水稻抗虫相关基因OsERF3及OsACS2的功能解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物诱导抗虫反应产生的分子机理一直是植物分子生物学领域的研究热点之一。植食性昆虫为害能够引起植物体内大量基因转录水平的变化,暗示转录因子在其中发挥了重要作用;此外,大量研究表明乙烯信号途径参与调控植物的诱导抗虫反应。为此,本文以水稻ERF (ethylene responsive factor)转录因子OsERF3及乙烯合成相关的ACC合酶(1-amino-cyclopropane-1-carboxylic acid synthase, ACS)基因OsACS2为研究对象,对其在水稻诱导抗虫反应中的作用及调控机理进行了详细研究,主要结果如下:
     1) OsERF3定位于细胞核,机械损伤、二化螟(Chilo suppressalis, rice striped stem borer, SSB)及稻纵卷叶螟(Cnaphalocrocis medinalis, rice leaf folder, LF)为害能够迅速诱导OsERF3基因表达,而褐飞虱(Nilaparvata lugens, rice brown planthopper, BPH)为害不诱导其表达,甚至有一定的抑制作用。利用农杆菌转化法,我们分别获得了OsERF3反义抑制及过量表达的水稻突变体植株。研究表明,OsERF3正调控2个MAPK基因OsMEK3, OsMPK3及2个WRKY转录因子OsWRKY53、OsWRKY70表达,并且正调控信号分子JA (jasmonic acid)、SA (salicylic acid)、乙烯的合成及胰蛋白酶抑制剂(trypsin protease inhibitors, TrypPIs)的产生。OsERF3正调控水稻对SSB的抗性,与野生型(wide type, WT)相比,取食反义品系后SSB幼虫生长加快,而过量品系则不利于SSB生长;SSB取食反义品系后植株提前死亡,过量品系则提高对SSB的耐害性。另一方面,OsERF3负调控水稻对BPH的抗性,反义品系降低了BPH雌成虫的取食、产卵选择性及初孵若虫存活率,过量品系则与之相反;进一步研究发现,OsERF3主要通过影响JA及H202合成分别调控水稻对SSB和BPH的抗性。综上所述,OsERF3是水稻诱导抗虫反应中的一个早期应答基因,位于信号途径的上游,在水稻防御不同取食习性昆虫为害中发挥了关键作用。
     2)机械损伤、SSB、LF及BPH为害能够迅速诱导OsACS2表达。反义抑制OsACS2表达减少SSB为害诱导的乙烯释放量、TrypPIs和挥发物含量,降低水稻对SSB的抗性;外源ACC (1-amino-cyclopropane-l-carboxylic acid)处理可以恢复水稻TrypPIs的合成及其对SSB的抗性。与此相反,反义抑制OsACS2降低BPH的取食和产卵选择性,而外源ACC处理后则可以恢复BPH对突变体的选择性。上述结果表明,OsACS2通过调控虫害诱导的乙烯合成影响水稻的直接防御和间接防御,从而对不同取食习性的昆虫产生不同的影响。
Characterizing the mechanisms underlying herbivore-induced plant defense responses has always been one of hotspots in plant moleculer biology. Herbivore attack rapidly activates large-scale and specific transcriptional changes in plants, suggesting important roles of transcription factors in plant-herbivore interaction. Moreover, many studies have confirmed that ethylene signaling is important for manipulating herbivore-induced plant defense responses. Thus, we here chose a rice ERF (ethylene responsive factor) transcription factor gene OsERF3 and an ethylene biosynthesis-related ACS (1-amino-cyclopropane-l-carboxylic acid synthase) gene OsACS2 and characterized their biological functions in regulating herbivore-induced defense responses. The results are as follows:
     1) OsERF3 localizes nucleus, whose transcripts were rapidly up-regulated in response to mechanical wounding and feeding by the rice striped stem borer (SSB) Chilo suppressalis or rice leaf folder (LF) Cnaphalocrocis medinalis, but slightly suppressed by the rice brown planthopper (BPH) Nilaparvata lugens. Using Agrobacterium tumefaciens-mediated transformation, we generated OsERF3 antisense (as-erf) and over-expression (oe-ERF) transgenic rice plants. OsERF3 positively regulates transcript levels of two mitogen-activated protein kinases (MAPKs) genes, OsMEK3 and OsMPK3, two WRKY genes, OsWRKY53 and OsWRKY70, as well as concentrations of jasmonate (JA), salicylate (SA) and ethylene, and activity of trypsin protease inhibitors (TrypPIs). OsERF3 is also found to mediate rice resistance to SSB. SSB larval weight gain that fed on as-erflines was higher than those fed on WT plants; by contrast, overexpressing OsERF3 decreaced SSB larval growth. Moreover, as-erflines were more severely damaged by SSB than WT plants, whereas oe-ERF lines were less damaged. On the other hand, OsERF3 negatively mediate rice resistance to BPH: as-erf lines decreased feeding and oviposition preference of BPH female adults, and survival rates of BPH nymphae, whereas oe-ERF lines received more BPH female adults, eggs and caused higher survival rates of BPH nymphs. Our results also revealed that OsERF3 regulates rice resistance to SSB and BPH by influencing JA and H2O2 signaling pathways, respectavily. In summary, OsERF3 is an early responsive gene in herbivore-induced defense responses in rice, which can regulate herbivore-induced defense responses and plant resistance by modulating MAPK cascades, and JA, SA, ethylene and H2O2 pathways. Our results also illustrate that OsERF3 acts as a central switch that gears the plant's metabolism towards an appropriate response to chewing or piercing/sucking insects.
     2) Transcript levels of OsACS2 were rapidly up-regulated in response to mechanical wounding and feeding by SSB, LF or BPH. OsACS2-silenced lines (as-acs) reduced SSB induced ethylene biosnythesis, TrypPI activity and volatile compounds, and decreased rice resistance to SSB. Exogenous application of ACC on as-acs lines can restore elicited TrypPI activity and plant resistance to SSB. By contrast, silencing OsACS2 decreased-the feeding and oviposition preference of BPH female adults, and ACC application can restore the preference. These results suggest that OsACS2 is involved in herbivore induced ethylene biosynthesis, and ethylene signaling plays an important role in rice resistance against chewing- and sucking-herbivores by modulating direct and indirect defenses.
引文
Alonso, J.M., and Stepanova, A.N. (2004). The ethylene signaling pathway. Science 306,1513-1515.
    Andriankaja, A., Boisson-Demier, A., Frances, L., Sauviac, L., Jauneau, A., Barker, D.G., and de Carvalho-Niebel, F. (2007). AP2-ERF transcription factors mediate nod factor-dependent mt ENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell 19,2866-2885.
    Argandofia, V.H., Chaman, M., Cardemil, L., Mufioz, O., Zufiiga, G.E., and Corcuera, L.J. (2001). Ethylene production and peroxidase activity in aphid-infested barley. Journal of Chemical Ecology 27,53-68.
    Argueso, C.T., Hansen, M., and Kieber, J.J. (2007). Regulation of ethylene biosynthesis. Journal of Plant Growth Regulation 26,92-105.
    Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., and Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415,977-983.
    Baldwin, I.T., Halitschke, R., Paschold, A., von Dahl, C.C., and Preston, C.A. (2006). Volatile signaling in plant-plant interactions:"Talking trees" in the genomics era. Science 311, 812-815.
    Bethke, G., Unthan, T., Unrig, J.F., Poschl, Y., Gust, AA., Scheel, D., and Lee, J. (2009). Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proceedings of the National Academy of Sciences of the United States of America 106,8067-8072.
    Bonaventure, G., Gfeller, A., Proebsting, W.M., Hortensteiner, S., Chetelat, A., Martinoia, E., and Farmer, E.E. (2007). A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. Plant Journal 49,889-898.
    Browse, J. (2009). Jasmonate Passes Muster: A Receptor and Targets for the Defense Hormone. Annual Review of Plant Biology 60,183-205.
    Bruce, T.J., and Pickett, J.A. (2007). Plant defence signalling induced by biotic attacks. Current Opinion in Plant Biology 10,387-392.
    Chakravarthy, S., Tuori, R.P., D'Ascenzo, M.D., Fobert, P.R., Despres, C., and Martin, G.B. (2003). The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15,3033-3050.
    Chen, L., Zhang, Z.Y., Liang, H.X., Liu, H.X., Du, L.P, Xu, H.J., and Xin, Z.Y. (2008). Overcxpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. Journal of Experimental Botany 59,4195-4204.
    Chen, Y.Y., Lin, Y.M., Chao, T.C., Wang, J.F., Liu, A.C., Ho, F.J., and Cheng, C.P. (2009). Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid-and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiologia Plantarum 136,324-335.
    Chico, J.M., Chini, A., Fonseca, S., and Solano, R. (2008). JAZ repressors set the rhythm in jasmonate signaling. Current Opinion in Plant Biology 11,486-494.
    Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado,G., Lopez-Vidriero, I., Lozano,F.M., Ponce, M.R., Micol, J.L., and Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666-673.
    Christians, M.J., Gingerich, DJ., Hansen, M., Binder, B.M., Kieber, J.J., and Vierstra, R.D. (2009). The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant Journal 57,332-345.
    Ciftci-Yilmaz, S., Morsy, M.R., Song, L.H., Coutu, A., Krizek, B.A., Lewis, M.W., Warren, D., Cushman, J., Connolly, E.L., and Mittler, R. (2007). The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. Journal of Biological Chemistry 282,9260-9268.
    Cipollini, D., Enright, S., Traw, M.B., and Bergelson, J. (2004). Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Molecular Ecology 13,1643-1653.
    De Vos, M., Van Oosten, V.R., Van Poecke, R.M.P., Van Pelt, J.A., Pozo, M.J., Mueller, M.J., Buchala, A.J., Metraux, J.P., Van Loon, L.C., Dicke, M., and Pieterse, C.M.J. (2005). Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions 18,923-937.
    Delker, C., Stenzel, I., Hause, B., Miersch, O., Feussner, L, and Wasternack, C. (2006). Jasmonate biosynthesis in Arabidopsis thaliana-Enzymes, products, regulation. Plant Biology 8,297-306.
    Diezel, C., von Dahl, C.C., Gaquerel, E., and Baldwin, I.T. (2009). Different Lepidopteran Elicitors Account for Cross-Talk in Herbivory-Induced Phytohormone Signaling. Plant Physiology 150,1576-1586.
    Dombrecht, B., Xue, G.P, Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., and Kazan, K. (2007). MYC2 differentially modulates diverse jasmonatc-dependent functions in Arabidopsis. Plant Cell 19,2225-2245.
    Farmer, E.E., and Ryan, CA. (1990). Interplant Communication-Airborne Methyl Jasmonate Induces Synthesis of Proteinase-Inhibitors in Plant-Leaves. Proceedings of the National Academy of Sciences of the United States of America 87,7713-7716.
    Fonseca, S., Chico, J.M., and Solano, R. (2009). The jasmonate pathway: the ligand, the receptor and the core signalling module. Current Opinion in Plant Biology 12,539-547.
    Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., and Ohme-Takagi, M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12,393-404.
    Fukao, T., and Bailey-Serres, J. (2008). Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proceedings of the National Academy of Sciences of the United States of America 105,16814-16819.
    Gu, Y.Q., Wildermuth, M.C., Chakravarthy, S., Loh, Y.T., Yang, C.M., He, X.H., Han, Y, and Martin, G.B. (2002). Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14,817-831.
    Gutterson, N., and Reuber, T.L. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology 7,465-471.
    Halitschke, R., Gase, K., Hui, D.Q., Schmidt, D.D., and Baldwin, I.T. (2003). Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. Ⅵ. Microarray analysis reveals that most herbivore-specific transcriptional changes are mediated by fatty acid-amino acid conjugates. Plant Physiology 131,1894-1902.
    Han, L., Li, G.J., Yang, K.Y, Mao, G.H., Wang, R.Q., Liu, YD., and Zhang, S.Q. (2010). Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant Journal 64,114-127.
    Harfouche, A.L., Shivaji, R., Stocker, R., Williams, P.W., and Luthe, D.S. (2006). Ethylene signaling mediates a maize defense response to insect herbivory. Molecular Plant-Microbe Interactions 19,189-199.
    He, P, Chintamanani, S., Chen, Z.Y., Zhu, L.H., Kunkel, B.N., Alfano, J.R., Tang, X.Y., and Zhou, J.M. (2004). Activation of a COIl-dependent pathway in Arabidopsis by Pseudomonas syringae type Ⅲ effectors and coronatine. Plant Journal 37,589-602.
    Horiuchi, J., Arimura, G., Ozawa, R., Shimoda, T., Takabayashi, J., and Nishioka, T. (2001). Exogenous ACC enhances volatiles production mediated by jasmonic acid in lima bean leaves. Febs Letters 509,332-336.
    Howe, GA., and Jander, G. (2008). Plant immunity to insect herbivores. Annual Review of Plant Biology 59,41-66.
    Hudgins, J.W., and Franceschi, V.R. (2004). Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiology 135,2134-2149.
    Ichimura, K., Casais, C., Peck, S.C., Shinozaki, K., and Shirasu, K. (2006). MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. Journal of Biological Chemistry 281,36969-36976.
    Iwai, T., Miyasaka, A., Seo, S., and Ohashi, Y. (2006). Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiology 142,1202-1215.
    Jofuku, K.D., Denboer, B.G.W., Vanmontagu, M., and Okamuro, J.K. (1994). Control of Arabidopsis Flower and Seed Development by the Homeotic Gene APETALA2. Plant Cell 6,1211-1225.
    Joo, S., Liu, Y, Lueth, A., and Zhang, S.Q. (2008). MAPK phosphorylation-induccd stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant Journal 54,129-140.
    Kahl, J., Siemens, D.H., Aerts, R.J., Gabler,R., Kuhnemann, F., Preston, C.A., and Baldwin, I.T. (2000). Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210,336-342.
    Kallenbach, M., Alagna, F, Baldwin, I.T., and Bonaventure, G. (2010). Nicotiana attenuata SIPK, WIPK, NPR1, and Fatty Acid-Amino Acid Conjugates Participate in the Induction of Jasmonic Acid Biosynthesis by Affecting Early Enzymatic Steps in the Pathway. Plant Physiology 152,1760-1760.
    Kandoth, P.K., Ranf, S, Pancholi, S.S., Jayanty, S., Walla, M.D., Miller, W., Howe, G.A., Lincoln, D.E., and Stratmann, J.W. (2007). Tomato MAPKs LeMPKl, LeMPK2, and LeMPK3 function in the systemi n-mediated defense response against herbivorous insects. Proceedings of the National Academy of Sciences of the United States of America 104,12205-12210.
    Kang, J.H., Wang, L., Giri, A., and Baldwin, I.T. (2006). Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manducasexta. Plant Cell 18,3303-3320.
    Karim, M.R., Hirota, A., Kwiatkowska, D., Tasaka, M., and Aida, M. (2009). A Role for Arabidopsis PUCHI in Floral Meristem Identity and Bract Suppression. Plant Cell 21, 1360-1372.
    Kaur, H., Heinzel, N., Schottner, M., Baldwin, I.T., and Galis, I. (2010). R2R3-NaMYB8 Regulates the Accumulation of Phenylpropanoid-Polyamine Conjugates, Which Are Essential for Local and Systemic Defense against Insect Herbivores in Nicotiana attenuata. Plant Physiology 152,1731-1747.
    Kessler, A., and Halitschke, R. (2007). Specificity and complexity: the impact of herbivore-induced plant responses on arthropod community structure. Current Opinion in Plant Biology 10,409-414.
    Kim, C.Y., and Zhang, S.Q. (2004). Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant Journal 38,142-151.
    Kim, C.Y., Liu, Y.D., Thorne, E.T., Yang, H.P., Fuknshige, H., Gassmann, W., Hildebrand, D., Sharp, R.E., and Zhang, S.Q. (2003). Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15,2707-2718.
    Licausi, F, van Dongen, J.T., Giuntoli, B., Novl, G., Santaniello, A., Geigenberger, P., and Perata, P. (2010). HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant Journal 62,302-315.
    Liu, Y.D., and Zhang, S.Q. (2004). Phosphorylation of 1-aminocyclopropane-l-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16,3386-3399.
    Loake, G., and Grant, M. (2007). Salicylic acid in plant defence-the players and protagonists. Current Opinion in Plant Biology 10,466-472.
    Lorenzo, O., Piqueras, R., Sanchez-Serrano, J.J., and Solano, R. (2003). ETHYLENE RESPONSE FACTOR 1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15,165-178.
    Lu, YJ., Wang, X., Lou, Y.G., and Cheng, J.A. (2006). Role of ethylene signaling in the production of rice volatiles induced by the rice brown planthopper Nilaparvata lugens. Chinese Science Bulletin 51,2457-2465.
    Ludwig, A.A., Saitoh, H., Felix, G., Freymark,G., Miersch, O., Wasternack, C., Boller, T., Jones, J.D.G., and Romeis, T. (2005). Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proceedings of the National Academy of Sciences of the United States of America 102, 10736-10741.
    Maffei, M.E., Mithofer, A., and Boland, W. (2007). Before gene expression: early events in plant-insect interaction. Trends in Plant Science 12,310-316.
    Mantelin, S., Bhattarai, K.K., and Kaloshian, I. (2009). Ethylene contributes to potato aphid susceptibility in a compatible tomato host. New Phytologist 183,444-456.
    McGrath, K.C., Dombrecht, B., Manners, J.M., Schenk, P.M., Edgar, C.I., Maclean, D.J., Scheible, W.R., Udvardi, M.K., and Kazan, K. (2005). Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiology 139,949-959.
    Meldau, S., Baldwin, I.T., and Wu, J.Q. (2011). SGT1 regulates wounding-and herbivory-induced jasmonic acid accumulation and Nicotiana attenuatds resistance to the specialist lepidopteran herbivore Manducasexta. New Phytologist 189,1143-1156.
    Mewis, I., Tokuhisa, J.G., Schultz, J.C., Appel, H.M., Ulrichs, C., and Gershenzon, J. (2006). Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 67,2450-2462.
    Middleton, P.H., Jakab, J., Penmetsa, R.V., Starker, C.G., Doll, J., Kalo, P, Prabhu, R., Marsh, J.F., Mitra, R.M., Kereszt, A., Dudas, B., VandenBosch, K., Long, S.R., Cook, D.R., Kiss, G.B., and Oldroyd, G.E.D. (2007). An ERF transcription factor in Medicago truncatula that is essential for nod factor signal transduction. Plant Cell 19,1221-1234.
    Nakagami, H., Soukupova, H., Schikora, A., Zarsky, V., and Hirt, H. (2006). A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. Journal of Biological Chemistry 281,38697-38704.
    Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology 140,411-432.
    Ning, J., Li, X.H., Hicks, L.M., and Xiong, L.Z. (2010). A Raf-Like MAPKKK Gene DSMJ Mediates Drought Resistance through Reactive Oxygen Species Scavenging in Rice. Plant Physiology 152,876-890.
    Onate-Sanchez, L., and Singh, K.B. (2002). Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiology 128,1313-1322.
    Onate-Sanchez, L., Anderson, J.P., Young, J., and Singh, K.B. (2007). AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiology 143,400-409.
    ODonnell, P.J.,Calvert, C., Atzorn, R., Wasternack, C., Leyser, H.M.O., and Bowles, D.J. (1996). Ethylene as a signal mediating the wound response of tomato plants. Science 274, 1914-1917.
    Ohme-takagi, M., and Shinshi, H. (1995). Ethylene-Inducible DNA-Binding Proteins That Interact with an Ethylene-Responsive Element. Plant Cell 7,173-182.
    Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., and Ohme-Takagi, M. (2001). Repression domains of class Ⅱ ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13,1959-1968.
    Onkokesung, N., Galls, L, von Dahl, C.C., Matsuoka, K., Saluz, H.P., and Baldwin, I.T. (2010). Jasmonic Acid and Ethylene Modulate Local Responses to Wounding and Simulated Herbivory in Nicotiana attenuata Leaves. Plant Physiology 153,785-798.
    Ozawa, R., Arimura, G., Takabayashi, J., Shimoda, T., and Nishioka, T. (2000). Involvement of jasmonate-and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant and Cell Physiology 41,391-398.
    Pandey, S.P, and Somssich, I.E. (2009). The Role of WRKY Transcription Factors in Plant Immunity. Plant Physiology 150,1648-1655.
    Pri, M., Atallah, M., Champion, A., De Vos, M., Pieterse, C.M.J., and Memelink, J. (2008). The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiology 147,1347-1357.
    Qiu, J.L., Fiil, B.K., Petersen, K., Nielsen, H.B., Botanga, C.J., Thorgrimsen, S., Palma, K., Suarez-Rodriguez, M.C., Sandbech-Clausen, S., Lichota, J., Brodersen, P., Grasser, K.D., Mattsson, O., Glazebrook, J., Mundy, J., and Petersen, M. (2008). Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. Embo Journal 27,2214-2221.
    Quan, R.D., Hu, S.J., Zhang, Z.L., Zhang, H.W., Zhang, Z.J., and Huang, R.F. (2010). Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnology Journal 8,476-488.
    Rayapuram, C., and Baldwin, I.T. (2007). Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature. Plant Journal 52,700-715.
    Sasaki, K., Mitsuhara, L, Seo, S., Ito, H., Matsui, H., and Ohashi, Y. (2007). Two novel AP2/ERF domain proteins interact with cis-element VWRE for wound-induced expression of the Tobacco tpoxN1 gene. Plant Journal 50,1079-1092.
    Schittko, U., Hermsmeier, D., and Baldwin, I.T. (2001). Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. Ⅱ. Accumulation of plant mRNAs in response to insect-derived cues. Plant Physiology 125,701-710.
    Schmelz, E.A., Alborn, H.T., Banchio, E., and Tumlinson, J.H. (2003). Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exiguaherbivory. Planta 216,665-673.
    Schweighofer, A., Kazanaviciute, V., Scheikl, E., Teige, M., Doczi, R., Hirt, H., Schwanninger, M., Kant, M., Schuurink, R., Mauch, F., Buchala, A., Cardinale, F., and Meskiene, I. (2007). The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell 19,2213-2224.
    Sebastia, C.H., Hardin, S.C., Clouse, S.D., Kieber, J.J., and Huber, S.C. (2004). Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Archives of Biochemistry and Biophysics 428,81-91.
    Seo, S., Katou, S., Seto, H., Gomi, K., and Ohashi, Y. (2007). The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants. Plant Journal 49,899-909.
    Shah, J. (2003). The salicylic acid loop in plant defense. Current Opinion in Plant Biology 6, 365-371.
    Skibbe, M., Qu, N., Galis, I., and Baldwin, I.T. (2008). Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20,1984-2000.
    Song, C.P., Agarwal, M., Ohta, M., Guo, Y., Halfter, U., Wang, P.C., and Zhu, J.K. (2005). Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17,2384-2396.
    Stork, W., Diezel, C., Halitschke, R., Galis, I., and Baldwin, I.T. (2009). An Ecological Analysis of the Herbivory-Elicited JA Burst and Its Metabolism:Plant Memory Processes and Predictions of the Moving Target Model. Plos One 4,-
    Sun, F., Liu, P.Q., Xu, J., and Dong, H.S. (2010). Mutation in RAP2.6L, a transactivator of the ERF transcription factor family, enhances Arabidopsis resistance to Pseudomonas syringae. Physiological and Molecular Plant Pathology 74,295-302.
    Takabatake, R., Seo, S., Ito, N., Gotoh, Y., Mitsuhara, I., and Ohashi, Y. (2006). Involvement of wound-induced receptor-like protein kinase in wound signal transduction in tobacco plants. Plant Journal 47,249-257.
    Taketa, S., Amano, S., Tsujino, Y, Sato, T., Saisho, D., Kakeda, K., Nomura, M., Suzuki, T., Matsumoto, T., Sato, K., Kanamori, H., Kawasaki, S., and Takeda, K. (2008). Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proceedings of the National Academy of Sciences of the United States of America 105,4062-4067.
    Tang, M.J., Sun, J.W., Liu, Y, Chen, F., and Shen, S.H. (2007). Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas. Plant Molecular Biology 63, 419-428.
    Thines, B., Katsir, L., Melotto, M., Niu, Y, Mandaokar, A., Liu, G.H., Nomura, K., He, S.Y., Howe, G.A., and Browse, J.(2007). JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448,661-U662.
    Tournier, B., Sanchez-Ballesta, M.T., Jones, B., Pesquet, E., Regad, F, Latch6, A., Pech, J.C., and Bouzayen, M. (2003). New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. Febs Letters 550,149-154.
    Trujillo, L.E., Sotolongo, M., Menendez, C., Ochogavia, M.E., Coll, Y., Hernandez, I., Borras-Hidalgo, O., Thomma, B.P.H.J., Vera, P, and Hernandez, L. (2008). SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant and Cell Physiology 49,512-525.
    Van Dam, N.M., Horn, M., Mares, M., and Baldwin, LT. (2001). Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata. Journal of Chemical Ecology 27,547-568.
    Van der Straeten, D., Zhou, Z.Y., Prinsen, E., Van Onckelen, H.A., and Van Montagu, M.C. (2001). A comparative molecular-physiological study of submergence response in lowland and deepwater rice. Plant Physiology 125,955-968.
    Vernie, T., Moreau, S., de Billy, F, Plet, J., Combier, J.P, Rogers, C., Oldroyd, G., Frugier, F, Niebel, A., and Gamas, P. (2008). EFD Is an ERF Transcription Factor Involved in the Control of Nodule Number and Differentiation in Medicago truncatula. Plant Cell 20, 2696-2713.
    von Dahl, C.C., and Baldwin, I.T. (2007). Deciphering the role of ethylene in plant-herbivore interactions. Journal of Plant Growth Regulation 26,201-209.
    von Dahl, C.C., Winz, R.A., Halitschke, R., Kuhnemann, F, Gase, K., and Baldwin, I.T. (2007). Tuning the herbivore-induced ethylene burst: the role of transcript accumulation and ethylene perception in Nicotiana attenuata. Plant Journal 51,293-307.
    Wang, K.L.C., Li, H., and Ecker, J.R. (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14, S131-S151.
    Wang, K.L.C., Yoshida, H., Lurin, C., and Ecker, J.R. (2004). Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428,945-950.
    Wang, L., Allmann, S., Wu, J.S., and Baldwin, LT. (2008a). Comparisons of LIPOXYGENASE3-and JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata. Plant Physiology 146,904-915.
    Wang, L., Halitschke, R., Kang, J.H., Berg, A., Harnisch, F, and Baldwin,I.T. (2007). Independently silencing two JAR family members impairs levels of trypsin proteinase inhibitors but not nicotine. Planta 226,159-167.
    Wang, N.N., Shih, M.C., and Li, N. (2005). The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACSS, and AtACS7 induced by hormones and stresses. Journal of Experimental Botany 56,909-920.
    Wang, X, Zhou, G.X., Xiang, C.Y., Du, M.H., Cheng, J.A., Liu, S.S., and Lou, Y.G. (2008b). β-Glucosidase treatment and infestation by the rice brown planthopper Nilaparvata lugens elicit similar signaling pathways in rice plants. Chinese Science Bulletin 53,53-57.
    Wu, J.Q., and Baldwin, I.T. (2010). New Insights into Plant Responses to the Attack from Insect Herbivores. Annual Review of Genetics, Vol 44 44,1-24.
    Wu, J.Q., Hettenhausen, C., Meldau, S., and Baldwin, I.T. (2007). Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19,1096-1122.
    Wu, L.J., Zhang, Z.J., Zhang, H.W., Wang, X.C., and Huang, R.F. (2008). Transcriptional Modulation of Ethylene Response Factor Protein JERF3 in the Oxidative Stress Response Enhances Tolerance of Tobacco Seedlings to Salt, Drought, and Freezing. Plant Physiology 148,1953-1963.
    Xu, J., Li, Y., Wang, Y., Liu, H.X., Lei, L., Yang, H.L., Liu, G.Q., and Ren, D.T. (2008a). Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. Journal of Biological Chemistry 283,26996-27006.
    Xu, S.L., Rahman, A., Baskin, T.L, and Kieber, J.J. (2008b). Two Leucine-Rich Repeat Receptor Kinases Mediate Signaling, Linking Cell Wall Biosynthesis and ACC Synthase in Arabidopsis. Plant Cell 20,3065-3079.
    Xu, Z.S., Chen, M., Li, L.C., and Ma, Y.Z. (2008c). Functions of the ERF transcription factor family in plants. Botany-Botanique 86,969-977.
    Xu, Z.S., Xia, L.Q., Chen, M., Cheng, X.G., Zhang, R.Y., Li, L.C., Zhao, Y.X., Lu, Y., Ni, Z.Y., Liu, L., Qiu, Z.G., and Ma, Y.Z. (2007). Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERFI) that increases multiple stress tolerance. Plant Molecular Biology 65,719-732.
    Yang, D.H., Hettenhausen, C., Baldwin, I.T., and Wu, J.Q. (2011). BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuatds responses to herbivory. Journal of Experimental Botany 62,641-652.
    Yoo, S.D., Cho, Y.H., Tena, G., Xiong, Y., and Sheen, J. (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451,789-U781.
    Yoshida, H., Nagata, M., Saito, K., Wang, K.L.C., and Ecker, J.R. (2005). Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. Bmc Plant Biology 5,1-13.
    Zarate, S.I., Kempema, LA., and Walling, L.L. (2007). Silverleaf whitefly induces salicylic acid Defenses and suppresses effectual jasmonic acid defenses. Plant Physiology 143, 866-875.
    Zarembinski, T.I., and Theologis, A. (1997). Expression characteristics of OS-ACS1 and OS-ACS2, two members of the 1-aminocyclopropane-l-carboxylate synthase gene family in rice(Oryza sativa L cv Habiganj Aman II) during partial submergence. Plant Molecular Biology 33,71-77.
    Zhang, G.Y., Chen, M., Li, L.C., Xu, Z.S., Chen, X.P, Guo, J.M., and Ma, Y.Z. (2009a). Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany 60,3781-3796.
    Zhang, H.B., Yang, Y.H., Zhang, Z.J., Chen, J., Wang, X.C., and Huang, R.F. (2008). Expression of the ethylene response factor gene TSRF1 enhances abscisic acid responses during seedling development in tobacco. Planta 228,777-787.
    Zhang, H.B., Zhang, D.B., Chen, J., Yang, Y.D., Huang, Z.J., Huang, D.F, Wang, X.C., and Huang, R.F. (2004). Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Molecular Biology 55,825-834.
    Zhang, H.B., Li, W.Z., Chen, J., Yang, Y.H., Zhang, Z.J., Zhang, H.W, Wang, X.C., and Huang, R.F. (2007a). Transcriptional activator TSRF1 reversely regulates pathogen resistance and osmotic stress tolerance in tobacco. Plant Molecular Biology 63,63-71.
    Zhang, Z.J., Zhang, H.W., Quan, R.D., Wang, X.C., and Huang, R.F. (2009b). Transcriptional Regulation of the Ethylene Response Factor LeERF2 in the Expression of Ethylene Biosynthesis Genes Controls Ethylene Production in Tomato and Tobacco. Plant Physiology 150,365-377.
    Zhang, Z.Y., Yao, W.L., Dong, N., Liang, H.X., Liu, HX., and Huang, R.F. (2007b). A novel ERF transcription activator in wheat and its induction kinetics after pathogen and hormone treatments. Journal of Experimental Botany 58,2993-3003.
    Zhou, G.X., Qi, J.F, Ren, N., Cheng, J.A., Erb, M., Mao, B.Z., and Lou, Y.G. (2009). Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant Journal 60,638-648.
    Zhou, J.X., Zhang, H.B., Yang, Y.H., Zhang, Z.J., Zhang, H.W., Hu, X.W., Chen, J., Wang, X.C., and Huang, R.F. (2008). Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco. Journal of Experimental Botany 59,645-652.
    Zhu, Q., Zhang, J.T., Gao, X.S., Tong, J.H., Xiao, L.T., Li, W.B., and Zhang, H.X. (2010). The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457,1-12.
    Zong, X.J., Li, D.P., Gu, L.K., Li, D.Q., Liu, L.X., and Hu, X.L. (2009). Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta 229,485-495.
    王霞(2006).不同取食习性害虫和β-葡萄糖苷酶对水稻体内重要防御相关信号分子含量的影响.浙江大学硕士学位论文.
    汪霞(2009).虫害诱导的水稻胰蛋白酶抑制剂合成的相关机理研究.浙江大学博士学位论文.
    闫锋(2009).水稻介导的害虫互作及相关水稻基因OsRLK突变体获得.内蒙古农业大学博士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700