p, miR-34a三个microRNA分子。分别抽提实验组和对照组血浆总RNA,通过northern-blot和qRT-PCR对其进行检测。同时分别提取20例不同分期肾癌患者及正常对照血浆的总RNA,检测其miR-21,miR-142-5p和miR-34a在血浆中的表达程度,并分析这三种miRNA表达增加的程度与肾透明细胞癌临床分期之间的关系。
     结果:Northern-blot结果显示miR-21,miR-142-5p和miR-34a在肾癌患者血浆中表达明显上调。qRT-PCR验证发现,miR-21,miR-142-5p和miR-34a的溶解曲线很好,无非特异性峰。同时结果显示miR-21,miR-142-5p和miR-34a在肾癌患者血浆中表达明显上调,而在正常血浆中表达极低,与芯片结果一致。进一步的对比qRT-PCR检测显示miR-21和miR-142-5p表达的增加与肾透明细胞癌临床分期相关,而miR-34a的表达增加程度与临床分期无明显相关。
     结论:[1]循环miR-21和miR-142-5p在肾透明细胞癌患者表达增加,其增加的程度与临床分期可能相关。[2]循环miR-34a在肾透明细胞癌患者表达增加,其增加的程度与临床分期可能不相关。[3]循环miR-21,miR-142-5p和miR-34a可用于肾透明细胞癌的血清学诊断标志物。
Objective:To investigate the express of microRNA(miRNA) in the blood of clear cell renal cell carcinoma (ccRCC) patients and establish the distinctive circulating miRNA spectrum for the diagnosis and treatment of ccRCC.
     Methods:The total study population included 20 ccRCC patients and 20 control subjects. Among the ccRCC group there were 14 patients received radical nephrectomy,5 received nephron-spare hemi nephrectomy,1 received renal biopsy. All patients were diagnosed with pathology confirm. AJCC clinical stage included 8 in stageⅠ,3 in stageⅡ,5 in stageⅢand 4 in stageⅣ. The control group was consisted of healthy people. No diabetes in both groups. The blood samples were drawn with empty stomach. The blood samples were centrifugated. Plasma was aspirated and then frozen under the-80℃condition. Eight samples were chosen from ccRCC group and the control group. The plasma of those two groups was mixed with identical volume respectively. 2 ml plasma from each group was used to extract the total RNA by mirVana PARIS kit. After the saturation evaluation and quality control, the total RNA of each group was examed by TaqMan MicroRNA low density assay(TLDA) respectively. The result was analyzed through SDS 2.3 software and SPSS 15.0 software.
     Results:There were totally 83 miRNAs detected in both groups. There were 73 miRNAs detected in the ccRCC group and 55 detected in control group.28 miRNAs detected only in the ccRCC group and 10 detected only in the control group. According the judgment standard, we found 48 miRNAs up-regulated in ccRCC group and among them,24 were specific expressed. There were 12 miRNAs down-regulated in the ccRCC group contrasted to the control group of which 10 miRNAs were undetectable.
     Conclusion:[1] The circulating miRNA of ccRCC patients has its specific express spectrum relative to healthy people. [2] The expression changes of circulating miRNA in ccRCC patients mainly are up-regulation, those up-regulated miRNAs can distinct ccRCC patients from healthy people. We preliminarily establish the circulating miRNA express spectrum of ccRCC patients.
     Objective:To validate the result that miR-21, miR-142-5p and miR-34a were up-regulated in the plasma of ccRCC patients and analyze their relationship to the clinical stages of ccRCC.
     Methods:All of the samples in ccRCC group and control group were examed in this part. The total RNA of both ccRCC group and control group were extracted and tested respectively. Three of the up-regulated miRNAs, miR-21, miR-142-5p and miR-34a, were validated firstly using northern blot and then qRT-PCR analysis. All the samples of ccRCC group and control group were randomly paired. The miR-21, miR-142-5p and miR-34a of each sample in the ccRCC group were tested using qRT-PCR, the relationship of those miRNAs to the clinical stage of ccRCC were analyzed.
     Results:Northern blot result revealed that miR-21, miR-142-5p and miR-34a were up-regulated in the plasma of ccRCC patients which confirmed the results of miRNA assay results. qRT-PCR validation showed that the solubility curves of those three miRNA were good and no specific peak was found. The result also showed that miR-21, miR-142-5p and miR-34a were up-regulated in the plasma of ccRCC patients. They had very low expression in the control group. The qRT-PCR test of ccRCC patients showed that the up-regulation degree of miR-21 and miR-142-5p in the plasma had strong relation to the clinical stage. But miR-34a had no statistical significance between the up-regulation degree and the clinical stages of ccRCC.
     Conclusion:[1] The expression of circulating miR-21 and miR-142-5p in the ccRCC patients were up-regulated and the degree of up-regulation was strongly related to the clinical stages of ccRCC. [2]The expression of circulating miR-34a also was up-regulated in the ccRCC patients but its degree had no significant relation to the clinical stages. [3]Circulating miR-21, miR-142-5p and miR-34a could be used as tumor biomarkers for ccRCC.
引文
[1]Mulders P, Figlin R, deKernion JB et al. Renal cell carcinoma:recent progress and future directions. Cancer Res.1997,57(22):5189-5195.
    [2]全国肿瘤防治研究办公室、卫生部卫生统计信息中心.中国试点市、县恶性肿瘤的发病与死亡.(1993-1997)第2卷.北京:中国医药科技出版社,2002,271-297.
    [3]Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA,2004,101(9):2999-3004.
    [4]Calin GA, Croce MC. MicroRNA signatures in human cancers. Nat Rev Cancer, 2006,6(11):857-866.
    [5]Yuan JS, Reed A, Chen F, et al. Statistical analysis of real-time PCR data. BMC Bioinformatics,2006,22(7):85.
    [6]Lawrie CH, Gal S, Dunlop H M, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol,2008,141(5):672-675.
    [7]Sage C, Agam IR. Immense p romises for tinymolecules uncovering miRNA functions. Cell Cycle,2006,5 (13):127.
    [8]Lee RC, Feinbaum RL, Ambros V, et al. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75(5): 843-854.
    [9]Chen CZ. MicroRNA as oncogenes and tumor suppressors. N Engl J Med,2005, 353(17):1768-1771.
    [10]Hatfield SD, Shcherbata HR, Fischer KA, et al. Stem cell division is regulated by the microRNA pathway. Nature,2005,435(7044):974-978.
    [11]Calin GA, Sevignani C, Dumitru CD,et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc Natl Acad Sci USA 2004; 101(9):2999-3004.
    [12]Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science,2002,297(5589):2056-2060.
    [13]Hutvagner G, Simard MJ. Argonaute proteins:key players in RNA silencing. Nat Rev Mol Cell Biol,2008,9(1):22-32
    [14]Farazi TA, Juranek SA, Tuschl T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development,2008, 135(7):1201-1214.
    [15]Hornstein E, Mansfield JH, Yekta S, et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature,2005,438(7068): 671-674.
    [16]Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell,1993,75(5):855-862
    [17]Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A, 2003.100(17):9779-9784.
    [18]Medina PP, Slack FJ. microRNAs and cancer, an overview. Cell Cycle,2008, 7(16):2485-2492.
    [19]Sun Y, Koo S, White N, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res,2004,32(22):e188.
    [20]Juan D, Alexe G,Antes T, et al. Identification of a MicroRNA Panel for Clear-cell Kidney Cancer. Urology,2009,24. [Epub ahead of print]
    [21]Volinia S, Calin G, Liu C, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA.2006,103(7): 2257-2261.
    [22]Jung M, Mollenkopf HJ, Grimm C, et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J Cell Mol Med,2009,13(9B):3918-3928.
    [23]Huang Y, Dai Y, Yang J, et al. Microarray analysis of microRNA expression in renal clear cell carcinoma. Eur J Surg Oncol.2009,35(10):1119-1123.
    [24]Gottardo F, Liu CG, Ferracin M, et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol,2007,25(5):387-392.
    [25]Cho WC. OncomiRs:the discovery and progress of microRNAs in cancers. Mol Cancer,2007,25(6):60.
    [26]Manikandan J, Aarthi JJ, Kumar SD, et al. Oncomirs:The potential role of non-coding microRNAs in understanding cancer. B ioinform ation,2008,2(8): 330-334.
    [27]Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase:tools for microRNA genomics. Nucleic Acids Res,2008,36:D154-158.
    [28]Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol,2008,110(1): 13-21.
    [29]Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum:A novel class of biomarkers for diagnosis of cancer and other diseases.Cell Res,2008, 18(10):997-1006.
    [30]Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA,2008, 105(30):10513-10518.
    [31]Resnick KE, Alder H, Hagan JP, et al.The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol,2009,112(1):55-59.
    [32]El-Hefnawy T, Raja S, Kelly L, et al. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem,2004,50(3):564-573.
    [33]Rosell R, Wei J, Taron M. Circulating MicroRNA Signatures of Tumor-Derived Exosomes for Early Diagnosis of Non-Small-Cell Lung Cancer. Clin Lung Cancer,2009,10(1):8-9.
    [34]Chow TF, Youssef YM, Lianidou E, et al. Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem.2010,43(1-2):150-158.
    [35]赵爽,王海峰,刘凌琪,等.miRNA-142-5p在肾细胞癌中高表达的研究.山东医药,2008,48(41):12-14.
    [1]Lu J, Getz G, Miska EA, et al. MicroRNA exp ression p rofiles classify human cancers. N ature,2005,9(435):834-838.
    [2]Jannot G, Simard MJ. Tumor-related microRNAs functions in Caenorhabditis elegans. Oncogene,2006,25(46):6197-6201.
    [3]Cho WC. OncomiRs:the discovery and progress of microRNAs in cancers. Mol Cancer,2007,25(6):60.
    [4]Manikandan J, Aarthi JJ, Kumar SD, et al. Oncomirs:The potential role of non-coding microRNAs in understanding cancer. B ioinform ation,2008,2(8): 330-334.
    [5]Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ.EMBO,2004,23(20):4051-4060.
    [6]Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA,2003,9(3):277-279.
    [7]杜秋丽.microRNA及其功能研究.生物学通报,2004,39(8):13-15.
    [8]Calin GA, Croce CM. MicroRNA-cancer connection:the beginning of a new tale. Cancer Res.2006,66(15):7390-7394.
    [9]Kiss AM, Jady BE, Bertrand, et al. Human box H/ACA pseudouridylation guide RNA machinery. Mol Cell Biol.2004,24(13):5797-5807.
    [10]Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer.2006,6(4):259-269.
    [11]Wu L, Belasco JG. MicroRNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cell Biol,2005, 21(25):9198-9208.
    [12]Yanaihara N, Cap len N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell,2006, 9(3):189-198.
    [13]Chan SH, WuCW, Li AF, et al. miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res,2008,28(2A): 907-911.
    [14]Verghese E, Hanby A, Speirs V, et al. Small is beautiful:microRNAs and breast cancer-where are we now? J Pathol,2008,215(3):214-221.
    [15]Lu Z, Liu M, Stribinskis V, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene.2008, 27(31):4373-4379.
    [16]Frankel LB, Christoffersen NR, Jacobsen A, et al. Programmed cell death 4(PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem,2008,283(2):1026-1033.
    [17]Zhu S, Wu H, Wu F, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res,2008,18(3):350-359.
    [18]Mathe EA, Nguyen GH, Bowman ED, et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus:associations with survival. Clin Cancer Res.2009,15(19):6192-6200.
    [19]Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology,2007,133(2):647-658.
    [20]Gabriely G, Wurdinger T, Kesari S, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol,2008, 28(17):5369-5380.
    [21]Li T, Li D, Sha J, et al. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun.2009,383(3):280-285.
    [22]Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene,2007, 26(19):2799-2803.
    [23]Hu H, Li Y, Gu J, et al. Antisense oligonucleotide against miR-21 inhibits migration and induces apoptosis in leukemic K562 cells. Leuk Lymphoma.2010, Feb 8. [Epub ahead of print
    [24]Mei M, Ren Y, Zhou X, et al. Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol Cancer Res Treat.2010,9(1):77-86.
    [25]Meng F, Henson R, Lang M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human eholangiocarcinoma cell lines. Gastroenterology.2006,130(7):2113-2129.
    [26]Lee JT Jr, Steelman LS, McCubrey JA. Phosphatidylinositol 3'-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer Res,2004,64(22): 8397-8404.
    [27]Folini M, Gandellini P, Longoni N, et al. miR-21:an oncomir on strike in prostate cancer. Mol Cancer,2010,21(9):12.
    [28]Gallardo E, Navarro A, Vinolas N, et al. miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis,2009, 30(11):1903-1909.
    [29]Christoffersen NR, Shalgi R, Frankel LB, et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ.2010,17(2):236-245.
    [30]Juan D, Alexe G,Antes T, et al. Identification of a MicroRNA Panel for Clear-cell Kidney Cancer. Urology,2009,24. [Epub ahead of print]
    [31]Huang Y, Dai Y, Yang J, et al. Microarray analysis of microRNA expression in renal clear cell carcinoma. Eur J Surg Oncol.2009.35(10):1119-1123.
    [32]Dutta KK, Zhong Y, Liu YT, et al. Association of microRNA-34a overexpression with proliferation is cell type-dependent. Cancer Sci.2007 98(12):1845-1852.
    [33]赵爽,王海峰,刘凌琪,等.miRNA-142-5p在肾细胞癌中高表达的研究.山东医药,2008,48(41):12-14.
    [34]He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature,2005,435(7043):828-833.
    [35]O'Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature,2005,435,839-843.
    [1]Qi P, Han JX, Lu YQ, et al. Virus encoded microRNAs:future therapeutic targets? Cell Mol Immunol,2006,3(6):411-419.
    [2]Lee RC, Feinbaum RL, Ambros V, et al. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75(5): 843-854.
    [3]Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000,403(6772): 901-906.
    [4]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science,2001,294(5543):853-858.
    [5]Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science,2001,294(5543): 858-862.
    [6]Lee R, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science,2001,294(5543):862-864.
    [7]Tanzer A, Stadler PF. Molecular evolution of a microRNA cluster. Mol Biol, 2004,339(2):327-335.
    [8]Lee Y, Ahn C, Han J, et al. The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature,2003,425(6956):415-419.
    [9]Denli AM, Tops BB, Plasterk RH, et al. Processing of primary microRNAs by the Microprocessor complex. Nature,2004,432(7014):231-235.
    [10]Gregory RI, Yan KP, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature,2004,432(7014):235-240.
    [11]Yi R, Qin Y, Macara I G, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev,2003,17(24):3011-3016.
    [12]Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell,2004,16(6):861-865.
    [13]Ketting RF, Fischer SE, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C.elegans. Genes Dev,2001,15(20):2654-2659.
    [14]Hutvagner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science,2001,293(5531):834-838.
    [15]Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science,2002,297(5589):2056-2060.
    [16]Mourelatos Z, Dostie J, Paushkin S, et al. miRNPs:a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev,2002,16(6): 720-728.
    [17]Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell,2003,115(2):209-216.
    [18]Schwarz DS, Hutvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell,2003,115(2):199-208.
    [19]Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA,2003,9(3):277-279.
    [20]Sage C, Agam IR. Immense promises for tiny molecules uncovering miRNA functions. Cell Cycle,2006,5 (13):127.
    [21]Chen CZ. MicroRNA as oncogenes and tumor suppressors. N Engl J Med,2005, 353(17):1768-1771.
    [22]Hatfield SD, Shcherbata HR, Fischer KA, et al. Stem cell division is regulated by the microRNA pathway. Nature,2005,435(7044):974-978.
    [23]Lagos-Quintana M, Rauhut R, Meyer J,et al. New microRNAs from mouse and human. RNA,2003,9(2):175-179.
    [24]Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature,2000, 408(6808):86-89.
    [25]Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants. Genes Dev,2002,16(13):1616-1626.
    [26]Pasquinelli AE, Ruvkun G. Control of developmental timing by micrornas and their targets. Annu Rev Cell Dev Biol,2002,18:495-513.
    [27]Kanellopoulou C, Muljo SA, Kung AL, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 2005,19(4):489-501.
    [28]Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science,2004,303(5654):83-86.
    [29]Berezikov E, Guryev V, Belt JV, et al. Phylogenetic shadowing and computational identification of human microRNA Genes. Cell,2005,120 (1): 21-24.
    [30]Hutvagner G, Zamore P D. A microRNA in a multiple-turnover RNAi enzyme complex. Science,2002,297(5589):2056-2060.
    [31]Hutvagner G, Simard M J. Argonaute proteins:key players in RNA silencing. Nat Rev Mol Cell Biol,2008,9(1):22-32.
    [32]Farazi TA, Juranek SA, Tuschl T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development,2008, 135(7):1201-1214.
    [33]Hornstein E, Mansfield J H, Yekta S, et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature,2005,438(7068): 671-674.
    [34]Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell,1993,75(5):855-862.
    [35]Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA,2003, 100(17):9779-9784.
    [36]Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA,2004,101(9):2999-3004.
    [37]He L, Hannon GJ. MicroRNAs:small RNAs with a big role in gene regulation. Nat Rev Genet,2004,5(7):522-531.
    [38]Hafner M, Landgraf P, Ludwig J, et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods,2008,44(1): 3-12.
    [39]Fu H, Tie Y, Xu C, et al. Identification of human fetal liver miRNAs by a novel method. FEBS Lett,2005,579(17):3849-3854.
    [40]Pall GS, Hamilton AJ. Improved northern blot method for enhanced detection of small RNA. Nat Protoc,2008,3(6):1077-1084.
    [41]Chen C, Ridzon D A, Broomer A J, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res,2005,33(20):e179.
    [42]Fu HJ, Zhu J, Yang M, et al. A novel method to monitor the expression of microRNAs. Mol Biotechnol,2006,32(3):197-204.
    [43]Liu CG, Calin GA, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA,2004,101(26):9740-9744.
    [44]Nelson PT, Baldwin DA, Scearce LM, et al. Microarray-based,high-throughput gene expression profiling of microRNAs. Nat Methods,2004,1(2):155-161.
    [45]Lawrie CH, Gal S, Dunlop H M, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol,2008,141:672-675.
    [46]Resnick KE, Alder H, Hagan J P, et al. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol,2009,112(1):55-59
    [47]Lawrie CH, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer,2007,121(5):1156-1161.
    [48]Ng EK, Chong WW, Jin H, et al. Differential expression of microRNAs in plasma of colorectal cancer patients:a potential marker for colorectal cancer screening. Gut,2009,58(10):1375-1381.
    [49]Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA,2008,105: 10513-10518.
    [50]Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum:A novel class of biomarkers for diagnosis of cancer and other diseases.Cell Res,2008,18: 997-1006.
    [51]Ahn K, Huh J W, Park S J, et al. Selection of internal reference genes for SYBR green qRT-PCR studies of rhesus monkey (Macaca mulatta) tissues. BMC Mol Biol,2008,9:78.
    [52]Lai EC, Tomancak P, Williams RW, et al, Computational identification of Drosophila microRNA genes. Genome Biol,2003,4(7):R42.
    [53]Lim LP, Glasner ME, Yekta S, et al. Vertebrate microRNA genes.Science,2003.299(5612):1540.
    [54]Lewis BP, Shih IH, Jones-Rhoades MW, et al. Predietion of mammalian microRNA targets.Cell,2003,26,115(7):787-798.
    [55]Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA,2002,99(24):15524-15529.
    [56]Roush S, Slack FJ. The let27 family of microRNAs. Trends Cell Biol,2008, 18(10):505-516.
    [57]Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev,2007,21(9):1025-1030.
    [58]Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell,2005,120 (5):635-647.
    [59]Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull,2006,29(5):903-906.
    [60]Medina PP, Slack FJ. MicroRNAs and cancer, an overview. Cell Cycle,2008, 7(16):2485-2492.
    [61]Kluiver J, Kroesen BJ, Poppema S, et al. The role of microRNAs in normal hematopoiesis and hematopoietic malignancies. Leukemia,2006,20(11): 1931-1936.
    [62]Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E (mu)-miR 155 transgenic mice. Proc Natl Acad Sci USA,2006,103(18):7024-7029.
    [63]He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature,2005,435(7043):828-833.
    [64]Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapp ing functions of the miR-17 through 92 family of miRNA clusters. Cell,2008,132(5):875-886.
    [65]Gramantieri L, Fornari F, Callegari E, et al. MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med,2008,12(6A):2189-2204.
    [66]Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology,2007,133(2):647-658.
    [67]Asangani A, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) post-transcriptionally down-regulates tumor suppress or Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene,2008,27 (15):21282-21361.
    [68]Sayed D, Rane S, Lypowy J, et al. MicroRNA-21 Targets sprouty and promotes cellular outgrowths. Mol Biol Cell,2008,19(8):3272-3282.
    [69]Scott GK, Goga A, Bhaumik D, et al. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of microRNA miR-125a or miR-125b. J Biol Chem,2007,282(2):1479-1486.
    [70]Lin SL, Chiang A, Chang D, et al. Loss of miR-146a function in Hormone-refractory prostate cancer. RNA,2008,14(3):417-424.
    [71]Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature,2008,451(7175):147-152.
    [72]Calin GA, Croce MC. MicroRNA signatures in human cancers. Nat Rev Cancer, 2006,6(11):857-866.
    [73]Meng F, Henson R, Lang M, et al. Involvement of human microRNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology,2006,130(7):2113-2129.
    [74]Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature,2005,438(7068):685-689.
    [75]Esau CC, Monia BP. Therapeutic potential for microRNAs. Cancer Res,2007, 67(8):3583-3593.
    [76]Dahiya N, Sherman-Baust CA, Wang TL, et al. MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One,2008, 3(6):e2436.
    [77]Cho WC. OncomiRs:the discovery and progress of microRNAs in cancers. Mol Cancer,2007,25(6):60.
    [78]Manikandan J, Aarthi JJ, Kumar SD, et al. Oncomirs:The potential role of non2coding microRNAs in understanding cancer. B ioinform ation,2008,2(8): 330-334.
    [79]Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase:tools for microRNA genomics. Nucleic Acids Res,2008,36:D154-158.
    [80]Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol,2008,110(1):1-2.
    [81]Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol,2007,9:654-659
    [82]Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol,2008,110(1): 13-21.
    [83]Rabinowits G, Gercel-Taylor C, Day JM, et al. Exosomal microRNA:a diagnostic marker for lung cancer. Clin Lung Cancer,2009,10(1):42-46.
    [84]Wong TS, Liu XB, Wong BY, et al. Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res,2008, 14(9):2588-2592.
    [85]Mulders P, Figlin R, deKernion JB et al. Renal cell carcinoma:recent progress and future directions. Cancer Res.1997,57(22):5189-5195.
    [86]全国肿瘤防治研究办公室、卫生部卫生统计信息中心.中国试点市、县恶性肿瘤的发病与死亡.(1993-1997)第2卷.北京:中国医药科技出版社,2002,271-297.
    [87]Sun Y, Koo S, White N, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res,2004,32(22):e188.
    [88]Juan D, Alexe G, Antes T, et al. Identification of a MicroRNA Panel for Clear-cell Kidney Cancer. Urology.2009,24. [Epub ahead of print]
    [89]Volinia S, Calin G, Liu C, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA.2006,103(7): 2257-2261.
    [90]Jung M, Mollenkopf HJ, Grimm C, et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J Cell Mol Med 2009,13(9B):3918-3928.
    [91]Gottardo F, Liu CG, Ferracin M, et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol,2007,25(5):387-392.
    [92]赵爽,王海峰,刘凌琪,等.miRNA-142-5p在肾细胞癌中高表达的研究.山东医药,2008,48(41):12-14.
    [93]Nakada C, Matsuura K, Tsukamoto Y, et al. Genome-wide microRNA expression profiling in renal cell carcinoma:significant down-regulation of miR-141 and miR-200c. J Pathol,2008,216 (4):418-427.
    [94]Huang Y, Dai Y, Yang J, et al. Microarray analysis of microRNA expression in renal clear cell carcinoma. Eur J Surg Oncol,2009,35(10):19-23.
    [95]Chow TF, Youssef YM, Lianidou E, et al. Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem.2010,43(1-2):150-158.
    [1]Mulders P, Figlin R, deKernion JB, et al. Renal cell carcinoma:recent progress and future directions. Cancer Res.1997,57(22):5189-5195.
    [2]全国肿瘤防治研究办公室、卫生部卫生统计信息中心.中国试点市、县恶性肿瘤的发病与死亡.(1993-1997)第2卷.北京:中国医药科技出版社,2002,271-297.
    [3]潘柏年,徐仁方,郭晓,等.肾癌525例临床分析.中华泌尿外科杂志,2000,21(3):135-137.
    [4]Paul R, Mordhorst J, Busch R, et al. Adrenal sparing surgery during radical nephrectomy in patients with renal cell cancer:a new algorithm. J Urol,2001, 166(1):59-62.
    [5]殷长军,眭元庚,吴宏飞,等.肾癌根治术326例报告.中华泌尿外科杂志,2002,23(7):392-394.
    [6]牛志宏,许纯孝,王家耀,等.肾癌根治术是否应常规切除同侧肾上腺?中华泌尿外科杂志,1998,19(3):161-163.
    [7]Swanson DA, Borges PM. complications of transabdominal radical nephrectomy for renal cell carcinoma. J Urol,1983,129(4):704-707.
    [8]Wunderlich H, Schlichter A, Reichelt O, et al. Renal indications for adrenalectomy in renal cell carcinoma. Eur Urol,1999,35(4):272-276.
    [9]Uzzo RG, Novick AC. Nephron sparing surgery f or renal tumors:indications, techniques and outcomes. J Urol,2001,166(1):6-18.
    [10]Gill IS, Desai MM, Kaouk JH, et al. Lapa roscopic partial nephrectomy for renal tumor:duplicating open surgical techniques. J Urol,2002,157(2):469-476.
    [11]Krehbiel K, Ahmad A, Leyendecker J, et al. Thermalablation:update and technique at a high-volume institution. Abdom Imaging,2008,33(6):695-706.
    [12]Avlovich CP, Walther McM, Choyke PL, et al. Percutaneous radiofrequency ablation of small renal tumours:initial Results. J Urol,2002,167(1):10-15.
    [13]Gill IS, Novick AC, Meraney AM, et al. Laparoscopic renal cryoablation in 32 patients. Urology,2000,56(5):748-753
    [14]Kohrmann KU, Michel MS, Gaa J, et al. High intensity focused ultrasound as noninvasive therapy for multilocular renal cell carcinomas:a case study and review of the literature. J Urol,2002,167:2397-2403.
    [15]Paterson RF, Barret E, Siqueira TM, et al. Laparoscopic partial kidney ablation with high intensity focused ultrasound. J Urol,2003,169 (1):347-351.
    [16]Roach H, Whittlestone T. Life-threatening hematuria requiring transcatheter embolization following radiofrequency ablation of renal cell carcinoma. Cardiovasc Intervent Radiol,2006,29(4):672-674.
    [17]Fallick ML, McDermott DF, LaRock D, et al. Nephrectomy before interleukin-2 therapy for patients with metastatic renal cell carcinoma. J Urol,1997,158 (5):1691-1695.
    [18]Marulli G, Sartori F, Bassi PF, et al. Long-term results of surgical management of pulmonary metastases from renal cell carcinoma. Thorac Cardiovasc Surg, 2006,54(8):544-547.
    [19]Hofmann HS, Neef H, Krohe K, et al. Prognostic factors and survival after pulmonary resection of metastatic renal cell carcinoma. Eur Urol,2005, 48(1):77-82.
    [20]Fanelli M, Sarmiento R, Gattuso D, et al. Thalidomide:a new anticancer drug? Expert Opin Investig Drugs,2003,12(7):1211-1225.
    [21]Amato RJ, Hernandez-Mc Clain J, Saxena S, et al. Lenalidomide therapy for metastatic renal cell carcinoma. Am J Clin Oncol,2008,31(3):244-249.
    [22]Lipton A, Zheng M, Seaman J. Zoledronic acid delays the onset of skeletal2related event s and progression of skeletal disease in patient s with advanced renal cell carcinoma. Cancer,2003,98 (5):962-969.
    [23]Walsh PC, Retik AB, Vaughan ED, et al. Renal transplantation. Campbell's urology.2001,3,2292-2326.
    [24]Yang JC, Sherry RM, Steinberg SM, et al. Randomized study of high-dose and low2dose interleukin-2 in patient swith metastatic renal cancer. J Clin Oncol, 2003,21(16):3127-3132.
    [25]Fisher RI, Rosenberg SA, Fyfe G. Long-term survival update for high-dose recombinant interleukin-2 in patient swith renal cell carcinoma. J Sci Am,2000, 1 (1):55-57.
    [26]Escud I, Pluzanska A, Koraleski P, et al. Bevacizumab plus interferon alfa22a for treatment of metastatic renal cell carcinoma:a randomised, double 2 blind phase Ⅲ trial. Lancet,2007,370(9605):2103-2111.
    [27]Skotnicki JS, Leone CL, Smith AL, et al. Design, synthesis and biological evaluation of C242 hydroxyesters of rapamycin:the identification of CCI2779. Clin Cancer Res,2001,7(Supp 1):S3749-S3750.
    [28]Boulay A, Zumstein-Mecker S, Stephan C, et al. Antitumor efficacy of intermittent treatment scheduleswith the rapamycin derivative RAD001 correlates with p rolonged inactivation of ribosomal p rotein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res,2004,64(1):252-261.
    [29]Nabel GJ. Genetic, cellular and immune approaches to disease therapy:past and future. Nat Med,2004,10:135-141.
    [30]Stift A, Fried LJ, Dubsky P, et al. Dendritic cell-based vaccination in solid cancer. J Clin Oncol,2003,21(1):135-142.
    [31]Wang J, Safford S, Barsoum A, et al. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Immunol,1998, 161:5516-5524.
    [32]Wood C, Srivastava P, Bukowski R, et al. An adjuvant autologous therapeutic vaccine (HSPPC296,vitespen) versus observation alone for patient s at high risk of recurrence after nephrectomy for renal cell carcinoma:a multicentre, open-label, randomised phase III trial. Lancet,2008,372(9633):145-154.
    [33]Datta K, Sundberg C, Karumsnchis A, et al. The 104-123 amino acid sequence of the beta-domain of von Hippel-Lindau gene p roduct is sufficient to inhibit renal tumor growth and invasion. Cancer Res,2001,61(5):1768-1775.
    [34]Galanis E, Burch PA, Richardson RL, et al. Intratumoral administration of a 1,2-dimyristyloxyp ropyl-3-dimethylhydroxyethyl ammonium bromide /dioleoylphosphatidylethanolamine formulation of the human interleukin-2 gene in the treatment of metastatic renal cell carcinoma. Cancer,2004,101(11): 2557-2566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700