铜绿假单胞菌注射液(PA-MSHA)对乳腺癌治疗作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章铜绿假单胞菌注射液治疗乳腺癌癌性溃疡的临床研究
     目的研究铜绿假单胞菌注射液治疗乳腺癌癌性溃疡的有效性和不良反应。
     方法对乳腺癌癌性溃疡患者随机分组,分别采种不同的治疗方法:单纯化疗(对照组)、铜绿假单胞菌注射液联合化疗(治疗组)。分别测量治疗前后溃疡大小以及肿块大小,观察铜绿假单胞菌注射液在乳腺癌癌性溃疡治疗中的疗效以及可能出现的不良反应。
     结果同对照组相比,铜绿假单胞菌注射液联合化疗促进患者乳腺癌癌性溃疡面积缩小(治疗组有效率85.7%,对照组有效率33.3%,P<0.05),促进乳腺癌性肿块缩小,但无统计学差异(治疗组有效率57.1%,对照组有效率33.3%,P>0.05);在铜绿假单胞菌注射液治疗过程中除发热外无明显不良反应发生。
     结论铜绿假单胞菌注射液对于乳腺癌癌性溃疡面愈合有促进作用,且无明显不良反应。
     第二章铜绿假单胞菌注射液对于乳腺癌治疗作用的体外杀伤机制研究
     目的铜绿假单胞菌注射液在体外实验中对人乳腺癌细胞(MCF-7)凋亡和增殖的影响。
     方法使用体外培养至对数生长期的MCF-7细胞设立实验组和对照组,实验组给予不同浓度的铜绿假单胞菌注射液,对照组给予等量RPMI 1640培养基处理后,MTT比色法检测铜绿假单胞菌注射液对体外培养的MCF-7细胞增殖的抑制作用;流式细胞术检测其对MCF-7细胞凋亡及细胞周期的影响;荧光染色法观察其诱导体外培养的MCF-7细胞凋亡的形态学改变。
     结果与对照组相比,多个浓度的铜绿假单胞菌注射液均可抑制MCF-7细胞增殖(P<0.05);促进MCF-7细胞的凋亡(PA-MSHA组凋亡率2.14±0.2457%,对照组凋亡率1.19±0.1778%,P<0.01),升高MCF-7细胞中G0/G1期细胞比例(PA-MSHA组73.00±7.10%,对照组为49.83±9.83%,P<0.05)、降低S期细胞所占百分比(P<0.05),荧光显微镜观测示MCF-7细胞呈现明显的凋亡图像。
     结论铜绿假单胞菌注射液可能通过阻滞乳腺癌MCF-7细胞周期中G0/G1期,诱导细胞凋亡,从而抑制体外培养的乳腺癌细胞的增殖。
     第三章铜绿假单胞菌注射液对于乳腺癌治疗作用的体内治疗作用及机制研究
     目的:
     1、研究铜绿假单胞菌注射液(PA-MSHA)在高自发转移乳腺癌小鼠模型中对乳腺癌的治疗作用,并探讨其可能的作用机理。
     2、研究铜绿假单胞菌注射液对于晚期乳腺癌患者细胞免疫功能的影响。
     方法:
     1、使用4T1细胞株通过细胞悬液注射法建立高自发转移乳腺癌小鼠模型,将荷瘤小鼠随机分成4组,即阴性对照组(A组),CTX治疗组(B组),PA-MSHA组(C组),联合治疗组(D组),给予不同处理,同时培养正常小鼠设为空白对照组(E组)。比较治疗后各组间荷瘤小鼠的肿块大小及肿块重量、生存期、肺转移率、脾指数;并采用流式细胞检测法分析比较各组小鼠外周血T淋巴细胞亚群,采用液相多重蛋白定量技术(CBA)检测小鼠外周血细胞因子TNF-αIFN-γ、IL-5、IL-4、IL-2含量。Pearson相关性分析法分析实验小鼠外周血T细胞亚群、TNF-α、IFN-γ、IL-5、IL-4、IL-2水平与小鼠生存期之间的关系。
     2、选择临床上有转移的晚期乳腺癌患者14例,随机分为化疗组和化疗联合PA-MSHA组,两组同期进行化疗,实验组加用铜绿假单胞菌注射液,隔日一次进行治疗。于三周期化疗后,分别抽取外周血,采用流式细胞术(FCM)检测CD3+总T淋巴细胞、CD4+辅助T细胞、CD8+杀伤/抑制T细胞,计算CD4+/CD8+比值。
     结果:
     1、肿块大小及瘤重比较中,各治疗组均小于阴性对照组(P<0.05),CTX治疗组同PA-MSHA组间无统计学差异(P=0.160),均大于联合治疗组(P<0.05)。肺转移率比较中,阴性对照组转移情况明显高于联合治疗组(P=0.029),其余各组之间的转移情况差异无统计学意义(P>0.05)。生存期比较中,PA-MSHA组同CTX治疗组间差别无统计学意义(P=0.056),均高于阴性对照组(P<0.05),低于联合治疗组(P<0.05)。脾指数比较中,空白对照组小于其他四组,联合治疗组高于其他四组(P均小于0.05);CTX治疗组与PA-MSHA组之间差异无统计学意义(P=0.352)。同阴性对照组相比,铜绿假单胞菌注射液可提高外周血T淋巴细胞中CD4+T细胞所占比例,降低外周血T淋巴细胞中CD8+T细胞所占比例,提高CD4+/CD8+比值(P<0.05)。升高外周血细胞因子IL-2水平.(P<0.05);与CTX共同使用可提高TNF-αIFN-γ水平(P<0.05). Pearson相关性分析显示,CD4+T细胞比例与处理组小鼠生存期之间存在强正相关性(r=0.714,P<0.01);CD8+T细胞比例与生存期之间存在强负相关性(r=0.790,P<0.01);CD4+/CD8+与生存期之间存在强正相关性(r=0.781,P<0.01);IL-2与生存期之间存在一般正相关性(r=0.552,P<0.05);其余细胞因子与生存期之间无明显相关性(P>0.05)。
     2、铜绿假单胞菌注射液治疗组同对照组患者外周血中T淋巴细胞占总淋巴细胞比例无差别(P>0.05),T细胞中,实验组CD4+T细胞比例高于对照组、CD8+T细胞比例低于对照组、CD4+/CD8+比值高于对照组(P<0.05)。
     结论:
     1、在使用4T1小鼠乳腺癌细胞株建立的高自发转移乳腺癌小鼠动物模型体内,存在着免疫失衡的现象。
     2、PA-MSHA能够调节乳腺癌动物模型中的T细胞亚群和多个细胞因子水平(IL-2、TNF-a水平,IFN-γ),改变其免疫失衡状态,从而发挥抑制肿瘤生长、减少转移、延长生存期作用;并可与化疗发挥协同作用。
     3、PA-MSHA对于临床Ⅳ乳腺患者有明确的改善免疫功能的作用,可能有利于改善患者预后。
Part I A Clinical Research on Pseudomonas Aeruginosa Injection for the Treatment of Malignant Ulcer of Breast Cancer
     Objective:To evaluate the effectiveness and adverse reaction of pseudomonas aeruginosa injection (PA-MSHA) for the treatment of malignant ulcer of breast cancer.
     Methods:Patients with malignant ulcer of breast cancer were randomly divided into two groups such as the control group receiving chemotherapy alone and the treatment group receving chemotherapy combined with PA-MSHA. Tumor size and ulcer area were measured before and after treatment. The adverse reactions were also evaluated following with the process of the therapy.
     Results:Contrast with the control group(33.3%), the treatment group(85.7%) could promote malignant ulcer area growing downwards(P<0.05), but there was no statistical significance(P>0.05) about breast cancer tumor between the treatment group(57.1%) and the control group(33.3%).
     Conclusion:Administration of PA-MSHA is effective in the treatment of malignant ulcer in breast cancer without obvious adverse reactions.
     PartⅡKilling Mechanism Research on Pseudomonas Aeruginosa MSHA (PA-MSHA) Injection in Breast Cancer in Vitro
     Objective:To investigate the effects of PA-MSHA on the apoptosis and proliferation of human breast cancer cells (MCF-7) cultured in vitro.
     Methods:With culture in vitro of MCF-7 cells being in logarithmic phase, then divided them into two groups such as the expertiment group and the control group. The experiment group were given PA-MSHA injection, and the contro group were mitte tales doses of RPMI 1640 culture medium. With MTT colorimetric method detecting the inhibition effect of PA-MSHA on MCF-7 cultured in vitro, and flow cytometry dectected the influence of PA-MSHA affecting MCF-7 apoptosis and cell cycle. Then used Hoechst fluorescent staining to observe it induce the morphology chage of MCF-7 cultured in vitro.
     Results:Contrast with the control group, different densities of PA-MSHA all could inhibit MCF-7 cell proliferation(P<0.05), promote MCF-7 cell apoptosis (PA-MSHA group apotosis rate:2.14±0.246, the control group rate:1.19±0.178, P<0.01), raised G0/G1 stage cell ratio(PA-MSHA group apotosis ratio:73.00±7.10, the control group ratio:49.83±9.83) of MCF-7 cell and cut down the percentage of G2/M and S stages. Fluorescence microscope detecting showed the obvious apoptosis image of MCF-7 cell.
     Conclusion:PA-MSHA mighg through inducing MCF-7 apoptosis, played inhibition effect in the G0/G1 stage of cell cycle, thus inhibited MCF-7 cell proliferation.
     Part III Therapeutic Action and Mechanism Study on PA-MSHA
     Treating Breast cancer in Vivo
     Objective:1. To investigate the effects of PA-MSHA for the treatment of brease cancer in high spontaneous metastasis breast cancer of mouse model, and explore its mechanism of action.2. To study the effects of PA-MSHA on the immune function in patients with advanced stage breast cancer.
     Methods:Use of 4T1 cell suspension of cell strains building up high spontaneous metastasize breast cancer mice model, divided mice with tumor into four groups, such as negative control group(A group), CTX treatment group(B group), PA-MSHA group(C group) and therapeutic alliance group (D group). Compared tumor size and weight, life span, pulmonary metastasis rate among groups after treatments. And use of flow cytometry detection method compared peripheral blood lymphocyte subpopulation among different groups, applied with cytometric bead array(CBA) detecting TNF-a, IFN-y, IL-5, IL-4, IL-2 content of peripheral blood cytokines in mices. Pearsonian correlation analysis was used to investigate the relationship between peripheral blood lymphocyte subpopulation, TNF-a, IFN-y, IL-5, IL-4, IL-2 and survival time.
     Of 14 patients with advanced stage breast cancer were randomly divided into two groups as chemotherapy group and chemotherapy associated with PA-MSHA group. Both groups were treated with chemotherapy and the PA-MSHA group were injected with PA-MSHA by oneself, while the two groups were treated with every other day. The contents of T cells(CD3+, CD4+, CD8+) phenotype in blood was detected by flow cytometry (FCM), and computed the ratio of CD4+/CD8+.
     Results:Compared with the negative group, the treatment groups had smaller size of tumor and lighter weight of tumor, but there were no statistical significance between the CTX group and PA-MSHA group (P=0.160), both larger than therapeutic alliance group (P<0.05). Compared with Pulmonary metastasis rate, the negative group was much higher than the therapeutic alliance group (P<0.05), but there were no statistical significance among other groups (P>0.05). Contrast with life span, there was no significance between the PA-MSHA group and the CTX group (P=0.056), both higher than the negative group (P<0.05),both lower than the therapeutic alliance group(P<0.05). Compared with spleen index, the control group was smaller than the other four groups (P<0.05), the therapeutic alliance group was higher than the other four groups(P<0.05), but there were no statistical significance between the CTX group and the PA-MSHA group (P=0.352). Contrast with the negative group, PA-MSHA could elevate the ratio of CD4 cells of peripheral blood T lymphocytes, cut down the ratio of CD8 cells of peripheral blood T lymphocytes, and raise the ratio of CD4/CD8 (P<0.05). The level of IL2 was higher in PA-MSHA group (P<0.05), and the levels of TNF-a and IFN-y were higher in PA-MSHA& CTX group (P< 0.05). There was good positive correlation between CD4+and survival time (r=0.714, P<0.01), but there was negative correlation between CD8+and survival time r=0.790, P<0.01). There was good positive correlation between CD4+/CD8+ and survival time (r=0.781, P<0.01), and there was positive correlation between IL-2 and survival time (r=0.552,P<0.05). Other indexes didn't exist correlation with survival time(P>0.05).
     In the clinical research, there was no statistical significance between the PA-MSHA group and the control group(P>0.05). The CD4+T cells and CD4+/CD8+ ratios of the experiment group were higher than the control group(P<0.05), but the CD8+T cells ratio of the experitment group was lower than the control group (P< 0.05).
     Conclusions:
     1.There are immune imbalance in the high spontaneous metastasis breast cancer mouse model that set up with 4T1 cell.
     2. The PA-MSHA could change the immune state in the tumor-bearing mices so as to treat breast cancer, and prolong the lifetime. And it was more effective together with CTX.
     3. PA-MSHA could enhance cellular immune function in advanced stage of breast cancer patients.
引文
1. The Lancet. Breast cancer in developing countries[J]. The Lancet, 2009.374(9701):1567
    2. Ryungsa Kim, Manabu Emi, Kazuaki Tanabe. Cancer immunoediting from immune surveillance to immune escape[J]. Immunology,2007,121: 1-14.
    3.杨振林,刘敬波,张岩江等;乳腺癌患者血清肿瘤坏死因子_白细胞介素6和白细胞介素2水平的变化及其临床意义[J]。中华普通外科杂志,2001,16(11):678-679.
    4.马宏岩,郭涛,宣立学等;乳腺癌患者血清可溶性白细胞介素2受体水平观察[J]。肿瘤学杂志,2002,8(6):353.
    5. Arriagada R, Le MG. Adjuvant radiotherapy in breast cancer-the treatment of lymph node areas[J]. Acts, Oncol,2000,39:295-305.
    6.牟希亚,郭雁群,牟心赤.绿脓杆菌甘露糖敏感血凝菌毛株.发明专利,专利号ZL200510059850.X2005年。
    7.牟希亚,郭雁群,牟心赤.菌毛学研究进展[M].大连:大连出版社1999.
    8.宋希双,姜涛,吴东军,等.PA菌毛株菌苗膀胱灌注预防膀胱癌术后复发的研究[J].中华泌尿外科杂志,2001,22(10):597-598
    9.陈志云,谭清和,倪静怡.绿脓杆菌制剂经胸腔注入治疗恶性胸水的疗效观察,现代医药卫生[J],2006,22(19):2981
    10.李志平,郝德治,杨玉琼,等.PA-MSHA菌苗辅助治疗恶性淋巴瘤临床研究[J].重庆医学,2000,29(2):170-172.
    11.陈志云,郝德治,张洪,等.铜绿假单胞菌PA-MSHA菌毛株菌苗辅助治疗恶性淋巴瘤和肺癌的临床实验研究[J].华西医大学报,2000,31(3),334-337.
    12.凌伟,刘骅,曹晖,等.铜绿假单胞菌注射液对胃癌细胞体外杀伤作用的观察[J].中华肿瘤防治杂志,2008,15(18):1381-1385.
    13.刘岩,杨艳梅,何东风,等.绿脓杆菌菌毛株对肝癌细胞Hep-2生长的抑制作用[J].中华实验外科杂志,2008,25(5):591-593.
    14. Zhe-Bin Liu, Yi-Feng Hou, Min-Dong, et al. PA-MSHA inhibits proliferation and induces apoptosis through the up-regulation and activation of Caspases in the human breast cancer cell lines[J]. Journal of Cellular Biochemistry,2009,9999:1-12.
    15.郏琴,孙依萍,蔡蓉,等.绿脓杆菌制剂辅助治疗肺癌临床研究[J].实用医学杂志,2007,23(16):2487-2489.
    16.孙文平,牟希亚,高小平,等.铜绿假单胞菌菌苗对尿路感染的免疫功能调节[J].微生物学杂志,2007,22(4):20-22.
    17.单红卫,林兆奋,赵良,等.PA-MSHA疫苗对严重创伤患者并发肺部感染的预防作用[J].中国急救医学,2007,27(4)375-377.
    18.刘为国,谢中秋,张杰.PA-MSHA菌苗治疗复发性口腔溃疡[J].大连大学学报,2001,22(6):73-75.
    19.陈坤,耿刚,许彩梅.蒙药嘎木朱尔外用治疗癌性溃疡35例[J],中国民族医药杂志,2006,(6):34.
    20.宋彬,成苏兰.T4期乳腺癌术前尺动脉插管化疗22例临床分析[J].肿瘤防治杂志,2000,17(6):629-630.
    21.王世斌,费阳,谭向龙,新辅助化疗对局部晚期乳腺癌的疗效分析[J].感染、炎症、修复,2008,9(2):101-103.
    22. Eming SA, Hammerschmidt M, Krieg T, et al. Interrelation of immunity and tissue repair or regeneration[J]. Semin Cell Dev Biol,2009 Jul,20(5):517-27.
    23. Mathe G, Florentin I, Bruley-Rosset M, et al. Heat-killed Pseudomonas aeruginosa as a systemic adjuvant in cancer immunotherapy [J]. Biomedicine,1977,27:368-373.
    24. Mu XY. Success in establishing the MSHA-positive Pseudomonas aeruginosa fimbrial strain [J]. J Microbiol,1986,26:176-179.
    25. Zhenyuan Cao, Lijun Shi, Ying Li, et al. Pseudomonas aeruginosa: Mannose Sensitive Hemagglutinin Inhibits the Growth of Human Hepatocarcinoma Cells via Mannose-Mediated Apoptosis [J]. Digestive Diseases and Sciences,2009,54(10):2118-27.
    26. Yunxue Zhao, Jing Li. Jingjian, Wang, et al. Role of cell surface oligosaccharides of mouse mammary tumor cell lines in cancer metastasis [J]. Indian Journal of Biochemistry& Biophysics,2007, 44(6):145-151.
    27.邹宁,宫卫东,周媛,等.ConA识别的高甘露糖型糖蛋白在肿瘤患者血清中表达的研究[J].广东医学,2006,27(6):859-860.
    28.侯丽娜,赵鲁杭.壳寡糖结合并激活巨噬细胞机制的研究[J].中国医科大学学报,2006,35(2):124-127.
    29. Jia L, Wang C, Kong H, et al. Effect of PA-MSHA vaccine on plasma phospholipids metabolic profiling and the ratio of Th2/Thl cells within immune organ of mousel IgA nephropathy. J Pharm Biomed Anal, 2007,43:646-654.
    30.刘奎杰,赵华,雷三林.铜绿假单胞菌注射液对胃肠道肿瘤患者围手术期NK细胞调节[J]。中南药学,2009:7(5)392-393.
    31.杨志坚,张颖悟.绿脓杆菌PPA菌苗在小鼠中的抗肿瘤作用和免疫效应[J].上海免疫学杂志,1990,10(2):81-83.
    32. Nath N, Giri S, Prasad R, et al. Potential targets of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor for multiple sdeorsis therapy[J]. J Immunol,2004,127(2):1237-86.
    33. Cook EB, Stahl JL, Lowe L, et al. Simultaneous measurement of six cytokines in a single sample of human tears using-microparticle-based flow cytometry:allergics vs non-allergics [J]. J Immunol Methods,2001,254(1-2):109-118.
    34. Buell, J. F., Gross, T. G., Woodle, E. S. Malignancy after transplantation[J]. Transplantation,2005,80:S254-S264.
    35. Dunn GP, Bruce AT, Ikeda;H, et al. Cancer immunoediting:from immunosurveillance to tumor escape [J]. Nat Immunol,2002,3:991-8.
    36. Dunn GP, Bruce AT, Sheehan KC et al. A critical function for type I interferons in cancer immunoediting[J]. Nat Immunol,2005, 6(7):722-729.
    37. Abul K. Abbas, Andrew H. Lichtman, Jordan S. Pober. Cellular and Molecular Immunology, Fourth Edition, W. B. Saunders, Philadelphia, London, New York, St Louis, Sydney, Tokyo,2000,384-403;
    38. Charles A. Janeway, Paul Travers, Mark Walport, et al. Immunobiology, Fourth Edition, Elsevier Science, London, Taylor& Francis Group, New York,1999,550-60;
    39. Viorritto IC, Nikolov NP, Siegel RM. Autoimmunity versus tolerance: can dying cells tip the balance? [J] Clin Immunol, 2007,122(2):125-134.
    40. Cefai D, Favre L, Wattendorf E, et al. Role of Fas ligand expression in promoting escape from immune rejection in a spontaneous tumor model [J]. Int J Cancer,2001,91(4):529-537.
    41. Rouas-Feriss N, Moreau P, Ferrone S, et al. HLA-G proteins in cancer:do they provide tumor cells with an escape mechanism? [J] Cancer Res,2005,65 (22):10139-10144.
    42. Ibrahim EC, Guerra N, Lacombe MJ, et al.Tumor-specific up-regulation of the non classical class I HLA-G antigen expression in renal carcinoma[J]. Cancer Res,2001,61 (18):6838-6845.
    43. Gastman BR, Johnson DE, Whiteside TL, et al. Tumor-induced apoptosis of T lymphocytes:elucidation of intracellular apoptotic events [J]. Blood,2000,95:2015-23.
    44. Gabrilovich D, Ishida T, Oyama T et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo[J]. Blood,1998,92:415066.
    45. Urosevic M, Dummer R. HLA-G and IL-10 expression in human cancer different stories with the same message [J]. Semin Cancer Biol,2003, 13:33742.
    46. Beck C, Schreiber H, Rowley D. Role of TGF-beta in immuneevasion of cancer[J]. Microsc Res Tech,2001,52:38795.
    47. Kanodia S, Fahey LM, Kast WM. Mechanisms used by human papillomaviruses to escape the host immune response [J]. Curr Cancer Drug Targets,2007,7(1):79-89.
    48. Tesseur I, Wyss-Coray T. A role for TGF-beta signaling in neurodegeneration:evidence from genetically engineered models [J]. Curr Alzheimer Res,2006,3(5):505-513.
    49. cHe X, Stuart JM. Prostaglandin E2 selectively inhibits human CD4+ T cells secreting low amounts of both IL-2 and IL-4[J]. J Immunol, 1999,163:61739.
    50. Gooding R, Riches P, Dadian G, et al. Increased soluble interleukin-2 receptor concentration in plasma predicts a decreased cellular response to IL-2[J]. Br J Cancer,1995,72(2):452-455.
    51. McGee HS, Agrawal DK. TH2 cells in the pathogenesis of airway remodeling:regulatory T cells a plausible panacea for asthma[J]. Immunol Res,2006,35(3):219-232.
    52. Amati L, Pepe M, Passeri ME et al.Toll-like receptor signaling mechanisms in dendritic cell activation:potential therapeutic control of T cell polarization [J]. Curr Pharm Des,2006,12 (32):4247-4254.
    53. Kai Tao, Min Fang, Joseph Alroy and G Gary Sahagian. Imagable 4T1 model for the study of late stage breast cancer [J]. BMC Cancer,2008, 8:228.
    54. Pulaski BA, Ostrand-Rosenberg S. Mouse 4T1 breast tumor model. Curr Protoc Immunol,2001, Chapter 20:Unit 2022.
    55. Tanaka H, Yoshizawa H, Yamaguchi Y et al. Successful adoptive immunotherapy of murine poorly immunogenic tumor with specific effector cells generated from gene-modified tumorprimed lymph node cells [J]. J Immunol,1999,162:3574-3582.
    56. Marzo AL, Kinnear BF, Lake RA, Frelinger JJ, Collins EJ, Robinson BW, Scott B. Tumor-specijfic CD4+T cells have a major 'post-licensing'role in CTL mediated anti-tumor immunity [J]. J Immunol 2000; 165:6047-6055.
    57. Marzo AL, Lake RA, Robinson BW, et al. T-cell receptor transgenic analysis of tumor-specific CD8 and CD4 responses in the eradication of solid tumors [J]. Cancer Res,1999,59:1071-1079.
    58. Marzo AL, Kinnear BF, Lake RA, Frelinger JJ, Collins EJ, Robinson BW, Scott B. Tumor-specific CD4+T cells have a major 'post-licensing'role in CTL mediated anti-tumor immunity[J]. J Immunol,2000,165:6047-55.
    59. Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J. Immunol,1986, 136:2348-2357.
    60. Mosmann TR, Sad S. The expanding universe of T-cell subsets:Thl, Th2 and more[J]. Immunol Today,1996,17:138-46.
    61. Fernando GJ, Stewart TJ, Tindle RW, et al. Th2-type CD4+cells neither enhance nor suppress antitumor CTL activity in a mouse tumor model [J]. J Immunol,1998,161:2421-2427.
    62. Goedegebuure PS, Eberlein TJ. The role of CD4+tumor-infiltrating lymphocytes in human solid tumors [J]. Immunol Res,1995,14:119-31.
    63. Vries J, De Waal R, De Malefyt H, et al. Do human Thl and Th2 CD4+ clone exist? CD4+T cell subset:differentiation and function[J]. Res Immunol,1991,142(1):59.
    64. Paul A. Antony, Ciriaco A. Piccirillo, Akgul Akpinarli, et al. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4 T helper cells and hindered by naturally occurring T regulatory cells [J]. J Immunol,2005,174(5):2591-2601.
    65. Kharkevitch DD, Seito D, Balch GC, et al. Characterization of autologous tumor specific T2helper 2 cells in tumor-infiltrating lymphocytes from a patient with metastatic melanoma[J]. Int J Cancer, 1994,58:317-323.
    66.邱法波,姜希宏,吴力群,等.原发性肝癌及癌旁组织中Th1/Th2类细胞因子表达模式[J].中国现代普通外科进展,2003,6(2):97-99.
    67. Lange J, ZellwegerM. Photodetection of early human bladder cancer based on the fluorescence of 52ALA[J]. B r J Cancer,1999,80:185-193.
    68. Rosberger DF, Coleman DJ, Silverman R et al. Immunomodulation in choroidal melanoma:reversal of inverted CD4/CD8 ratios following treatment with ultrasonic hyperthermia[J]. Biotechnol Ther,1994; 5(1-2):59-68.
    69. Hui Huang, Siguo Hao, Fang Li, Zhenmin Ye, Junbao Yang and Jim Xiang. CD4+Thl cells promote CD8+Tcl cell survival, memory response, tumor localization and therapy by targeted delivery of interleukin 2 via acquired pMHC I complexes [J]. Immunology,2006,120:148-159.
    70. Rosenberg SA, Yang JC, White DE, et al. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2[J]. Ann Surg,1998,228:319.
    71. Fisher RI, Rosenberg SA, Sznol M, et al. High-dose aldesleukin in renal cell carcinoma:Long-term survival update [J]. Cancer J Sci Am, 1997,3 (s1):S70-S72.
    72. Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer [J]. N Engl J Med,1985,313(23):1485-1492.
    73. U. Keilholz, C. Scheibenbogen, D. Maclachlan, et al, Regional adoptive immunotherapy with interleukin-2 and lymphokine-activated killer (LAK) cells for liver metastases[J]. European Journal of Cancer,1994,30(1):103-105.
    74. Kimura H, Yamaguchi Y. Adjuvant chemo-immunotherapy after curative resection of Stage II and IIIA primary lung cancer[J]. Lung Cancer. 1996,14(2-3):301-314.
    75. Belldegrun A, Kasid A, Uppenkamp M, et al. Human tumor infiltrating lymphocytes. Analysis of lymphokine mRNA expression and relevance to cancer immunotherapy [J]. J Immunol,1989,142(12):4520-4526.
    76. Lenardo MJ. Interleukin-2 programs mose a 0 T lymphocytes for apoptosis[J]. Nature,1991,353:858-861.
    77. Pemis A, Gupta S, Gollb KJ, et al. Lack of interferon gamma receptor betachain and the prevention, of interferon gamma signaling in Thl cells[J]. Science,1995,269:245.
    78. Yo-Ping Lai, Chia-Ching Lin, Wan-Jung Liao, et al. CD4+T Cell-Derived IL-2 Signals during Early Priming Advances Primary CD8+ T Cell Responses[J]. PLoS One,2009,4(11):e7766.
    79. Bear HD, Susskind BM, Close KA& Barrett SK. Phenotype of syngeneic tumor-specific cytotoxic T lymphocytes and requirements for their in vivo generation from tumor-bearing host and immune spleens[J], Cancer Res,1988,48,1422-1427.
    80. Greenberg, P. D. Adoptive T. cell therapy of tumors:mechanisms operative in the recognition and elimination of tumor cells [J]. Adv. Immunol,1991,49,281-355.
    81. Proteomic analysis of tumor necrosis factor-a resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype Matthews N, Watkins JF. Tumour-necrosis factor from the rabbit. I. Mode of action, specificity and physicochemical properties[J]. Br J Cancer,1978, 38(2):302-309.
    82. Green S, Dobrjansky A, Chiasson MA. Murine tumor necrosis-inducing factor:purification and effects on myelomonocytic leukemia cells [J]. J Natl Cancer Inst,1982,68(6):997-1003.
    83. Schmelz K, Wieder T, Tamm I, et al. Tumor necrosis factor alpha sensitizes malignant cells to chemotherapeutic drugs via the mitochondrial apoptosis pathway independently of caspase-8 and NF-kappaB[J]. Oncogene,2004,23:6743-6759.
    84. Xu J, Zhou JY, Wu GS. Tumor necrosis factor-related apoptosis-inducing ligand is required for tumor necrosis factor alphamediated sensitization of human breast cancer cells to chemotherapy [J]. Cancer Res,2006,66:10092-10099.
    85. Dunn G. P., Koebel CM., Schreiber R. D. Interferons, immunity and cancer immunoediting [J]. Nat Rev Immunol,2006,6:836-848.
    86. Mitra-Kaushik S, Harding J, Hess J, et al. Enhanced tumorigenesis in HTLV-1 Tax transgenic mice deficient in interferon gamma [J]. Blood 2004,104:3305-3311.
    87. Ikeda H, Old LJ, Schreiber RD. The roles of IFN gamma in protection against tumor development and cancer immunoediting [J]. Cytokine Growth Factor Rev,2002,13:95-109.
    88. Zhiqiang Xu, Michelle A. Hurchla, et al. Interferon-Y Targets Cancer Cells and Osteoclasts to Prevent Tumor-associated Bone Loss and Bone Metastases [J]. J Biol Chem,2009,284 (7):4658-4666.
    89. Detjen, K. M., Farwig. K., et al. Interferon gamma inhibits growth of human pancreatic carcinoma cells via caspase-1 dependent induction of apoptosis [J]. Gut,2001,49:251-262.
    90. Kakuta, S., Tagawa, Y., Shibata, S., et al. Inhibition of B16 melanoma experimental metastasis by interferon-γ through direct inhibition of cell proliferation and activation of anti-tumor host mechanisms[J]. Immunology,2002,105:92-100.
    91.杨镇.肿瘤免疫学[M]武汉:湖北科学技术出版社,1998.31-45,158-168.
    92.曹雪涛.细胞因子研究的现状与发展趋势[J].中国肿瘤生物治疗杂志,1995,2(3):175-181.
    93. Yamamura M, Modlin R L, Ohmen J D, et al. Local expression of antiinflammatory cytokines in cancer [J]. Clin Invest,1993,91 (3):1005-1010.
    94. Agrup A, Stal 0, Olsen K, et al. CerBb-2 over expression and survival in early onset breast cancer [J]. Breast Cancer Res Treat,2000,63 (1):23-29.
    95.丁治国,史晓光,李兰芳,等.流式微球技术检测参芪扶正注射液对化疗小鼠Thl/Th2平衡状态的影响[J].中国实验方剂学杂志,2009,15(5):39-41.
    96.杨振林,刘敬波,张岩江等;乳腺癌患者血清肿瘤坏死因子α、白细胞介素6和白细胞介素2水平的变化及其临床意义[J].中华普通外科杂志,2001,16(11):678-679.
    97.马宏岩,郭涛,宣立学等.乳腺癌患者血清可溶性白细胞介素2受体水平观察[J].肿瘤学杂志,2002,8(6):353.
    98.陈明水,陈强,叶韵斌,等.乳腺癌病人外周血T细胞亚群的变化及意义[J].福建医科大学学报.2003,37(2):210-211.
    99.齐红,单征,于宏波.乳腺癌患者T淋巴细胞免疫功能及NK活性检测分析[J].中国实验诊断学,2007,11(1):51-52.
    100.张一,郭美琴,邱国强。乳腺癌患者T细胞亚群的变化及其意义[J].苏州医学院学报1999:19(9):975-976.
    101.罗媛烨,邱黎霞,郭满盈。乳腺癌患者血清中Thl/Th2细胞因子的免疫变化[J].实验与检验医学,2008,26(6):679.
    102. Wiltschke C, Krainer M, Budinsky AC, et al. Reduced mitogenic stimulation of peripheral blood mononuclear cells as a prognostic parameter for the course; of breast cancer:a prospective longitudinal study[J].:British Journal of Cancer, 1995,71 (6):1292-1296.
    103. Nieto Y, Shpall EJ, McNiece IK, et al. Prognostic analysis of early lymphocyte recovery in patients with advanced breast cancer receiving high-dose chemotherapy with an autologous hematopoietic progenitor cell transplant[J]. Clinical Cancer Research, 2004,10(15):5076-5086.
    104. Pross HF, Lotzova E. Role of natural killer cells in cancer[J]. Natural Immunity,1993,12(45):279-292.
    105. Avigan D, Wu Z, Joyce R, et al. Immune reconstitution following high-dose chemotherapy with stem cell rescue in patients with advanced breast cancer[J]. Bone Marrow Transplantation,2000, 26(2):169-176.
    106. Jendrossek V, Grassme H, Mueller I, Lang F, Gulbins E. Pseudomonas aeruginosa-induced apoptosis involves mitochondria and stress-activated protein kinases[J]. Infect Immun,2001,69: 2675-2683.
    107. Cannon CL, Kowalski MP, Stopak KS, et al. Pseudomonas aeruginosa-induced apoptosis is defective in respiratory epithelial cells expressing mutant cystic fibrosis transmembrane conductance regulator[J]. Am J Respir Cell Mol Biol,2003,29:188-197.
    108. Heikki I, Kalle A, Reidar G, et al. Mannose recep tor (MR) and common lymphatic endothelial and vascular endothelial recep tor (CLEVER) 21 direct the binding of cancer cell to the lymph vessel endothelium [J]. Cancer Research,2003,63 (1):4671-4676.
    109. ZEHAVI-WILLNER, Induction of Murine Cytolytic T Lymphocytes by Pseudomonas aeruginosa Exotoxin A [J]. INFECTION AND IMMUNITY,1988, p.213-218.
    110. Zehavi-Willner T. Induction of murine cytolytic T lymphocytes by Pseudomonas aeruginosa exotoxin A[J]. Infect Immun, 1988,56(1):213-218.
    111.刘奎杰,赵华,雷三林,铜绿假单胞菌注射液对胃肠道肿瘤患者围手术期NK细胞调节[J].中南药学2009:7(5)392-393.
    112. Pellegrini P, Totaro R, Contasta I, et al. IFNbeta-la treatment and reestablishment of Thl regulationin MS patients:dose efects [J]. Clin Neuropharmacol,2004; 27(6):258-269.
    113. Seo N, Hayakawa S, Takigawa M et al. Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4+T-regulatory cells and systemic collapse of antitumour immunity [J]. Immunology,2001,103(4):449-457.
    114.廖伟娇,刘利东,朱彤.PPA制剂对人PBMC分泌细胞因子水平的影响[J].广东医学,2003,24(9):963-964.
    115. Frey AB. Cestair S, Killing of rat adenocarcinoma 13762 in situ by adoptive transfer of CD4+anti-tumor T cells requires tumor expression of cell surface MHC class II molecules[J]. Cellular Immunology,1997,178 (1):79-90.
    116. Cheever MA, Thompson DB, Kl'arnet JP, et al. Antigendriven long term-cultured T cells proliferate in vivo, distribute widely, mediate specific tumor therapy, and persist long-term as functional memory T cells[J]. J Exp Med,1986,163:1100-1112.
    1. Ehrlich P. Ueber den jetzigen stand der karzinomforschung[J]. Ned Tijdschr Geneeskd,1909,5:73-290.
    2. Richardson MA, Bevans ML, Weber JB, et al. Branched chain amino acids decrease tardive dyskinesia symptoms[J]. Psychopharmacology (Berl), 1999,143(4):358-364.
    3. Wiemann B,Starnes CO. Coley's toxins, tumor necrosis factor and cancer research:a historical perspective[J]. Pharmacol Ther 1994:64:529-564.
    4. Hellstrom IE, Hellstrom KE, Pierce GE, et al:Demonstration of cell-bound and humoral immunity against neuroblastoma cells[J]. Proc Natl Acad Sci U S A,1968,60:1231-1238.
    5. Oliver RT, Nethersell AB, Bottomley JM. Unexplained spontaneous regression and alpha-interferon as treatment for metastatic renal carcinoma[J]. Br J Urol,1989:63:128-31.
    6. B. M. Vose, M. Moore. Human tumor-infiltrating lymphocytes:a marker of host response[J]. Seminars in Hematology,1985, 22, (1):27-40.
    7. Burnet FM. Cancer a biological approach [J]. Br Med J 1957; 1:841-7.
    8. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting:from immunosurveillance to tumor escape[J]. Nat Immunol,2002, 3:991-998.
    9. Dunn GP, Bruce AT, Sheehan KC, et al. A critical function for type I interferons in cancer'immunoediting[J]. Nat Immunol,2005, 6:722-729.
    10. Pemis A, Gupta S, Gollb KJ, et al. Lack of interferon gamma receptor betachain and the prevention of interferon gamma signaling in Thl cells[J]. Science,1995,269:245.
    11. Lenardo MJ. Interleukin-2, programs mose αβ T lymphocytes for apoptosis[Jj]. Nature,1991,353:858-861.
    12. Kim R, Emi M, Tanabe K, et al. Tumor-driven evolution of immunosuppressive networks during malignant progression [J]. Cancer Res,2006,66:5527-5536.
    13. Sprent J, Tough DF. T cell death and memory [J]. Science, 2001,293:245-258.
    14. Sprent J, Surh CD. T cell memory [J]. Annu Rev Immunol, 2002,20:551-579.
    15. Klein G. Immune surveillance-a powerful mechanism with a limited range [J]. Natl Cancer Inst Monogr,1976,44:109-113.
    16. Prehn RT, Main JM. Immunity to methylcholanthrene-induced sarcomas [J]. J Natl Cancer Inst 1957; 18:769-78.
    17. Old LJ, Boyse EA. Immunology of experimental tumors [J]. Annu Rev Med, 1964,15:167-186.
    18. Rygaard J, Povlsen CO. The mouse mutant nude does not develop spontaneous tumours. An argument against immunological surveillance[J]. Acta Pathol Microbiol Scand Microbiol Immunol, 1974,82:99-106.
    19. Stutman 0. Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice[J]. Science, 1974,183:534-536.
    20. Shankaran, V., H. Ikeda, A. T. Bruce. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity[J]. Proc. Natl. Acad. Sci. U. S. A.,2001, 10:1107-1111
    21. Burnet FM. Immunological surveillance in neoplasia[J]. Transplant Rev,1971,7:3-25.
    22. Thomas L. On immunosurveillance in human cancer [J]. Yale J Biol Med, 1982,55:329-33.
    23. Herberman RB, Holden HT. Natural cell-mediated immunity[J]. Adv Cancer Res,1978,27:305-377.
    24. Smyth MJ, Thia KY, Street SE et al. Differential tumor surveillance by natural killer (NK) and NKT cells[J]. J Exp Med,2000, 191:661-668.
    25. Smyth MJ, Crowe NY, Godfrey DI. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma[J]. Int Immunol,2001,13:459-463.
    26. Smyth, M. J., Thia KY, Street SE, et al.2000. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma[J]. J. Exp. Med.192:755-760.
    27. Street, S. E., Trapani, J. A., MacGregor, D., et al. Suppression of lymphoma and epithelial malignancies effected by interferon gamma [J]. J. Exp. Med.,2002,196:129-134.
    28. Street, S. E., Hayakawa Y, Zhan Y, et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells [J]. J. Exp. Med.,2004,199:879-884.
    29. Clementi, R., Locatelli F, Dupre L, et al. A proportion of patients with lymphoma may harbor mutations of the perforin gene[J]. Blood, 2005,105:4424-4428.
    30. Girardi M, Oppenheim DE, Steele CR et al. Regulation of cutaneous malignancy by gammadelta T cells [J]. Science,2001,294:605-609.
    31. Airoldi, I., Di Carlo E, Cocco C, et al.Lack of I112rb2 signaling predisposes to spontaneous autoimmunity and malignancy[J]. Blood. 2005,106:3846-3853.
    32. Enzler, T., Gillessen S, Manis JP, et al. Deficiencies of GM-CSF and interferon gamma link inflammation and cancer [J]. J. Exp. Med.2003, 197:1213-1219.
    33. Engel, A. M., Svane, et al. MCA sarcomas induced in scid mice are more immunogenic than MCA sarcomas induced in congenic, immunocompetent mice[J]. Scand. J. Immunol,1997,45:463-470.
    34. Svane, I.M., Engel AM, Nielsen MB, et al. Chemically induced sarcomas from nude mice are more immunogenic than similar sarcomas from congenic normal mice[J]. Eur. J. Immunol,1996,26:1844.
    35. Dighe AS, Richards E, Old LJ, et al. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptor[J]. Immunity,1994,1:447-456.
    36. Kaplan DH, Shankaran V, Dighe AS, et al. Demonstration of an interferon gammadependent tumor surveillance system in immunocompetent mice[J].'Proc Natl Acad Sci USA,1998, 95:7556-7561.
    37. Street SE, Trapani JA, MacGregor D, et al. Suppression of lymphoma and epithelial malignancies, effected by interferon gamma[J]. J Exp Med,2002,196:129-134.
    38. Gresser I, Bandu MT, Brouty-Boye D. Interferon and cell division. IX. Interferon-resistant L1210 cells, characteristics and origin[J]. J Natl Cancer Inst,1974,52:553-559.
    39. Affabris E, Romeo G, Federico M, et al. Molecular mechanisms of action of interferons in the Friend virus-induced leukemia cell system[J]. Haematologica,1987,72:76-78.
    40. Gresser I, Maury C, Vignaux F, et al. Antibody to mouse interferon alpha/beta abrogates resistance to the multiplication of Friend erythroleukemia cells in the livers of allogeneic mice[J]. J Exp Med, 1988,168:1271-1291.
    41. Asselin-Paturel C, Trinchieri G. Production of type I interferons: plasmacytoid dendritic cells and beyond[J]. J Exp Med,2005, 202:461-465.
    42. Hoshino K, Kaisho T, Iwabe T, et al. Differential involvement of IFN-beta in Toll-like, receptor-stimulated dendritic cell . activation [J]. Int Immunol,2002,14:1225-1231.
    43. Sato K, Hida S, Takayanagi H et al. Antiviral response by natural killer cells through TRAIL gene induction by IFN-alpha/beta[J]. Eur J Immunol,2001,31:3138-3146.
    44. Zerafa N, Westwood JA, Cretney E, et al. Cutting edge:TRAIL deficiency accelerates hematological malignancies[J]. J Immunol, 2005,175:5586-5590.
    45. Takeda K, Smyth MJ, Cretney E, et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development [J]. J Exp Med,2002,195:161-169.
    46. Takeda K, Smyth MJ, Cretney E, et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gammadependent suppression of subcutaneous tumor growth[J]. Cell Immunol,2001,214:194-200.
    47. Takeda K, Hayakawa Y, Smyth MJ, et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells[J]. Nat Med, 2001,7:94-100.
    48. Smyth MJ, Cretney E, Takeda K, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis [J]. J Exp Med,2001,193:661-70.
    49. Seki N, Hayakawa Y, Brooks AD, et al. Tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis is an important endogenous mechanism for resistance to liver metastases in murine renal cancer [J]. Cancer Res,2003,63:207-213.
    50. Cretney E, Takeda K, Yagita H, et al. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice[J]. J Immunol,2002,168:1356-1361.
    51. Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis[J]. Immunity,1995,3:673-82.
    52. Hiroishi K, Tuting T, Lotze MT. IFN-alpha-expressing tumor cells enhance generation and promote survival of tumor-specific CTLs[J]. J Immunol,2000,164:567-72.
    53. Zhang X, Sun S, Hwang I, et al. Potent and selective stimulation of memory-phenotype CD8+T cells in vivo by IL-15[J]. Immunity,1998; 8:591-599.
    54. Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity[J]. Annu Rev Immunol,2002,20:323-70.
    55. van den Broek ME, Kagi D, Ossendorp F, et al. Decreased tumor surveillance in perforin-deficient mice[J]. J Exp Med, 1996,184:1781-1790.
    56. Zerafa, N., Westwood JA, Cretney E, et al. Cutting edge:TRAIL deficiency accelerates hematological malignancies [J]. J. Immunol, 2005,175:5586-5590.
    57. Davidson, W. F., Giese, T., Fredrickson, T. N. Spontaneous development of plasmacytoid tumors in mice with defective Fas-Fas ligand interactions [J]. J. Exp. Med.1998,187:1825-1838.
    58. Smyth MJ, Thia KY, Street SE, et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma[J]. J Exp Med, 2000,192:755-760.
    59. Noguchi Y, Jungbluth A, Richards EC, et al. Effect of interleukin 12 on tumor induction by 3-methylcholanthrene[J]. Proc Natl Acad Sci USA,1996,93:11798-11801.
    60. Enzler T, Gillessen S, Manis JP, et al. Deficiencies of GM-CSF and interferon gamma link inflammation and cancer. J Exp Med, 2003,197:1213-1219.
    61. Hayakawa Y, Rovero S, Forni G, et al. Alpha-galactosylceramide (KRN7000) suppression of chemical-and oncogene-dependent carcinogenesis[J]. Proc Natl Acad Sci USA,2003,100:9464-9469.
    62. Naito Y, Saito K, Shiiba K. CD8+T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer[J]. Cancer Res,1998,58:3491-3494.
    63. Strater J, Hinz U, Hasel C, et al. Impaired CD95 expression predisposes for recurrence in curatively resected colon carcinoma. Clinical evidence for immunoselection and CD95L mediated control of minimal residual disease [J]. Gut,2005,54:661-665.
    64. Yasunaga M, Tabira Y, Nakano.K, et al. Accelerated growth signals and low tumor-infiltrating lymphocyte levels predict poor outcome in T4 esophageal squamous cell carcinoma[J]. Ann Thorac Surg,2000, 70:1634-1640.
    65. Reichert TE, Day R, Wagner EM, et al. Absent or low expression of the zeta chain in T cells at the tumor site correlates with poor survival in patients with oral carcinoma[J]. Cancer Res,1998,58:5344-5347.
    66. Yoshimoto M, Sakamoto G, Ohashi Y. Time dependency of the influence of prognostic factors on relapse in breast cancer [J]. Cancer,1993, 72:2993-3001.
    67. Sato E, Olson SH, Ahn J, et al. Intraepithelial CD8+ tumorinfiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer [J]. Proc Natl Acad Sci USA,2005,102:18538-43.
    68. Haanen JB, Baars A,; Gomez R, et al. Melanoma-specific tumorinfiltrating lymphocytes but not circulating melanoma-specific T cells may predict survival in resected advanced-stage melanoma patients[J]. Cancer Immunol Immunother, 2006,55:451-458.
    69. Ishigami S, Natsugoe S,Tokuda K, et al. Prognostic value of intratumoral natural killer cells in gastric carcinoma[J]. Cancer 2000,88:577-583.
    70. Kondo E, Koda K, Takiguchi N, et al. Preoperative natural killer cell activity as a prognostic factor for distant metastasis following surgery for colon cancer[J]. Dig Surg,2003,20:445-451.
    71. Villegas FR, Coca S, Villarrubia VG, et al. Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer [J]. Lung Cancer,2002,35:23-28.
    72. Vajdic CM, McDonald SP, McCredie MR, et al. Cancer incidence before and after kidney transplantation [J]. Jama 2006,296:2823-2831.
    73. Vial T, Descotes J. Immunosuppressive drugs and cancer[J]. Toxicology 2003,185:229-240.
    74. Leek RD, Lewis CE, Whitehouse R, et al. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma [J]. Cancer Res,1996,56:4625-4629.
    75. Pham SM, Kormos RL, Landreneau RJ, et al. Solid tumors after heart transplantation:lethality of lung cancer [J]. Ann Thorac Surg,1995, 60:1623-1626.
    76. Morath C, Mueller M, Goldschmidt H, et al. Malignancy in renal transplantation [J]. J Am Soc Nephrol,2004,15:1582-1588.
    77. Myron Kauffman H, McBride MA, Cherikh WS, et al. Transplant tumor registry:donor related malignancies [J]. Transplantation,2002, 74:358-62.
    78. Zeier M, Hartschuh W, Wiesel M, et al. Malignancy after renal transplantation[J], Am J Kidney Dis,2002,39:E5.
    79. Mori S, Jewett A, Murakami-Mori K, et al. The participation of the Fas-mediated cytotoxic pathway by natural killer cells is tumor-cell-dependent[J]. Cancer Immunol Immunother,1997, 44:282-290.
    80. Takeda K, Hayakawa Y, Smyth MJ, et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells[J]. Nat Med,2001, 7:94-100.
    81. Zitvogel L, Terme M, Borg C, et al. Dendritic cell-NK cell cross-talk: regulation and physiopathology[J]. Curr Top Microbiol Immunol,2006, 298:157-74.
    82. Matzinger P. Tolerance, danger, and the extended family [J]. Annu Rev Immunol,1994,12:991-1045.
    83. Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy[J]. Nat Immunol,2001, 2:293-9.
    84. Gollob JA, Sciambi CJ, Huang Z, et al. Gene expression changes and signaling events associated with the direct antimelanoma effect of IFN-gamma[J]. Cancer Res,2005,65:8869-8877.
    85. Qin Z, Schwartzkopff J, Pradera F, et al. A critical requirement of interferon gamma-mediated angiosta sis for tumor rejection by CD8+ T cells[J]. Cancer Res,2003,63:4095-100.
    86. Ikeda H, Old LJ, Schreiber RD. The roles of IFN gamma in protection against tumor development and cancer immunoediting [J]. Cytokine Growth Factor Rev,2002,13:95-109.
    87. Sinha P, Clements VK, Miller S, et al. Tumor immunity. A balancing act between T cell activation, macrophage activation and tumor-induced immune suppression[J]. Cancer Immunol Immunother, 2005,54:1137-1142.
    88. Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells [J]. Nature,2003, 425:516-521.
    89. Ohashi K, Burkart V, Flohe S, et al. Cutting edge:heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex[J]. J Immunol,2000,164:558-561.
    90. Karin M. Nuclear factor-kappaB in cancer development and progression [J]. Nature,2006,441:431-436.
    91. Kim R, Emi M, Tanabe K. Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflammatory responses [J]. Cancer Biol The,2005,4:924-933.
    92. Engel AM, Svane IM, Rygaard J, et al. MCA sarcomas induced in scid mice are more immunogenic than MCA sarcomas induced in congenic, immunocompetent mice[J]. Scand J Immunol,1997,45:463-470.
    93. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting[J]. Annu Rev Immunol,2004,22:329-60.
    94. Cankovic M, Linden MD, Zarbo RJ. Use of microsatellite analysis in detection of tumor lineage as a cause of death in a liver transplant patient [J]. Arch Pathol Laboratory Med,2006,130:529-532.
    95. Morath C, Rohmeiss P, Schwenger V, et al. Transmission of donor-derived small-cell carcinoma cells by a nontumor-bearing allograft[J]. Transplantation,2005,80:540-542.
    96. von Bernstorff W, Voss M, Freichel S, et al. Systemic and local immunosuppression in pancreatic cancer patients [J]. Clin Cancer Res 2001,7:925s-932s.
    97. Schmielau J, Nalesnik MA, Finn OJ. Suppressed T-cell receptor zeta chain expression and cytokine production in pancreatic cancer patients [J]. Clin Cancer Res,2001,7:933s-939s.
    98. Riccobon A, Gunelli R, Ridolfi R et al. Immunosuppression in renal cancer:differential expression of signal transduction molecules in tumor-infiltrating, near-tumor tissue, and peripheral blood lymphocytes [J]. Cancer Invest,2004,22:871-877.
    99. Lockhart DC, Chan AK, Mak S, et al. Loss of T-cell receptor-CD3zeta and T-cell function in tumor-infiltrating lymphocytes but not in tumor-associated lymphocytes in ovarian carcinoma[J]. Surgery,2001, 129:749-756.
    100. Agrawal S, Marquet J, Delfau-Larue MH, et al. CD3 hyporesponsiveness and in vitro apoptosis are features of T cells from both malignant and nonmalignant secondary lymphoid organs [J]. J Clin Invest,1998, 102:1715-1723.
    101. Gastman BR, Johnson DE, Whiteside TL, et al. Caspase-mediated degradation of T-cell receptor zeta-chain[J]. Cancer Res,1999; 59:1422-1427.
    102. Gastman BR, Johnson DE, Whiteside TL, et al. Tumor-induced apoptosis of T lymphocytes:elucidation of intracellular apoptotic events [J]. Blood,2000,95:2015-2023.
    103. Kim JW, Wieckowski E, Taylor DD, et al. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes[J]. Clin Cancer Res, 2005,11:1010-20.
    104. Gabrilovich D, Ishida T, Oyama T, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo[J]. Blood,1998,92:4150-4166.
    105. Urosevic M, Dummer R. HLA-G and IL-10 expression in human cancer-different stories with the same message [J]. Semin Cancer Biol,2003, 13:337-342.
    106. Beck C, Schreiber H, Rowley D. Role of TGF-beta in immuneevasion of cancer. Microsc Res Tech,2001,52:387-395.
    107. cHe X, Stuart JM. Prostaglandin E2 selectively inhibits human CD4+ T cells secreting low amounts of both IL-2 and IL-4[J]. J Immunol, 1999,163:6173-6179.
    108. Erdogan B, Uzaslan E, Budak F, et al. The evaluation of soluble Fas and soluble Fas ligand levels of bronchoalveolar lavage fluid in lung cancer patients [J]. Tuberk Toraks,2005,53:127-131.
    109. Kim R, Emi M, Tanabe K, et al. The role of Fas ligand and transforming growth factor beta in tumor progression:molecular mechanisms of immune privilege via Fas-mediated apoptosis and potential targets for cancer therapy [J]. Cancer,2004,100:2281-2291.
    110. Marincola FM, Jaffee EM, Hicklin DJ, et al. Escape of human solid tumors from T-cell recognition:molecular mechanisms and functional significance [J]. Adv Immunol,2000,74:181-273.
    111. Sogn JA. Tumor immunology:the glass is half full[J]. Immunity 1998,9:757-763.
    112. J. L. Marshall, R. J. Hoyer, M. A. Toomey, et al., Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses[J]. Journal of Clinical Oncology,2000,18(23):3964-3973.
    113. A. L. Boehm, J. Higgins, A. Franzusoff, J. Schlom, and J. W. Hodge, "Concurrent vaccination with two distinct vaccine platforms targeting the same antigen generates phenotypically and functionally distinct T-cell populations[J]. Cancer Immunology, Immunotherapy,2010,59 (3):397-408.
    114. S. I. Abrams, S. F. Stanziale, S. D. Lunin, et al. Identification of overlapping epitopes in mutant ras oncogene peptides that activate CD4+and CD8+T cell responses [J]. European Journal of Immunology,1996,26(2):435-443.
    115. R. Offringa, M. P. M. Vierboom, S. H. van der Burg, et al. p53:a potential target antigen for immunotherapy of cancer [J]. Annals of the New York Academy of Sciences,2000,910:223-236.
    116. F. M. Marincola, E. M. Jaffee, D. J. Hickljn, et al. Escape of human solid tumors from t-cell recognition:molecular mechanisms and functional significance[J]. Advances in Immunology,2000,74: 181-273.
    117. K. L. Knutson, H. Lu, B. Stone, et al. Immunoediting of cancers may lead to epithelial to mesenchymal transition[J]. Journal of Immunology,2006,177 (3):1526-1533.
    118. M. Kmieciak, K. L. Knutson, C. I. Dumur, et al. "HER-2/neu antigen loss and relapse of mammary carcinoma are actively induced by T cell-mediated anti-tumor immune responses[J]. European Journal of Immunology,2007,37(3):675-685.
    119. E. Jager, M. Ringhoffer, J. Karbach, et al. "Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+cytotoxic-T-cell responses:evidence for immunoselection of antigenloss variants in vivo[J]. International Journal of Cancer,1996,66.(4):470-476.
    120. Y. Hirohashi, T. Torigoe, S. Inoda, et al. The functioning antigens:beyond just as the immunological targets [J]. Cancer Science, 2009,100(5):798-806.
    121. R. H. Schwartz. A cell culture model for T lymphocyte clonal anergy[J]. Science,1990,248(4961):1349-1356.
    122. F.. A. Harding, J. G.McArthur, J. A. Gross, et al. CD28-mediated signaling co-stimulates murine T cells and prevents induction of anergy in T-cell clones [J]. Nature,1992,356(6370):607-609.
    123. X. Zang and J. P. Allison, "The B7 family and cancer therapy: costimulation and coinhibition[J]. Clinical Cancer Research,2007, 13(18):5271-5279.
    124. J. W. Hodge, J. P. McLaughlin, S. I. Abrams, et al. Admixture of a recombinant vaccinia virus containing the gene for the costimulatory molecule B7 and a recombinant vaccinia virus containing a tumor-associated antigen.gene results in enhanced specific T-Cell responses and antitumor immunity [J]. Cancer Research,1995,55(16): 3598-3603.
    125. J. W. Hodge, H. Sabzev'ari, A. G. Yafal, et al. A triad of costimulatory molecules synergize to amplify T-cell activation [J]. Cancer Research,1999,59(22):5800-5807.
    126. M. Zhu, H. Terasawa, J. Gulley, et al. Enhanced activation of human T cells via avipox vector-mediated hyperexpression of a triad of costimulatory molecules in human dendritic cells[J]. Cancer Research,2001,61(9):3725-3734.
    127. C. Palena, M. Zhu, J. Schlom, et al. Human B cells that hyperexpress a triad of costimulatory molecules via avipox-vector infection:an alternative source of, efficient antigen-presenting cells[J]. Blood,2004,104(1):192-199.
    128. Guo YJ, Che XY, Shen F, et al. Anthony DD, Wu M C. Effective tumor vaccines generated by in vitro modification of tumor cells with cytokines and bispecific monoclonal antibodies[J]. Nat Med, 1997,3:451-5.
    129. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells[J]. Nat Med,1998,4:328-32.
    130. Wang Q, Redovan C, Tubbs R, et al. Selective cytokine gene expression in renal cell carcinoma tumor cells and tumor-infiltrating lymphocytes [J]. I nt J Cancer,1995,61:780-5.
    131. Rosenberg SA, Yang JC. Schwartzentruber DJ, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma[J]. Nat Med, 1998,4:321-327.
    132. Srivastava PK, Menoret A, Basu S, et al. Heat shock proteins come of age:primitive functions acquire new roles in an adaptive world [J]. Immunity,1998,8:657-665.
    133. Gogas H, et al. Prognostic significance of autoimmunity during treatment of melanoma with interferon. N Engl J Med 2006;354: 709-718.
    134. Parmiani G, Rivoltini L, Andreola G, et al. Cytokines in cancer therapy [J]. Immunol Lett,2000,74:41-44.
    135. Scott CT. The problem with potency[J]. Nature Biotechno,2005,23: 1037-1039.
    136. Waldmann TA. Anti-Tac (daclizumab, Zenapax) in the treatment of leukemia, autoimmune diseases, and in the prevention of allograft rejection:a 25-year personal odyssey[J]. J Clin Immunol,2007,27: 1-18.
    137. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer[J]. Nature Biotechnol,2005,23:1147-1157.
    138. Ozcelik C, Ioannovich J, Dafni U, et al. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy[J]. Proc Natl Acad Sci USA,2002,99:8880-8885.
    139. Rosenberg SA, Yang JC, White DE, et al. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2[J]. Ann Surg,1998,228:319.
    140. Fisher RI, Rosenberg SA, Sznol M, et al. High-dose aldesleukin in renal cell carcinoma:Long-term survival update [J]. Cancer J Sci Am 1997,3(suppl 1):S70-S72.
    141. Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer [J]. N Engl J Med,1985,313(23):1485-92.
    142. U. Keilholz, C. Scheibenbogen, D. Maclachlan, et al, Regional adoptive immunotherapy with interleukin-2 and lymphokine-activated killer (LAK) cells for liver metastases[J]. European Journal of Cancer,1994,30(1):103-105.
    143. Kimura H, Yamaguchi Y. Adjuvant chemo-immunotherapy after curative resection of Stage Ⅱ and ⅢA primary lung cancer [J]. Lung Cancer, 1996,14(2-3):301-14.
    144. Belldegrun A, Kasid A, Uppenkamp M, et al. Human tumor infiltrating lymphocytes. Analysis of lymphokine mRNA expression and relevance to cancer immunotherapy [J]. J Immunol,1989,15; 142(12): 4520-4526.
    145. Lenardo MJ. Interleukin-2 programs mose αβ T lymphocytes for apoptosis [J]. Nature,1991,353:858-861.
    146. PemisA, Gupta S, Gollb KJ,;et al. Lack of interferon gamma receptor betachain and the prevention of interferon gamma signaling in Thl cells[J]. Science,1995,269:245.
    147. Brusky JP, Gailani F, Pathak A, et al. High-dose interleukin-2 immunotherapy is safe for patients with metastatic renal cell carcinoma on dialysis[J]. BJU Int,2006,97(2):279-280.
    148. Radny P, Caroli UM, Bauer J, et al. Phase II trial of intralesional therapy with interleukin-2 in soft-tissue melanoma metastases[J]. Br J Cancer,2003,89:1620-1626.
    149. Iqbal Ahmed, C. M., and H. M. Johnson. Interferon gene therapy for the treatment of cancer and viral infections [J]. Drugs Today (Barc), 2003,39:763-6.
    150. Spitler LE, Grossbard ML, Ernstoff MS, et al. Adjuvant therapy of stage Ⅲ and Ⅳ malignant melanoma using granulocyte-macrophage colony-stimulating factor[J]. J Clin Oncol.2000,18:1614-1621.
    151. Atkins MB, Roberston MJ, Gordon M, et al. Phase Ⅰ evaluation of intravenous recombinant human interleukin-12 in patients with advanced malignancies[J]. Clin Cancer Res,1997,3:409-417.
    152. Lee P, Wang F, Kuniyoshi J, et al. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma[J]. J Clin Oncol.2001,19:3836-3847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700