Trihydrophobin 1促进雄激素受体降解及其在乳腺癌进展过程中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雄激素信号通路在前列腺的发育、前列腺增生以及前列腺癌的发生发展中起极其重要的作用。本实验室之前的研究发现trihydrophobin 1 (TH1)蛋白在前列腺高表达。在体内体外实验中TH1均可以与雄激素受体相互作用,并且抑制雄激素受体的转录活性和内源性前列腺特异性抗原的表达。TH1还能够与雄激素受体一同与具有雄激素反应性的前列腺特异性抗原启动子相互结合,表明TH1参与了雄激素受体转录调控其下游基因的过程。在本论文中,我们发现在TH1抑制雄激素信号通路的过程中TH1能够诱导雄激素受体蛋白水平的降低,促进了雄激素受体的泛素化降解,但是TH1不影响雄激素受体的入核。而雄激素受体的稳定性受它N/C端的相互作用影响,TH1可以抑制雄激素受体的N/C端相互作用,但是并不单独参与雄激素受体N端或C端的降解。基于以上实验结果,我们提出TH1能够通过促进雄激素受体的泛素化降解来抑制雄激素信号的传导。这些结果还提示TH1可能直接参与雄激素相关的一些发育以及生理病理过程。
     TH1是负性转录延长因子复合体中的一个成员,与该复合体的其他亚基一同参与转录暂停。尽管有研究发现负性转录延长因子复合体可以抑制雌激素受体α介导的转录,但是没有研究报导TH1与肿瘤的发生发展的关系。在本论文中,我们发现TH1的蛋白水平与人类乳腺癌的进展呈负相关。免疫组化实验显示TH1蛋白在乳腺癌临床Ⅲ-Ⅳ期患者的乳腺癌组织中的表达明显低于乳腺癌临床Ⅰ-Ⅱ期的患者(P<0.01)。而在发生3个以上转移淋巴结转移患者的乳腺癌组织中TH1的蛋白水平明显低于3个及以下淋巴结转移患者的乳腺癌组织(P<0.001)。为了进一步研究TH1在乳腺癌发生发展中的分子机制,我们在MDA-MB-231细胞中制作了TH1过表达的稳转株,并且用RNA干扰的方法制作了在MCF-7细胞中TH1持续性下调的稳转株。我们可以观察到TH1可以抑制乳腺癌细胞的生长增殖,但是对细胞增殖的抑制作用不大。TH1还能够降低细胞周期蛋白D1的蛋白水平,上调CDK抑制子p21的蛋白水平,使乳腺癌细胞发生G0/G1期的细胞周期阻滞。TH1还可以降低β-catenin的水平并且抑制ERK的活性。此外,TH1可以抑制乳腺癌细胞的迁移和运动,在划痕实验中,TH1抑制了伤痕的修复,抑制了上皮间质化分子标记的相应改变,提示TH1可能抑制乳腺癌细胞的侵袭能力。以上结果显示TH1能够抑制乳腺癌细胞的增殖和侵袭,其蛋白水平的下调参与了乳腺癌的进展过程并且为乳腺癌的诊断及治疗提供了一个新的线索。
The androgen-signaling pathway plays critical roles in normal prostate development, benign prostatic hyperplasia, established prostate cancer, and in prostate carcinogenesis. In this study, we report that trihydrophobin 1 (TH1) is a potent negative regulator to attenuate the androgen signal-transduction cascade through promoting androgen receptor (AR) degradation. TH1 interacts with AR both in vitro and in vivo, decreases the stability of AR, and promotes AR ubiquitination in a ligand-independent manner. TH1 also associates with AR at the active androgen-responsive prostate-specific antigen (PSA) promoter in the nucleus of LNCaP cells. Decrease of endogenous AR protein by TH1 interferes with androgen-induced luciferase reporter expression and reduces endogenous PSA expression. Taken together, these results indicate that TH1 is a novel regulator to control the duration and magnitude of androgen signal transduction and might be directly involved in androgen-related developmental, physiological, and pathological processes.
     Trihydrophobin 1 (TH1) is a member of negative elongation factors (NELF) complex, which is involved in transcriptional pausing. Although NELF complex attenuates the estrogen receptor a-mediated transcription, little is known about the relationship between TH1 and tumor progression. Here, we reported that protein level of TH1 was negatively correlated with the malignancy of human breast cancer. Immunohistochemical analysis revealed that TH1 expression in clinical stage III-IV primary breast cancer tissues was statistically significantly lower than that in stage I-II breast tissues (P<0.01), and especially inversely associated with lymph node metastasis (P<0.001). Furthermore, we demonstrated that overexpression of TH1 in MDA-MB-231 cells inhibited and knockdown of TH1 in MCF-7 cells enhanced cell migratory ability of breast cancer cells. Moreover, upregulation of TH1 in MDA-MB-231 cells resulted in the decrease of cell cycle protein cyclin D1,β-catenin and ERK activity, and the increase of cyclin-dependent kinase inhibitor p21. In contrast, knockdown of TH1 in MCF-7 cells enhanced the expression of cyclin D1 andβ-catenin, increased the activity of ERK, and downregulated the expression of p21. Additionally, overexpression of TH1 in MDA-MB-231 cells prevented and, however, knockdown of TH1 in MCF-7 cells induced epithelial-mesenchymal transition (EMT) in breast cancer cells. Taken together, our results suggest that TH1 might play an important role in regulation of proliferation and invasion in human breast cancer, and thereby might be a potential target for human breast cancer treatment.
引文
[1]Ross RK, Pike MC, Coetzee GA, Reichardt JK, Yu MC, Feigelson H, Stanczyk FZ, Kolonel LN, Henderson BE. Androgen metabolism and prostate cancer:establishing a model of genetic susceptibility[J]. Cancer Res,1998,58 (20):4497-4504.
    [2]Montie JE, Pienta KJ. Review of the role of androgenic hormones in the epidemiology of benign prostatic hyperplasia and prostate cancer [J]. Urology,1994, 43 (6):892-899.
    [3]El Sheikh SS, Domin J, Abel P, Stamp G, Lalani el N. Androgen-independent prostate cancer:potential role of androgen and ErbB receptor signal transduction crosstalk[J]. Neoplasia,2003,5 (2):99-109.
    [4]Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS. Androgen receptor defects:historical, clinical, and molecular perspectives [J]. Endocr Rev,1995,16(3):271-321.
    [5]MacLean HE, Warne GL, Zajac JD. Localization of functional domains in the androgen receptor[J].J Steroid Biochem Mol Biol,1997,62 (4):233-242.
    [6]Jenster G, van der Korput HA, van Vroonhoven C, van der Kwast TH, Trapman J, Brinkmann AO. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization[J]. Mol Endocrinol, 1991,5 (10):1396-1404.
    [7]Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM. The nuclear receptor superfamily:the second decade[J]. Cell,1995,83 (6):835-839.
    [8]Wong CI, Zhou ZX, Sar M, Wilson EM. Steroid requirement for androgen receptor dimerization and DNA binding. Modulation by intramolecular interactions between the NH2-terminal and steroid-binding domains[J]. J Biol Chem,1993,268 (25):19004-19012.
    [9]Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction J]. Physiol Rev,2002,82 (2):373-428.
    [10]Pickart CM. Back to the future with ubiquitin[J]. Cell,2004,116 (2):181-190.
    [11]Eldridge AG, O'Brien T. Therapeutic strategies within the ubiquitin proteasome system[J]. Cell Death Differ,17 (1):4-13.
    [12]Sheflin L, Keegan B, Zhang W, Spaulding SW. Inhibiting proteasomes in human HepG2 and LNCaP cells increases endogenous androgen receptor levels[J]. Biochem Biophys Res Commun,2000,276(1):144-150.
    [13]Yeh S, Hu YC, Rahman M, Lin HK, Hsu CL, Ting HJ, Kang HY, Chang C. Increase of androgen-induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells[J]. Proc Natl Acad Sci U S A,2000,97 (21):11256-11261.
    [14]Poukka H, Karvonen U, Yoshikawa N, Tanaka H, Palvimo JJ, Janne OA. The RING finger protein SNURF modulates nuclear trafficking of the androgen receptor[J]. J Cell Sci,2000,113 (Pt 17):2991-3001.
    [15]Kang HY, Yeh S, Fujimoto N, Chang C. Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor[J]. J Biol Chem,1999,274 (13):8570-8576.
    [16]Lin HK, Wang L, Hu YC, Altuwaijri S, Chang C. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase[J]. EMBO J,2002,21 (15):4037-4048.
    [17]Gao X, Mohsin SK, Gatalica Z, Fu G, Sharma P, Nawaz Z. Decreased expression of e6-associated protein in breast and prostate carcinomas [J]. Endocrinology,2005, 146(4):1707-1712.
    [18]He B, Bai S, Hnat AT, Kalman RI, Minges JT, Patterson C, Wilson EM. An androgen receptor NH2-terminal conserved motif interacts with the COOH terminus of the Hsp70-interacting protein (CHIP)[J]. J Biol Chem,2004,279 (29):30643-30653.
    [19]Bonthron DT, Hayward BE, Moran V, Strain L. Characterization of TH1 and CTSZ, two non-imprinted genes downstream of GNAS1 in chromosome 20q13[J]. Hum Genet,2000,107 (2):165-175.
    [20]Hari KL, Santerre A, Sekelsky JJ, McKim KS, Boyd JB, Hawley RS. The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene[J]. Cell,1995,82 (5):815-821.
    [21]Liu W, Shen X, Yang Y, Yin X, Xie J, Yan J, Jiang J, Wang H, Sun M, Zheng Y, Gu J. Trihydrophobin 1 is a new negative regulator of A-Raf kinase[J].J Biol Chem, 2004,279 (11):10167-10175.
    [22]Yin XL, Chen S, Gu JX. Identification of TH1 as an interaction partner of A-Raf kinase[J]. Mol Cell Biochem,2002,231 (1-2):69-74.
    [23]Yang Y, Liu W, Zou W, Wang H, Zong H, Jiang J, Wang Y, Gu J. Ubiquitin-dependent proteolysis of trihydrophobin 1 (TH1) by the human papilloma virus E6-associated protein (E6-AP)[J]. J Cell Biochem,2007,101 (1):167-180.
    [24]Narita T, Yamaguchi Y, Yano K, Sugimoto S, Chanarat S, Wada T, Kim DK, Hasegawa J, Omori M, Inukai N, Endoh M, Yamada T, Handa H. Human transcription elongation factor NELF:identification of novel subunits and reconstitution of the functionally active complex[J]. Mol Cell Biol,2003,23 (6):1863-1873.
    [25]Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation[J]. Cell,1999,97 (1):41-51.
    [26]Wu CH, Yamaguchi Y, Benjamin LR, Horvat-Gordon M, Washinsky J, Enerly E, Larsson J, Lambertsson A, Handa H, Gilmour D. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila[J]. Genes Dev,2003,17 (11):1402-1414.
    [27]Aiyar SE, Sun JL, Blair AL, Moskaluk CA, Lu YZ, Ye QN, Yamaguchi Y, Mukherjee A, Ren DM, Handa H, Li R. Attenuation of estrogen receptor alpha-mediated transcription through estrogen-stimulated recruitment of a negative elongation factor[J]. Genes Dev,2004,18 (17):2134-2146.
    [28]Yang Y, Zou W, Kong X, Wang H, Zong H, Jiang J, Wang Y, Hong Y, Chi Y, Xie J, Gu J. Trihydrophobin 1 attenuates androgen signal transduction through promoting androgen receptor degradation[J]. J Cell Biochem,109 (5):1013-1024.
    [29]Abreu-Martin MT, Chari A, Palladino AA, Craft NA, Sawyers CL. Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer[J]. Mol Cell Biol, 1999,19(7):5143-5154.
    [30]Heinlein CA, Chang C. Androgen receptor in prostate cancer[J]. Endocr Rev,2004, 25 (2):276-308.
    [31]Zhou ZX, Lane MV, Kemppainen JA, French FS, Wilson EM. Specificity of ligand-dependent androgen receptor stabilization:receptor domain interactions influence ligand dissociation and receptor stability [J]. Mol Endocrinol,1995,9 (2):208-218.
    [32]Hsu CL, Chen YL, Ting HJ, Lin WJ, Yang Z, Zhang Y, Wang L, Wu CT, Chang HC, Yeh S, Pimplikar SW, Chang C. Androgen receptor (AR) NH2-and COOH-terminal interactions result in the differential influences on the AR-mediated transactivation and cell growth[J]. Mol Endocrinol,2005,19 (2):350-361.
    [33]Yeh S, Chang C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells[J]. Proc Natl Acad Sci U S A,1996, 93(11):5517-5521.
    [34]Zhang Y, Yang Y, Yeh S, Chang C. ARA67/PAT1 functions as a repressor to suppress androgen receptor transactivation[J]. Mol Cell Biol,2004,24 (3):1044-1057.
    [35]Onate SA, Tsai SY, Tsai MJ, O'Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily[J]. Science,1995,270 (5240):1354-1357.
    [36]Wang L, Hsu CL, Ni J, Wang PH, Yeh S, Keng P, Chang C. Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells[J]. Mol Cell Biol,2004,24 (5):2202-2213.
    [37]Jaworski T. Degradation and beyond:control of androgen receptor activity by the proteasome system[J]. Cell Mol Biol Lett,2006,11 (1):109-131.
    [38]Gaughan L, Logan IR, Neal DE, Robson CN. Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation[J]. Nucleic Acids Res, 2005,33(1):13-26.
    [39]Cardozo CP, Michaud C, Ost MC, Fliss AE, Yang E, Patterson C, Hall SJ, Caplan AJ. C-terminal Hsp-interacting protein slows androgen receptor synthesis and reduces its rate of degradation[J]. Arch Biochem Biophys,2003,410 (1):134-140.
    [40]Bhattacharyya RS, Krishnan AV, Swami S, Feldman D. Fulvestrant (ICI 182,780) down-regulates androgen receptor expression and diminishes androgenic responses in LNCaP human prostate cancer cells[J]. Mol Cancer Ther,2006,5 (6):1539-1549.
    [41]Pajonk F, van Ophoven A, McBride WH. Hyperthermia-induced proteasome inhibition and loss of androgen receptor expression in human prostate cancer cells[J]. Cancer Res,2005,65 (11):4836-4843.
    [42]Yang H, Murthy S, Sarkar FH, Sheng S, Reddy GP, Dou QP. Calpain-mediated androgen receptor breakdown in apoptotic prostate cancer cells[J]. J Cell Physiol, 2008,217 (3):569-576.
    [43]Libertini SJ, Tepper CG, Rodriguez V, Asmuth DM, Kung HJ, Mudryj M. Evidence for calpain-mediated androgen receptor cleavage as a mechanism for androgen independence [J]. Cancer Res,2007,67 (19):9001-9005.
    [44]Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C. From HER2/Neu signal cascade to androgen receptor and its coactivators:a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells[J]. Proc Natl Acad Sci U S A,1999,96 (10):5458-5463.
    [45]Wen Y, Hu MC, Makino K, Spohn B, Bartholomeusz G, Yan DH, Hung MC. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway[J]. Cancer Res,2000,60 (24):6841-6845.
    [46]Darne C, Veyssiere G, Jean C. Phorbol ester causes ligand-independent activation of the androgen receptor[J]. Eur J Biochem,1998,256 (3):541-549.
    [47]Nazareth LV, Weigel NL. Activation of the human androgen receptor through a protein kinase A signaling pathway[J]. J Biol Chem,1996,271 (33):19900-19907.
    [48]Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C, Claassen E, van Rooij HC, Trapman J, Brinkmann AO, Mulder E. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens[J]. Biochem Biophys Res Commun, 1990,173 (2):534-540.
    [49]Veldscholte J, Voorhorst-Ogink MM, Bolt-de Vries J, van Rooij HC, Trapman J, Mulder E. Unusual specificity of the androgen receptor in the human prostate tumor cell line LNCaP:high affinity for progestagenic and estrogenic steroids[J]. Biochim Biophys Acta,1990,1052 (1):187-194.
    [50]Culig Z, Hobisch A, Cronauer MV, Cato AC, Hittmair A, Radmayr C, Eberle J, Bartsch G, Klocker H. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone [J]. Mol Endocrinol,1993,7 (12):1541-1550.
    [1]Parkin DM. Global cancer statistics in the year 2000[J]. Lancet Oncol,2001,2 (9):533-543.
    [2]Parkin DM. International variation[J]. Oncogene,2004,23 (38):6329-6340.
    [3]Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1[J]. Science,1994,266 (5182):66-71.
    [4]Scully R, Livingston DM. In search of the tumour-suppressor functions of BRCA1 and BRCA2[J]. Nature,2000,408 (6811):429-432.
    [5]Deng CX, Brodie SG. Roles of BRCA1 and its interacting proteins[J]. Bioessays, 2000,22 (8):728-737.
    [6]Chen JJ, Silver D, Cantor S, Livingston DM, Scully R. BRCA1, BRCA2, and Rad51 operate in a common DNA damage response pathway[J]. Cancer Res,1999,59 (7 Suppl):1752s-1756s.
    [7]Martin AM, Weber BL. Genetic and hormonal risk factors in breast cancer[J]. J Natl Cancer Inst,2000,92 (14):1126-1135.
    [8]Andersen TI, Holm R, Nesland JM, Heimdal KR, Ottestad L, Borresen AL. Prognostic significance of TP53 alterations in breast carcinoma[J]. Br J Cancer, 1993,68 (3):540-548.
    [9]Thor AD, Liu S, Moore DH,2nd, Shi Q, Edgerton SM. p(21 WAF1/CIP1) expression in breast cancers:associations with p53 and outcome[J]. Breast Cancer Res Treat, 2000,61 (1):33-43.
    [10]Jares P, Rey MJ, Fernandez PL, Campo E, Nadal A, Munoz M, Mallofre C, Muntane J, Nayach I, Estape J, Cardesa A. Cyclin D1 and retinoblastoma gene expression in human breast carcinoma:correlation with tumour proliferation and oestrogen receptor status[J]. J Pathol,1997,182 (2):160-166.
    [11]Gosse-Brun S, Sauvaigo S, Daver A, Page M, Lortholary A, Larra F, Bignon YJ, Bernard-Gallon D. Specific H-Ras minisatellite alleles in breast cancer susceptibility[J].Anticancer Res,1999,19 (6B):5191-5196.
    [12]deFazio A, Chiew YE, Sini RL, Janes PW, Sutherland RL. Expression of c-erbB receptors, heregulin and oestrogen receptor in human breast cell lines[J]. Int J Cancer,2000,87 (4):487-498.
    [13]Goldenberg MM. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer [J]. Clin Ther,
    1999,21 (2):309-318.
    [14]White RA, Adkison LR, Dowler LL, Ray RB. Chromosomal localization of the human gene encoding c-myc promoter-binding protein (MPB1) to chromosome lp35-pter[J]. Genomics,1997,39 (3):406-408.
    [15]Hanby AM, Kelsell DP, Potts HW, Gillett CE, Bishop DT, Spurr NK, Barnes DM. Association between loss of heterozygosity of BRCA1 and BRCA2 and morphological attributes of sporadic breast cancer[J]. Int J Cancer,2000,88 (2):204-208.
    [16]Hari KL, Santerre A, Sekelsky JJ, McKim KS, Boyd JB, Hawley RS. The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene[J]. Cell,1995,82 (5):815-821.
    [17]Bonthron DT, Hayward BE, Moran V, Strain L. Characterization of TH1 and CTSZ, two non-imprinted genes downstream of GNAS1 in chromosome 20q13[J]. Hum Genet,2000,107 (2):165-175.
    [18]Narita T, Yamaguchi Y, Yano K, Sugimoto S, Chanarat S, Wada T, Kim DK, Hasegawa J, Omori M, Inukai N, Endoh M, Yamada T, Handa H. Human transcription elongation factor NELF:identification of novel subunits and reconstitution of the functionally active complex[J]. Mol Cell Biol,2003,23 (6):1863-1873.
    [19]Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase Ⅱ elongation[J]. Cell,1999,97 (1):41-51.
    [20]Wu CH, Yamaguchi Y, Benjamin LR, Horvat-Gordon M, Washinsky J, Enerly E, Larsson J, Lambertsson A, Handa H, Gilmour D. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila[J]. Genes Dev,2003,17 (11):1402-1414.
    [21]Ye Q, Hu YF, Zhong H, Nye AC, Belmont AS, Li R. BRCA1-induced large-scale chromatin unfolding and allele-specific effects of cancer-predisposing mutations[J]. J Cell Biol,2001,155 (6):911-921.
    [22]Aiyar SE, Sun JL, Blair AL, Moskaluk CA, Lu YZ, Ye QN, Yamaguchi Y, Mukherjee A, Ren DM, Handa H, Li R. Attenuation of estrogen receptor alpha-mediated transcription through estrogen-stimulated recruitment of a negative elongation factor[J]. Genes Dev,2004,18 (17):2134-2146.
    [23]Yang Y, Zou W, Kong X, Wang H, Zong H, Jiang J, Wang Y, Hong Y, Chi Y, Xie J, Gu J. Trihydrophobin 1 attenuates androgen signal transduction through promoting androgen receptor degradation[J]. J Cell Biochem,109 (5):1013-1024.
    [24]Guan X, Liu J, Ding F, Gu J, Gu X. Expression and distribution of trihydrophobin 1 in postnatal developing mouse testis[J]. Mol Cell Biochem,2006,292 (1-2):179-187.
    [25]Yang Y, Zou W, Kong X, Wang H, Zong H, Jiang J, Wang Y, Hong Y, Chi Y, Xie J, Gu J. Trihydrophobin 1 attenuates androgen signal transduction through promoting androgen receptor degradation[J]. J Cell Biochem.
    [26]Yin XL, Chen S, Gu JX. Identification of TH1 as an interaction partner of A-Raf kinase[J]. Mol Cell Biochem,2002,231 (1-2):69-74.
    [27]Liu W, Shen X, Yang Y, Yin X, Xie J, Yan J, Jiang J, Wang H, Sun M, Zheng Y, Gu J. Trihydrophobin 1 is a new negative regulator of A-Raf kinase[J]. J Biol Chem,2004, 279(11):10167-10175.
    [28]Cheng C, Kong X, Wang H, Gan H, Hao Y, Zou W, Wu J, Chi Y, Yang J, Hong Y, Chen K, Gu J. Trihydrophobin 1 Interacts with PAK1 and Regulates ERK/MAPK Activation and Cell Migration[J]. J Biol Chem,2009,284 (13):8786-8796.
    [29]Guarino M. Epithelial-mesenchymal transition and tumour invasion[J]. Int J Biochem Cell Biol,2007,39 (12):2153-2160.
    [30]Lu J, Guo H, Treekitkarnmongkol W, Li P, Zhang J, Shi B, Ling C, Zhou X, Chen T, Chiao PJ, Feng X, Seewaldt VL, Muller WJ, Sahin A, Hung MC, Yu D.14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition[J]. Cancer Cell,2009, 16 (3):195-207.
    [31]Doehn U, Hauge C, Frank SR, Jensen CJ, Duda K, Nielsen JV, Cohen MS, Johansen JV, Winther BR, Lund LR, Winther O, Taunton J, Hansen SH, Frodin M. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells[J]. Mol Cell, 2009,35 (4):511-522.
    [32]Dow LE, Elsum IA, King CL, Kinross KM, Richardson HE, Humbert PO. Loss of human Scribble cooperates with H-Ras to promote cell invasion through deregulation of MAPK signalling[J]. Oncogene,2008,27 (46):5988-6001.
    [33]Motokura T, Arnold A. Cyclin D and oncogenesis[J]. Curr Opin Genet Dev,1993,3 (1):5-10.
    [34]Pines J. Cyclins:wheels within wheels[J]. Cell Growth Differ,1991,2 (6):305-310.
    [35]Niculescu AB,3rd, Chen X, Smeets M, Hengst L, Prives C, Reed SI. Effects of p21(Cipl/Waf1) at both the G1/S and the G2/M cell cycle transitions:pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication[J]. Mol Cell Biol,1998,18 (1):629-643.
    [36]Cai K, Dynlacht BD. Activity and nature of p21(WAF1) complexes during the cell cycle[J]. Proc Natl Acad Sci U S A,1998,95 (21):12254-12259.
    [37]Stein JP, Ginsberg DA, Grossfeld GD, Chatterjee SJ, Esrig D, Dickinson MG, Groshen S, Taylor CR, Jones PA, Skinner DG, Cote RJ. Effect of p21WAF1/CIP1 expression on tumor progression in bladder cancer[J]. J Natl Cancer Inst,1998,90 (14):1072-1079.
    [38]Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A, Olson EN, Harper JW, Elledge SJ. p53-independent expression of p21Cipl in muscle and other terminally differentiating cells[J]. Science,1995,267 (5200):1024-1027.
    [39]Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cipl[J]. Mol Cell Biol,1997,17 (9):5598-5611.
    [40]Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway [J]. Proc Natl Acad Sci U S A,1999,96 (10):5522-5527.
    [41]Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites[J]. Nat Rev Cancer,2002,2 (8):563-572.
    [42]Sells MA, Boyd JT, Chernoff J. p21-activated kinase 1 (Pakl) regulates cell motility in mammalian fibroblasts[J]. J Cell Biol,1999,145 (4):837-849.
    [43]Wu WS, Wu JR, Hu CT. Signal cross talks for sustained MAPK activation and cell migration:the potential role of reactive oxygen species [J]. Cancer Metastasis Rev, 2008,27(2):303-314.
    [44]Vial E, Sahai E, Marshall CJ. ERK-MAPK signaling coordinately regulates activity of Racl and RhoA for tumor cell motility[J]. Cancer Cell,2003,4 (1):67-79.
    [45]Hunger-Glaser I, Salazar EP, Sinnett-Smith J, Rozengurt E. Bombesin, lysophosphatidic acid, and epidermal growth factor rapidly stimulate focal adhesion kinase phosphorylation at Ser-910:requirement for ERK activation[J]. J Biol Chem, 2003,278 (25):22631-22643.
    [46]Gumireddy K, Sun F, Klein-Szanto AJ, Gibbins JM, Gimotty PA, Saunders AJ, Schultz PG, Huang Q. In vivo selection for metastasis promoting genes in the mouse[J]. Proc Natl Acad Sci U S A,2007,104 (16):6696-6701.
    [47]Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression[J]. Curr Opin Cell Biol,2005,17 (5):548-558.
    [48]Beavon IR. The E-cadherin-catenin complex in tumour metastasis:structure, function and regulation[J]. Eur J Cancer,2000,36 (13 Spec No):1607-1620.
    [49]Lopez D, Niu G, Huber P, Carter WB. Tumor-induced upregulation of Twist, Snail, and Slug represses the activity of the human VE-cadherin promoter [J]. Arch Biochem Biophys,2009,482 (1-2):77-82.
    [50]Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells:involvement of type I receptors[J]. J Cell Biol,1994,127 (6 Pt 2):2021-2036.
    [51]Thiery JP. Epithelial-mesenchymal transitions in tumour progression[J]. Nat Rev Cancer,2002,2 (6):442-454.
    [1]Parkin DM. Global cancer statistics in the year 2000[J]. Lancet Oncol,2001,2 (9):533-543.
    [2]Parkin DM. International variation[J]. Oncogene,2004,23 (38):6329-6340.
    [3]Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells[J]. J Cell Biol,1982,95 (1):333-339.
    [4]Thiery JP. Epithelial-mesenchymal transitions in development and pathologies[J]. Curr Opin Cell Biol,2003,15 (6):740-746.
    [5]Chambers AF. The metastatic process:basic research and clinical implications [J]. Oncol Res,1999,11 (4):161-168.
    [6]Zetter BR. Angiogenesis and tumor metastasis[J]. Annu Rev Med,1998, 49:407-424.
    [7]Price JT, Bonovich MT, Kohn EC. The biochemistry of cancer dissemination[J]. Crit Rev Biochem Mol Biol,1997,32 (3):175-253.
    [8]Ruoslahti E. How cancer spreads[J]. Sci Am,1996,275 (3):72-77.
    [9]Welch DR. Technical considerations for studying cancer metastasis in vivo[J]. Clin Exp Metastasis,1997,15 (3):272-306.
    [10]Boyd D. Invasion and metastasis[J]. Cancer Metastasis Rev,1996,15(1):77-89.
    [11]Crissman JD, Hatfield JS, Menter DG, Sloane B, Honn KV. Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix[J]. Cancer Res,1988,48 (14):4065-4072.
    [12]Fidler IJ. The pathogenesis of cancer metastasis:the'seed and soil' hypothesis revisited[J]. Nat Rev Cancer,2003,3 (6):453-458.
    [13]Radinsky R. Modulation of tumor cell gene expression and phenotype by the organ-specific metastatic environment [J]. Cancer Metastasis Rev,1995,14 (4):323-338.
    [14]Nicolson GL. Cancer progression and growth:relationship of paracrine and autocrine growth mechanisms to organ preference of metastasis [J]. Exp Cell Res, 1993,204 (2):171-180.
    [15]Zetter BR. The cellular basis of site-specific tumor metastasis[J]. N Engl J Med, 1990,322 (9):605-612.
    [16]Nicolson GL. Paracrine and autocrine growth mechanisms in tumor metastasis to specific sites with particular emphasis on brain and lung metastasis[J]. Cancer Metastasis Rev,1993,12 (3-4):325-343.
    [17]Nicolson GL. Cancer metastasis:tumor cell and host organ properties important in metastasis to specific secondary sites[J]. Biochim Biophys Acta,1988,948 (2):175-224.
    [18]Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A. Involvement of chemokine receptors in breast cancer metastasis[J]. Nature,2001, 410(6824):50-56.
    [19]Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J. A multigenic program mediating breast cancer metastasis to bone[J]. Cancer Cell,2003,3 (6):537-549.
    [20]Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massague J. Genes that mediate breast cancer metastasis to lung[J]. Nature,2005,436 (7050):518-524.
    [21]Fidler IJ, Radinsky R. Genetic control of cancer metastasis [J]. J Natl Cancer Inst, 1990,82(3):166-168.
    [22]Goldberg SF, Harms JF, Quon K, Welch DR. Metastasis-suppressed C8161 melanoma cells arrest in lung but fail to proliferate [J]. Clin Exp Metastasis,1999,17 (7):601-607.
    [23]Chekmareva MA, Kadkhodaian MM, Hollowell CM, Kim H, Yoshida BA, Luu HH, Stadler WM, Rinker-Schaeffer CW. Chromosome 17-mediated dormancy of AT6.1 prostate cancer micrometastases[J]. Cancer Res,1998,58 (21):4963-4969.
    [24]Weinstat-Saslow D, Steeg PS. Angiogenesis and colonization in the tumor metastatic process:basic and applied advances[J]. FASEB J,1994,8 (6):401-407.
    [25]Freije JM, MacDonald NJ, Steeg PS. Differential gene expression in tumor metastasis:Nm23[J]. Curr Top Microbiol Immunol,1996,213 (Pt 2):215-232.
    [26]Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene[J]. J Natl Cancer Inst,1996,88 (23):1731-1737.
    [27]Zheng HC, Yu AM, Xin Y. Aberrant expression of Kiss-1 and matrix metalloproteinase-9 are closely linked to lymph node metastasis of gastric cancer[J]. Chin Med Sci J,2008,23 (1):63-64.
    [28]Liu FS, Dong JT, Chen JT, Hsieh YT, Ho ES, Hung MJ, Lu CH, Chiou LC. KAI1 metastasis suppressor protein is down-regulated during the progression of human endometrial cancer[J]. Clin Cancer Res,2003,9 (4):1393-1398.
    [29]Kageyama H, Nishiwaki T, Nakajima M, Iwasaki H, Oyama T, Kondo T. Cyanobacterial circadian pacemaker:Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro[J]. Mol Cell,2006,23 (2):161-171.
    [30]Castellino RA. Computer aided detection (CAD):an overview[J]. Cancer Imaging, 2005,5 (1):17-19.
    [31]Feig SA. Breast cancer screening:potential role of computer-aided detection (CAD)[J]. Technol Cancer Res Treat,2002,1 (2):127-131.
    [32]Hedley BD, Vaidya KS, Phadke P, MacKenzie L, Dales DW, Postenka CO, MacDonald IC, Chambers AF. BRMS1 suppresses breast cancer metastasis in multiple experimental models of metastasis by reducing solitary cell survival and inhibiting growth initiation [J]. Clin Exp Metastasis,2008,25 (7):727-740.
    [33]Cazillis M, Bringuier AF, Delautier D, Buisine M, Bernuau D, Gespach C, Groyer A. Disruption of MKK4 signaling reveals its tumor-suppressor role in embryonic stem cells[J]. Oncogene,2004,23 (27):4735-4744.
    [34]Freije JM, MacDonald NJ, Steeg PS. Nm23 and tumour metastasis:basic and translational advances[J]. Biochem Soc Symp,1998,63:261-271.
    [35]Russell RL, Geisinger KR, Mehta RR, White WL, Shelton B, Kute TE. nm23--relationship to the metastatic potential of breast carcinoma cell lines, primary human xenografts, and lymph node negative breast carcinoma patients [J]. Cancer, 1997,79(6):1158-1165.
    [36]Leone A, Flatow U, VanHoutte K, Steeg PS. Transfection of human nm23-H1 into the human MDA-MB-435 breast carcinoma cell line:effects on tumor metastatic potential, colonization and enzymatic activity[J]. Oncogene,1993,8 (9):2325-2333.
    [37]Postel EH. NM23-NDP kinase[J]. Int J Biochem Cell Biol,1998,30 (12):1291-1295.
    [38]MacDonald NJ, De la Rosa A, Benedict MA, Freije JM, Krutsch H, Steeg PS. A serine phosphorylation of Nm23, and not its nucleoside diphosphate kinase activity, correlates with suppression of tumor metastatic potential[J]. J Biol Chem,1993,268 (34):25780-25789.
    [39]Wagner PD, Vu ND. Histidine to aspartate phosphotransferase activity of nm23 proteins:phosphorylation of aldolase C on Asp-319[J]. Biochem J,2000,346 Pt 3:623-630.
    [40]Freije JM, Blay P, MacDonald NJ, Manrow RE, Steeg PS. Site-directed mutation of Nm23-H1. Mutations lacking motility suppressive capacity upon transfection are deficient in histidine-dependent protein phosphotransferase pathways in vitro [J]. J Biol Chem,1997,272 (9):5525-5532.
    [41]Postel EH, Berberich SJ, Flint SJ, Ferrone CA. Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis[J]. Science,1993,261 (5120):478-480.
    [42]Engel M, Theisinger B, Seib T, Seitz G, Huwer H, Zang KD, Welter C, Dooley S. High levels of nm23-H1 and nm23-H2 messenger RNA in human squamous-cell lung carcinoma are associated with poor differentiation and advanced tumor stages[J]. Int J Cancer,1993,55 (3):375-379.
    [43]Marone M, Scambia G, Ferrandina G, Giannitelli C, Benedetti-Panici P, Iacovella S, Leone A, Mancuso S. Nm23 expression in endometrial and cervical cancer:inverse correlation with lymph node involvement and myometrial invasion[J]. Br J Cancer, 1996,74 (7):1063-1068.
    [44]Arai T, Watanabe M, Onodera M, Yamashita T, Masunaga A, Itoyama S, Itoh K, Sugawara I. Reduced nm 23-H1 messenger RNA expression in metastatic lymph nodes from patients with papillary carcinoma of the thyroid[J]. Am J Pathol,1993, 142(6):1938-1944.
    [45]Baba H, Urano T, Okada K, Furukawa K, Nakayama E, Tanaka H, Iwasaki K, Shiku H. Two isotypes of murine nm23/nucleoside diphosphate kinase, nm23-M1 and nm23-M2, are involved in metastatic suppression of a murine melanoma line[J]. Cancer Res,1995,55 (9):1977-1981.
    [46]Yamaguchi A, Urano T, Goi T, Takeuchi K, Niimoto S, Nakagawara G, Furukawa K, Shiku H. Expression of human nm23-Hl and nm23-H2 proteins in hepatocellular carcinoma[J]. Cancer,1994,73 (9):2280-2284.
    [47]Miele ME, Robertson G, Lee JH, Coleman A, McGary CT, Fisher PB, Lugo TG, Welch DR. Metastasis suppressed, but tumorigenicity and local invasiveness unaffected, in the human melanoma cell line MelJuSo after introduction of human chromosomes 1 or 6[J]. Mol Carcinog,1996,15 (4):284-299.
    [48]Welch DR, Chen P, Miele ME, McGary CT, Bower JM, Stanbridge EJ, Weissman BE. Microcell-mediated transfer of chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenicity[J]. Oncogene,1994,9 (1):255-262.
    [49]West A, Vojta PJ, Welch DR, Weissman BE. Chromosome localization and genomic structure of the KiSS-1 metastasis suppressor gene (KISS1)[J]. Genomics,1998,54 (1):145-148.
    [50]Lee JH, Welch DR. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1[J]. Cancer Res,1997,57 (12):2384-2387.
    [51]Yan C, Wang H, Boyd DD. KiSS-1 represses 92-kDa type IV collagenase expression by down-regulating NF-kappa B binding to the promoter as a consequence of Ikappa Balpha-induced block of p65/p50 nuclear translocation[J]. J Biol Chem,2001,276 (2):1164-1172.
    [52]Dong JT, Isaacs WB, Barrett JC, Isaacs JT. Genomic organization of the human KAI1 metastasis-suppressor gene[J]. Genomics,1997,41 (1):25-32.
    [53]Kawana Y, Komiya A, Ueda T, Nihei N, Kuramochi H, Suzuki H, Yatani R, Imai T, Dong JT, Yoshie O, Barrett JC, Isaacs JT, Shimazaki J, Ito H, Ichikawa T. Location of KAI1 on the short arm of human chromosome 11 and frequency of allelic loss in advanced human prostate cancer[J]. Prostate,1997,32 (3):205-213.
    [54]Yang X, Welch DR, Phillips KK, Weissman BE, Wei LL. KAI1, a putative marker for metastatic potential in human breast cancer[J]. Cancer Lett,1997,119 (2):149-155.
    [55]Takaoka A, Hinoda Y, Sato S, Itoh F, Adachi M, Hareyama M, Imai K. Reduced invasive and metastatic potentials of KAI1-transfected melanoma cells[J]. Jpn J Cancer Res,1998,89 (4):397-404.
    [56]Takaoka A, Hinoda Y, Satoh S, Adachi Y, Itoh F, Adachi M, Imai K. Suppression of invasive properties of colon cancer cells by a metastasis suppressor KAI1 gene[J]. Oncogene,1998,16 (11):1443-1453.
    [57]Mareel M, Boterberg T, Noe V, Van Hoorde L, Vermeulen S, Bruyneel E, Bracke M. E-cadherin/catenin/cytoskeleton complex:a regulator of cancer invasion[J]. J Cell Physiol,1997,173 (2):271-274.
    [58]Vermeulen SJ, Bruyneel EA, Bracke ME, De Bruyne GK, Vennekens KM, Vleminckx KL, Berx GJ, van Roy FM, Mareel MM. Transition from the noninvasive to the invasive phenotype and loss of alpha-catenin in human colon cancer cells[J]. Cancer Res,1995,55 (20):4722-4728.
    [59]Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells[J]. J Cell Biol,1991,113 (1):173-185.
    [60]Mbalaviele G, Dunstan CR, Sasaki A, Williams PJ, Mundy GR, Yoneda T. E-cadherin expression in human breast cancer cells suppresses the development of osteolytic bone metastases in an experimental metastasis model [J]. Cancer Res, 1996,56(17):4063-4070.
    [61]Oka H, Shiozaki H, Kobayashi K, Inoue M, Tahara H, Kobayashi T, Takatsuka Y, Matsuyoshi N, Hirano S, Takeichi M, et al. Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis[J]. Cancer Res,1993,53 (7):1696-1701.
    [62]Bracke ME, Charlier C, Bruyneel EA, Labit C, Mareel MM, Castronovo V. Tamoxifen restores the E-cadherin function in human breast cancer MCF-7/6 cells and suppresses their invasive phenotype[J]. Cancer Res,1994,54 (17):4607-4609.
    [63]Gavert N, Ben-Ze'ev A.Epithelial-mesenchymal transition and the invasive potential of tumors[J].Trends Mol Med,2008,14(5):199-209.
    [64]Lee MY, Chou CY, Tang MJ, Shen MR. Epithelial-mesenchymal transition in cervical cancer:correlation with tumor progression, epidermal growth factor receptor overexpression, and snail up-regulation[J]. Clin Cancer Res,2008,14 (15):4743-4750.
    [65]Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A. Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition[J].J Cell Biol,2006,174 (2):175-183.
    [66]Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA[J]. Mol Cell Biol, 2008,28 (22):6773-6784.
    [67]Liu X. Inflammatory cytokines augments TGF-betal-induced epithelial-mesenchymal transition in A549 cells by up-regulating TbetaR-I[J]. Cell Motil Cytoskeleton,2008,65 (12):935-944.
    [68]Roberts AB, Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis[J]. Proc Natl Acad Sci U S A,2003,100 (15):8621-8623.
    [69]Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, Liu T, Simons JW, O'Regan RM. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells[J]. Cancer Res,2008,68 (7):2479-2488.
    [70]Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis[J]. Cell,2004,117 (7):927-939.
    [71]Kang Y, Massague J. Epithelial-mesenchymal transitions:twist in development and metastasis[J]. Cell,2004,118 (3):277-279.
    [72]Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells:potential involvement of ZEB-1 and ZEB-2[J]. Oncogene,2007,26 (5):711-724.
    [73]Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P, Sommergruber W, Schweifer N, Wernitznig A, Beug H, Foisner R, Eger A. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity[J]. Oncogene,2007,26 (49):6979-6988.
    [74]del Barrio MG, Nieto MA. Overexpression of Snail family members highlights their ability to promote chick neural crest formation[J]. Development,2002,129 (7):1583-1593.
    [75]Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-lOb in breast cancer[J]. Nature,2007,449 (7163):682-688.
    [76]Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J]. Nat Cell Biol,2008,10 (5):593-601.
    [77]Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells[J]. EMBO Rep,2008,9 (6):582-589.
    [78]Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2[J]. J Biol Chem,2008,283 (22):14910-14914.
    [79]Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2[J]. Genes Dev,2008,22 (7):894-907.
    [80]Li Y, VandenBoom TG,2nd, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells[J]. Cancer Res,2009,69 (16):6704-6712.
    [81]Zavadil J, Narasimhan M, Blumenberg M, Schneider RJ. Transforming growth factor-beta and microRNA:mRNA regulatory networks in epithelial plasticity [J]. Cells Tissues Organs,2007,185 (1-3):157-161.
    [82]Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1)[J]. J Biol Chem,2007,282 (19):14328-14336.
    [83]Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer[J]. Oncogene,2008,27 (15):2128-2136.
    [84]Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA. Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma:implications for tumorigenesis[J]. Cancer Res,2000,60 (9):2562-2566.
    [85]Thiery JP. Epithelial-mesenchymal transitions in tumour progression[J]. Nat Rev Cancer,2002,2 (6):442-454.
    [86]Gotzmann J, Mikula M, Eger A, Schulte-Hermann R, Foisner R, Beug H, Mikulits W. Molecular aspects of epithelial cell plasticity:implications for local tumor invasion and metastasis[J]. Mutat Res,2004,566 (1):9-20.
    [87]Savagner P. Leaving the neighborhood:molecular mechanisms involved during epithelial-mesenchymal transition [J]. Bioessays,2001,23 (10):912-923.
    [88]Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell,2008,133 (4):704-715.
    [89]Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH, Chen DT, Tai LK, Yung MC, Chang SC, Ku HH, Chiou SH, Lo WL. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer[J]. Biochem Biophys Res Commun,2009,385 (3):307-313.
    [90]Eastham AM, Spencer H, Soncin F, Ritson S, Merry CL, Stern PL, Ward CM. Epithelial-mesenchymal transition events during human embryonic stem cell differentiation[J]. Cancer Res,2007,67 (23):11254-11262.
    [91]Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A, Kirchner T. Invasion and metastasis in colorectal cancer:epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin[J]. Cells Tissues Organs,2005,179 (1-2):56-65.
    [92]Brabletz T, Jung A, Kirchner T. Beta-catenin and the morphogenesis of colorectal cancer[J]. Virchows Arch,2002,441 (1):1-11.
    [93]Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment[J]. Proc Natl Acad Sci U S A,2001, 98(18):10356-10361.
    [94]Stoker M, Gherardi E, Perryman M, Gray J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility[J]. Nature,1987,327 (6119):239-242.
    [95]Condeelis J, Segall JE. Intravital imaging of cell movement in tumours[J]. Nat Rev Cancer,2003,3 (12):921-930.
    [96]Nawshad A, Lagamba D, Polad A, Hay ED. Transforming growth factor-beta signaling during epithelial-mesenchymal transformation:implications for embryogenesis and tumor metastasis [J]. Cells Tissues Organs,2005,179 (1-2):11-23.
    [97]De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F, Berx G. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program[J]. Cancer Res,2005,65 (14):6237-6244.
    [98]Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition [J]. Mol Biol Cell,2005,16 (4):1987-2002.
    [99]Fogel M, Gutwein P, Mechtersheimer S, Riedle S, Stoeck A, Smirnov A, Edler L, Ben-Arie A, Huszar M, Altevogt P. L1 expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas [J]. Lancet,2003,362
    (9387):869-875.
    [100]Olmeda D, Jorda M, Peinado H, Fabra A, Cano A. Snail silencing effectively suppresses tumour growth and invasiveness[J]. Oncogene,2007,26 (13):1862-1874.
    [101]Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with'antagomirs'[J]. Nature,2005,438 (7068):685-689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700