猪皮肤来源前体细胞多能性的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经嵴细胞起源于背部神经管,然后迁移到不同的组织区域形成各种各样的细胞类型。神经嵴干细胞/前体细胞可以分离自胚胎发育期和成体期的不同组织:神经嵴外植体、坐骨神经、背根节、肠神经节、角膜、骨髓、触须垫、颈动脉体和心脏。皮肤来源前体细胞(skin-derived progenitors, SKP)来自于胚胎期神经嵴干细胞,并且存在于成体期。人、啮齿类和猪的SKP细胞具有多能性,能分化产生神经胚层和中胚层起源的子代细胞。但是,关于SKP多能性的分子机制尚不清楚。本研究首先从第40-50天猪胎儿皮肤组织分离表达绿色荧光蛋白(Enhanced green fluorescence protein, EGFP)的猪皮肤来源前体细胞,证明其多向分化潜能,同时鉴定出关于其多能性和神经嵴起源的多种分子标志。其次,通过高通量基因芯片技术比较了猪SKP细胞和神经干细胞(神经球)的转录表达谱,同时比较了猪SKP细胞和SKP来源的类成纤维细胞(SKP-derived fibroblast-like cells, SFC)的基因表达谱。最后,通过基因功能注解和KEGG通路分析,发现了几种相关的细胞内源调控机制和外源信号通路,它们对调控SKP细胞的多能性起重要作用。
     一SKP细胞的多能性和特异性标志分子的表达
     1本研究从第40~50天猪胎儿皮肤组织中分离了表达绿色荧光蛋白的SKP细胞,其在无血清和高浓度EGF和bFGF存在时可以形成悬浮的球形结构。
     2通过RT-PCR证实了猪SKP细胞共表达多能性相关基因(POU5F1、SOX2、NANOG和STAT3)和神经嵴标志分子(p75NTR、TWIST1、PAX3、SNAI2、SOX9和SOX10),这与胚胎神经嵴干细胞的表达谱类似,说明猪SKP细胞的神经嵴源性。
     3通过免疫荧光细胞化学染色发现猪SKP球中POU5F1、巢蛋白、纤连蛋白和波形蛋白阳性细胞的比例分别为12.3%、15.1%、67.9%和53.7%,这说明猪SKP球具有异质性。
     4通过体外诱导分化和免疫荧光细胞化学染色发现,猪SKP细胞分化培养物中存在表达微管蛋白β-III、神经丝蛋白M、GFAP、p75NTR和平滑肌肌动蛋白的阳性细胞。这说明猪SKP细胞可以分化产生神经(神经元和胶质细胞)和中胚层细胞类型(平滑肌细胞和脂肪细胞),证明其具有多向分化能力。
     5通过使用不同的培养体系和实时定量PCR检测,发现四种转录因子(POU5F1、SNAI2、SOX9和PAX3)的表达水平在生长因子(EGF和bFGF)和FBS存在时有显著性差异。POU5F1、SNAI2、SOX9和PAX3可能是维持SKP细胞体外多能性的关键因子。?二猪SKP细胞和神经干细胞的基因芯片分析
     1本研究从第40~50天猪胎儿大脑组织中分离了表达绿色荧光蛋白的神经干细胞/神经球(neurospheres),同时从同一个胎儿中分离了皮肤来源的前体细胞。它们在同一种培养液(DMEM/F12+B27+N2+EGF+bFGF)中可形成悬浮的球形结构。
     2通过体外诱导分化和免疫荧光细胞化学染色发现,猪神经干细胞可分化形成神经和胶质细胞后代,证明其具有多能性;而猪SKP在体外能分化成神经和中胚层来源的子代细胞。
     3通过RT-PCR对猪神经干细胞和SKP细胞分析发现,它们都表达NANOG、STAT3、TWIST1、p75NTR、巢蛋白、纤连蛋白和波形蛋白。但是,猪神经干细胞表达较高水平的SOX2,而且也表达GFAP。然而,SNAI2只在SKP球中表达。这说明神经干细胞和SKP球有类似的表达谱,但是有各自特异的转录状态。
     4通过高通量的基因芯片技术比较了猪SKP球和神经球的转录表达谱,发现SKP球高表达254个转录物,而神经干细胞有484个转录物高表达。进一步分析发现,SKP球和神经球共同高表达142个基因,他们分别涉及核糖体功能、紧密连接、间隙连接、细胞通讯、钙离子信号、ErbB信号、JAK-STAT信号以及MAPK信号等。
     5在1336个筛选出的转录物中,发现在SKP球和神经球中72个转录物的表达水平在统计学上有显著性差异(P<0.05)。这些差异表达的基因主要涉及生理过程、细胞过程、信号刺激反应、发育过程、生物过程的条件和行为。
     6功能注解聚类分析发现猪SKP球和神经球共同高表达基因主要涉及以下功能:RNA结合、蛋白质的生物合成以及核糖体等。对SKP球和神经球差异表达基因功能分析发现,胶原蛋白异构体和核心蛋白聚糖在细胞通讯、皮肤发育、信号转导以及胞外基质作用等方面发挥作用。
     7 KEGG通路分析发现,猪SKP球和神经球共表达基因涉及淀粉和蔗糖代谢、糖酵解、紧密连接、间隙连接、嘌呤代谢、谷氨酸盐代谢、细胞通讯、MAPK信号、钙离子信号、ErbB信号和JAK-STAT信号等通路;而它们差异表达基因主要涉及ECM受体和TGF-β信号通路。细胞通讯信号整合ECM-受体相互作用和TGF-β信号通路,可能对于维持猪SKP球和神经球特异的干细胞性质起重要作用。
     三猪SKP细胞中胚层潜能的基因芯片分析
     1猪SKP细胞在悬浮培养中形成球状结构,但是在血清作用下贴壁生长形成类成纤维细胞。通过体外诱导分化和免疫荧光细胞化学染色发现,在SKP细胞分化为SFC过程中,其神经分化能力逐渐丧失而仍保留中胚层分化能力。
     2通过RT-PCR比较猪SKP球和SFC标志基因的表达,发现它们都表达NANOG和STAT3,以及神经嵴细胞分子标志TWIST1、SNAI2和p75NTR。然而,SOX10只在SKP细胞中表达,可能与SKP的外周神经分化潜能有关。
     3通过对猪SKP和SFC细胞的转录表达谱分析发现在SKP分化为SFC细胞过程中共有401个基因的表达在统计学上有显著性差异(P<0.05),其中,305个基因表达上调和96个基因表达下调。
     4通过功能注解聚类分析发现,上调表达基因主要涉及结合功能、细胞过程以及代谢过程;下调表达基因比较重要的GO(gene ontology)功能是磷酸化蛋白和结合活性。
     5通过KEGG和BIOCARTA通路分析发现,下调表达基因主要涉及突触蛋白、Rac1细胞运动信号通路、Ran对有丝分裂纺锤体的调控、Dicer通路以及蛋白转运到核内等内源性机制;而上调表达基因参与了一些外源性信号通路,例如ErbB通路、MAPK通路、ECM-受体相互作用、Wnt信号、细胞通讯和TGF-β信号通路。这些内源性机制和外源性的信号通路共同调节SKP到SFC的基因转录状态改变。
     6为了验证基因芯片数据,本研究通过相对标准曲线法对14个差异表达基因进行实时定量qPCR分析。定量PCR使用在制作基因芯片时扩增的cDNA作为模板。实时定量qPCR数据与基因芯片数据的表达谱类似,证明了基因芯片数据的可靠性。
Neural crest is a group of cells that originate from the dorsal neural tube, and migrate along a number of routes to various tissues, where they stop moving and contribute to various local cell types. Neural crest/progenitor stem cells have been isolated from diverse tissues during embryonic development and adulthood: embryonic neural crest explant, sciatic nerve, dorsal root ganglion, skin, enteric ganglia, cornea, bone marrow, whisker pad, carotid body and heart. Skin-derived progenitors (SKPs) are considered as embryonic neural crest derived precursor cells that persist into adulthood. SKP cells have been demonstrated to be multipotent and can produce both neural and mesodermal progeny in human, rodent and pigs. However, the molecular mechanism of the multipotency of SKPs is still illusive. Here we isolated porcine GFP transgenic SKP cells from embryonic skin and demonstrated their multipotent potential. We identified several kinds of marker genes which may contribute to their multipotency and neural crest derived property. Furthermore, we compared the transcriptional profiles of SKPs and neural stem cells (neurospheres) to dissect the neurogenic potential of porcine SKP cells by microarray analysis. Concomitantly, we deciphered the mesodermal potential of SKPs by comparing the transcriptional profiling of SKPs with SKP-derived fibroblast like cells (termed SFCs). Finally we identified several key intrinsic programs and extrinsic signaling pathways that have significance in mediating the stem-cell identity of SKPs.
     1) Tracing the stemness of porcine skin derived progenitors back to specific marker gene expression
     Multipotent skin derived progenitors (SKP) can produce both neural and mesodermal progeny in vitro, sharing the characteristics of embryonic neural crest stem cells. However, the molecular basis for the property of multipotency and neural crest origin of SKPs is still elusive. Here we report the cooperative expression of pluripotency related genes (POU5F1, SOX2, NANOG, STAT3) and neural crest marker genes (p75NTR, TWIST1, PAX3, SNAI2, SOX9, SOX10) in GFP-transgenic porcine skin derived progenitors (pSKP). The proportion of cells positive for POU5F1, nestin, fibronectin and vimentin were 12.3%, 15.1%, 67.9% and 53.7%, showing the heterogeneity of pSKP spheres. Moreover, pSKP cells can generate both neural (neurons and glias) and mesodermal cell types (smooth muscle cells) in vitro, indicating the multiple lineage potency. Four transcription factors (POU5F1, SNAI2, SOX9 and PAX3) were identified which were sensitive to mitogen (FBS) and/or growth factors (EGF and bFGF). It is tempting to speculate that POU5F1, SNAI2, SOX9 and PAX3 may be the key players for regulating the neural crest derived multipotency of SKP cells in vitro.
     2) Dissecting the“stemness”of porcine skin derived progenitor (SKP) spheres and neurospheres by microarray analysis
     Skin derived progenitors (SKP) are neural crest derived and can generate neural and mesodermal progeny in vitro, corresponding to the multipotency of neural crest stem cells. Likewise, neural stem/progenitor cells, which are self-renewing and multipotent, can display as neurospheres. Both of them form spheres in response to epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) in vitro. Although the“stemness”of neural stem/progenitor cells has been extensively investigated, direct comparison of“stemness”between SKP spheres and neurospheres is unknown. Here we dissect the“stemness”of SKP spheres and neurospheres by microarray analysis. Totally 142 genes are commonly enriched in SKP spheres and neurospheres, which are involved in ribosome, tight junction, gap junction, cell communication, calcium signaling, ErbB signaling, JAK-STAT signaling, MAPK signaling et al. Functional annotation clustering indicates that SKP spheres and neurospheres employ similar protein biosynthesis process but differential cell communication pathways. In addition, the differentially expressed genes between SKP spheres and neurospheres are most commonly involved in ECM-receptor interaction and TGF-βsignaling pathway. It is suggested that cell-communication pathways which integrate ECM-receptor interaction and TGF-βsignaling may contribute to the differential stem-cell identity of SKP spheres and neurospheres. Thus it is inferred that the ground state of stem cells could be maintained in a cell-intrinsic manner within local microenvironment mediated by cell-cell communication pathways.
     3) Deciphering the mesodermal potency of porcine skin derived progenitors by microarray analysis
     Skin stem cells have an essential role in maintaining tissue homeostasis by dynamically replenishing those constantly lost during tissue turnover or following injury. Multipotent skin derived progenitors (SKP) can generate both neural and mesodermal progeny, representing neural crest-derived progenitors during embryogenesis through adulthood. SKP cells develop into spheres in suspension and can differentiate into fibroblast-like cells (SFC) in adhesive culture with serum. However, little is known about the molecular mechanism of the transition of SKP spheres into SFC in vitro. Here we characterized the transcriptional profiles of porcine SKP spheres and SFC by microarray analysis. The 305 up-regulated and 96 down-regulated genes were found during transition, respectively. The down-regulated genes are mainly involved in intrinsic programs like the Dicer pathway and asymmetric cell division; whereas up-regulated genes are likely to participate in extrinsic signaling pathways such as ErbB signaling, MAPK signaling, ECM-receptor reaction, Wnt signaling, cell communication and TGF-βsignaling pathways. These intrinsic programs and extrinsic signaling pathways collaborate to mediate the transcription-state transition between SKP spheres and SFC. These potential signaling pathways may regulate self-renewal and cell fate determination of skin-derived stem cells in vivo, thus orchestrating the molecular programs of skin stem cells and morphogenesis in skin development.
引文
Agca C, Ries J E, Kolath S J, Kim J H, Forrester L J, Antoniou E, Whitworth K M, Mathialagan N, Springer G K, Prather R S. 2006. Luteinization of porcine preovulatory follicles leads to systematic changes in follicular gene expression. Reproduction, 132: 133-145.
    Akala O O, Park I K, Qian D, Pihalja M, Becker M W, Clarke M F. 2008. Long-term haematopoietic reconstitution by Trp53-/-p16Ink4a-/-p19Arf-/- multipotent progenitors. Nature, 453: 228-232.
    Albert M, Peters A H. 2009. Genetic and epigenetic control of early mouse development. Current Opinion in Genetics & Development, 19: 113-121.
    Andl T, Murchison E P, Liu F, Zhang Y, Yunta-Gonzalez M, Tobias, J W, Andl C D, Seykora, J T, Hannon G J, Millar S E. 2006. The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr Biol, 16: 1041-1049.
    Anneren C. 2008. Tyrosine kinase signalling in embryonic stem cells. Clin Sci, 115: 43-55.
    Anton ES, Marchionni M A, Lee K F, Rakic P. 1997. Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development, 124: 3501-3510.
    Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. 2008. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 321: 699-702.
    Armstrong L, Hughes O, Yung S, Hyslop L, Stewart R, Wappler I, Peters H, Walter T, Stojkovic P, Evans J. 2006. The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet, 15: 1894-1913.
    Arnold S J, Robertson E J. 2009. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol, 10: 91-103.
    Attema J L, Pronk C J, Norddahl G L, Nygren J M, Bryder D. 2009. Hematopoietic stem cell ageing is uncoupled from p16 INK4A-mediated senescence. Oncogene, 28: 2238-2243.
    vilion A A, Nicolis S K, Pevny L H, Perez L, Vivian N, Lovell-Badge R. 2003. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes & Development, 17: 126-140.
    Bartek J, Lukas J. 2001. Pathways governing G1/S transition and their response to DNA damage. FEBS letters, 490: 117-122.
    Bartsch G, Yoo J J, De Coppi P, Siddiqui M M, Schuch G, Pohl H G, Fuhr J, Perin L, Soker S, Atala A. 2005. Propagation, expansion, and multilineage differentiation of human somatic stem cells from dermal progenitors. Stem Cells Dev, 14: 337-348.
    Bauer S, Kerr B J, Patterson P H. 2007. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci, 8: 221-232.
    Bendall S C, Stewart M H, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, Ramos-Mejia V, Rouleau A, Yang J, Bosse M. 2007. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 448: 1015-1021.
    Benetti R, Gonzalo S, Jaco I, Munoz P, Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P. 2008. A mammalian microRNA cluster controls DNA methylation and telomere recombination via
    Rbl2-dependent regulation of DNA methyltransferases. Nature Structural & Molecular Biology, 15: 268-279.
    Bennett V, Baines A J. 2001. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev, 81: 1353-1392.
    Bernstein B E, Mikkelsen T S, Xie X, Kamal M, Huebert D J, Cuff J, Fry B, Meissner A, Wernig M, Plath K. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125: 315-326.
    Bernstein E, Kim S Y, Carmell M A, Murchison E P, Alcorn H, Li M Z, Mills A A, Elledge S J, Anderson, K V, Hannon G J. 2003. Dicer is essential for mouse development. Nature Genetics, 35: 215-217.
    Bertrand N, Castro D S, Guillemot F. 2002. Proneural genes and the specification of neural cell types. Nat Rev Neurosci, 3: 517-530.
    Biernaskie J, Sparling J S, Liu J, Shannon C P, Plemel J R, Xie Y, Miller F D, Tetzlaff W. 2007. Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. J Neurosci, 27: 9545-9559.
    Biernaskie J A, McKenzie I A, Toma J G, Miller, F D. 2006. Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny. Nature Protocols, 1: 2803-2812.
    Bixby S, Kruger G M, Mosher J T, Joseph N M, Morrison S J. 2002. Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron, 35: 643-656.
    Blanpain C, Fuchs E. 2009. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol, 10: 207-217.
    Boiani M, Scholer H R. 2005. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol, 6: 872-884.
    Boockvar J A, Kapitonov D, Kapoor G, Schouten J, Counelis G J, Bogler O, Snyder E Y, McIntosh TK, O'Rourke D M. 2003. Constitutive EGFR signaling confers a motile phenotype to neural stem cells. Mol Cell Neurosci, 24: 1116-1130.
    Bourcier C, Jacquel A, Hess J, Peyrottes I, Angel P, Hofman P, Auberger P, Pouyssegur J, Pages G. 2006. p44 mitogen-activated protein kinase (extracellular signal-regulated kinase 1)-dependent signaling contributes to epithelial skin carcinogenesis. Cancer Research, 66: 2700-2707.
    Boyer L A, Lee T I, Cole M F, Johnstone S E, Levine S S, Zucker J P, Guenther M G, Kumar R M, Murray H L, Jenner R G. 2005. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122: 947-956.
    Boyer L A, Plath K, Zeitlinger J, Brambrink T, Medeiros L A, Lee T I, Levine S S, Wernig M, Tajonar A, Ray M K. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441: 349-353.
    Britsch S, Goerich D E., Riethmacher, D, Peirano, R I, Rossner M, Nave K A, Birchmeier C, Wegner M. 2001. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes & Development, 15, 66-78.
    Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying Q L, Smith A. (2008). Capture of authentic embryonic stem cells from rat blastocysts. Cell, 135: 1287-1298.
    Burdon T, Smith A, Savatier P. 2002. Signalling, cell cycle and pluripotency in embryonic stem cells.Trends in Cell Biology, 12: 432-438.
    Campos L S, Leone D P, Relvas J B, Brakebusch C, Fassler R, Suter U, ffrench-Constant C. 2004. Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development, 131: 3433-3444.
    Canoll P D, Musacchio J M, Hardy R, Reynolds R, Marchionni M A, Salzer J L. 1996. GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron, 17: 229-243.
    Caretti G, Di Padova M, Micales B, Lyons G E, Sartorelli V. 2004. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes & Development, 18: 2627-2638.
    Cayouette M, Raff M. 2002. Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals. Nature Neuroscience, 5: 1265-1269.
    Chambers I, Colby D, Robertson M, Nichols J., Lee S, Tweedie S, Smith A. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113: 643-655.
    Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A. 2007. Nanog safeguards pluripotency and mediates germline development. Nature, 450: 1230-1234.
    Chang H H, Hemberg M, Barahona M, Ingber D E, Huang S. 2008. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453: 544-547.
    Chang L, Karin M. 2001. Mammalian MAP kinase signalling cascades. Nature, 410: 37-40.
    Chen C Z, Li L, Lodish H F, Bartel D P. 2004. MicroRNAs modulate hematopoietic lineage differentiation. Science, 303: 83-86.
    Chen F G, Zhang W J, Bi D, Liu W, Wei X, Chen F F, Zhu L, Cui L, Cao Y. 2007. Clonal analysis of nestin(-) vimentin(+) multipotent fibroblasts isolated from human dermis. Journal of Cell Science, 120: 2875-2883.
    Chen H L, Panchision D M. 2007. Concise review: bone morphogenetic protein pleiotropism in neural stem cells and their derivatives--alternative pathways, convergent signals. Stem Cells, 25: 63-68.
    Chen X, Xu H, Yuan P, Fang F, Huss M, Vega V B, Wong E, Orlov Y L, Zhang W, Jiang J. 2008.
    Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133: 1106-1117.
    Cheng L C, Pastrana E, Tavazoie M, Doetsch F. 2009. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neuroscience, 12: 399-408.
    Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden D T. 2000. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science, 287: 1804-1808.
    Chenn A, McConnell S K. 1995. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell, 82: 631-641.
    Cheshier S H, Morrison S J, Liao X, Weissman, I L. 1999. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 96: 3120-3125.
    Cheung M, Briscoe J. 2003. Neural crest development is regulated by the transcription factor Sox9. Development, 130: 5681-5693.
    Chou Y F, Chen H H, Eijpe M, Yabuuchi A, Chenoweth J G, Tesar P, Lu J, McKay R D, Geijsen N. 2008.The growth factor environment defines distinct pluripotent ground states in novel blastocyst-derived stem cells. Cell, 135: 449-461.
    Clarke P R, Zhang C. 2008. Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol, 9: 464-477.
    Cole M F, Johnstone S E, Newman J J, Kagey M H, Young R A. 2008. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes & Development, 22: 746-755.
    Cole M F, Young R A. 2008. Mapping Key Features of Transcriptional Regulatory Circuitry in Embryonic Stem Cells. Cold Spring Harbor Symposia on Quantitative Biology, 73: 183-193.
    Conboy I M, Rando T A. 2002. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Developmental Cell, 3: 397-409.
    Congdon K L, Reya T. 2008. Divide and conquer: how asymmetric division shapes cell fate in the hematopoietic system. Current Opinion in Immunology, 20: 302-307.
    Conrad S, Renninger M, Hennenlotter J, Wiesner T, Just L, Bonin M, Aicher W, Buhring H J, Mattheus U, Mack A. 2008. Generation of pluripotent stem cells from adult human testis. Nature, 456: 344-349.
    Conti L, Pollard S M, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying Q L, Cattaneo E. 2005. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biology, 3: e283.
    Cordes K R, Sheehy N T, White M P, Berry E C, Morton S U, Muth A N, Lee T H, Miano J M, Ivey K N, Srivastava D. 2009. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460: 705-710.
    Crane J F, Trainor P A. 2006. Neural crest stem and progenitor cells. Annual Review of Cell and Developmental Biology, 22: 267-286.
    Creyghton M P, Markoulaki S, Levine S S, Hanna J, Lodato M A, Sha K, Young R A, Jaenisch R, Boyer L A. 2008. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell, 135: 649-661.
    Crigler L, Kazhanie A, Yoon T J, Zakhari J, Anders J, Taylor B, Virador V M. 2007. Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages. Faseb J, 21: 2050-2063.
    Daheron L, Opitz S L, Zaehres H, Lensch M W, Andrews P W, Itskovitz-Eldor J, Daley G Q. 2004. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells, 22: 770-778.
    Dannenberg J H, van Rossum A, Schuijff L, te Riele H. 2000. Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes & Development, 14: 3051-3064.
    Dejosez M, Krumenacker J S, Zitur L J, Passeri M, Chu L F, Songyang Z, Thomson J A, Zwaka T P. 2008. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell, 133: 1162-1174.
    Deleyrolle L P, Reynolds B A. 2009. Isolation, expansion, and differentiation of adult Mammalian neural stem and progenitor cells using the neurosphere assay. Methods Mol Biol, 549: 91-101.
    Delfino-Machin M, Chipperfield T R, Rodrigues F S, Kelsh R N. 2007. The proliferating field of neural crest stem cells. Dev Dyn, 236: 3242-3254.
    Dennis G, Jr. Sherman B T, Hosack D A, Yang J, Gao W, Lane H C, Lempicki R A. 2003. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol, 4: P3.
    Doetsch F, Caille I, Lim D A, Garcia-Verdugo J M, Alvarez-Buylla A. 1999. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97: 703-716.
    Doherty J M, Geske M J, Stappenbeck T S, Mills J C. 2008. Diverse adult stem cells share specific higher-order patterns of gene expression. Stem Cells, 26: 2124-2130.
    Dumesic P A, Scholl F A, Barragan D I, Khavari P A. 2009. Erk1/2 MAP kinases are required for epidermal G2/M progression. The Journal of Cell Biology, 185: 409-422.
    Dupin E, Calloni G, Real C, Goncalves-Trentin A, Le Douarin N M. 2007. Neural crest progenitors and stem cells. Comptes Rendus Biologies, 330: 521-529.
    Dyce P W, Wen L, Li J. 2006. In vitro germline potential of stem cells derived from fetal porcine skin. Nature Cell Biology, 8: 384-390.
    Dyce P W, Zhu H, Craig J, Li J. 2004. Stem cells with multilineage potential derived from porcine skin. Biochemical and Biophysical Research Communications, 316: 651-658.
    Egli D, Birkhoff G, Eggan K. 2008. Mediators of reprogramming: transcription factors and transitions through mitosis. Nat Rev Mol Cell Biol, 9: 505-516.
    Enver T, Pera M, Peterson C, Andrews P W. 2009. Stem cell states, fates, and the rules of attraction. Cell Stem Cell, 4: 387-397.
    Evans M J, Kaufman M H. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature, 292: 154-156.
    Ezhkova E, Pasolli H A, Parker J S, Stokes N, Su I H, Hannon G, Tarakhovsky A, Fuchs E. 2009. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell, 136: 1122-1135.
    Farkas L M, Huttner W B. 2008. The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Current Opinion in Cell Biology, 20: 707-715.
    Fernandes K J., Kobayashi N R, Gallagher C J, Barnabe-Heider F, Aumont A, Kaplan D R, Miller F D. 2006. Analysis of the neurogenic potential of multipotent skin-derived precursors. Experimental Neurology, 201: 32-48.
    Fernandes K J, McKenzie I A, Mill P, Smith K M, Akhavan M, Barnabe-Heider F, Biernaskie J, Junek A, Kobayashi N R, Toma J G. 2004. A dermal niche for multipotent adult skin-derived precursor cells. Nature Cell Biology, 6: 1082-1093.
    Fernandes K J, Toma J G, Miller F D. 2008. Multipotent skin-derived precursors: adult neural crest-related precursors with therapeutic potential. Philosophical Transactions of the Royal Society of London, 363: 185-198.
    Foudi A. Hochedlinger K, Van Buren D, Schindler J W, Jaenisch R, Carey V, Hock H. 2009. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nature Biotechnology, 27: 84-90.
    Fuchs E. 2007. Scratching the surface of skin development. Nature, 445: 834-842.
    Fuchs E. 2009. The tortoise and the hair: slow-cycling cells in the stem cell race. Cell, 137: 811-819. Gage F H. 2000. Mammalian neural stem cells. Science, 287: 1433-1438.
    Galan-Caridad J M, Harel S, Arenzana T L, Hou Z E, Doetsch F K, Mirny L A, Reizis B. 2007. Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell, 129: 345-357.
    Gangaraju V K, Lin H. 2009. MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol, 10: 116-125.
    Gao X, Tate P, Hu P, Tjian R, Skarnes W C, Wang Z. 2008. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci U S A, 105: 6656-6661.
    Gassmann M, Lemke G. 1997. Neuregulins and neuregulin receptors in neural development. Current Opinion in Neurobiology, 7: 87-92.
    Gauthier-Fisher A, Lin D C, Greeve M, Kaplan D R, Rottapel R, Miller F D. 2009. Lfc and Tctex-1 regulate the genesis of neurons from cortical precursor cells. Nature Neuroscience, 12(6):735-744.
    Georgantas RW 3rd, Tanadve V, Malehorn M, Heimfeld S, Chen C, Carr L, Martinez-Murillo F, Riggins G, Kowalski J, Civin C I. 2004. Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Research, 64: 4434-4441.
    Gingras M, Champigny M F, Berthod F. 2007. Differentiation of human adult skin-derived neuronal precursors into mature neurons. Journal of Cellular Physiology, 210: 498-506.
    Gonczy P. 2008. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol, 9(5): 355-366.
    Graf T, Stadtfeld M. 2008. Heterogeneity of embryonic and adult stem cells. Cell Stem Cell, 3: 480-483. Greco S J, Liu K, Rameshwar P. 2007. Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells, 25: 3143-3154.
    Green J A, Kim J G, Whitworth K M, Agca C, Prather R S. 2006. The use of microarrays to define functionally-related genes that are differentially expressed in the cycling pig uterus. Soc Reprod Fertil Suppl, 62: 163-176.
    Greenwood A L, Turner E E, Anderson D J. 1999. Identification of dividing, determined sensory neuron precursors in the mammalian neural crest. Development, 126: 3545-3559.
    Gregorian C, Nakashima J, Le Belle J, Ohab J, Kim R, Liu A, Smith K B, Groszer M, Garcia A D, Sofroniew M V. 2009. Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J Neurosci, 29: 1874-1886.
    Gross R E, Mehler M F, Mabie P C, Zang Z, Santschi L, Kessler, J A. 1996. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron, 17: 595-606.
    Groszer M, Erickson R, Scripture-Adams D D, Dougherty J D, Le Belle J, Zack J A., Geschwind D H, Liu X, Kornblum H I, Wu H. 2006. PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proceedings of the National Academy of Sciences of the United States of America, 103: 111-116.
    Groszer M, Erickson R, Scripture-Adams D D, Lesche R, Trumpp A, Zack J A, Kornblum H I, Liu X, Wu H. 2001. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science, 294: 2186-2189.
    Guenther M G, Levine S S, Boyer L A, Jaenisch R, Young R A. 2007. A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 130: 77-88.
    Guillemot F. 2007. Spatial and temporal specification of neural fates by transcription factor codes. Development, 134: 3771-3780.
    Guo M, Jan L Y, Jan Y N. 1996. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron, 17: 27-41.
    Guo W, Lasky J L, Chang C J, Mosessian S, Lewis X, Xiao Y, Yeh J E, Chen J Y, Iruela-Arispe M L, Varella-Garcia M. 2008. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature, 453: 529-533.
    Hagedorn L, Suter U, Sommer L. 1999. P0 and PMP22 mark a multipotent neural crest-derived cell type that displays community effects in response to TGF-beta family factors. Development, 126: 3781-3794.
    Hammond S M, Sharpless N E. 2008. HMGA2, microRNAs, and stem cell aging. Cell, 135: 1013-1016.
    Hanna J, Markoulaki S, Schorderet P, Carey B W, Beard C, Wernig M, Creyghton M P, Steine E J, Cassady J P, Foreman R. 2008. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 133: 250-264.
    Harbour J W, Dean D C. 2000. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes & Development, 14: 2393-2409.
    Harbour J W, Luo R X., Dei Santi A, Postigo A A, Dean D C. 1999. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell, 98: 859-869.
    Harries M J, Paus R. 2009. Scarring alopecia and the PPAR-gamma connection. J Invest Dermatol, 129: 1066-1070.
    Haubensak W, Attardo A, Denk W, Huttner W B. 2004. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 101: 3196-3201.
    Hayashi K, Lopes S M, Tang F, Surani M A. 2008. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell, 3: 391-401.
    Ho L, Ronan J L, Wu J, Staahl B T, Chen L, Kuo A, Lessard J, Nesvizhskii A I, Ranish J, Crabtree G R. 2009. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci U S A, 106: 5181-5186.
    Hochedlinger K, Jaenisch R. 2006. Nuclear reprogramming and pluripotency. Nature, 441: 1061-1067.
    Hoheisel J D. 2006. Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet, 7: 200-210.
    Hong J H, Hwang E S, McManus M T, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman B M, Sharp P A. 2005. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science, 309: 1074-1078.
    Horsley V, Aliprantis A O, Polak L, Glimcher L H, Fuchs E. 2008. NFATc1 balances quiescence and proliferation of skin stem cells. Cell, 132: 299-310.
    Houbaviy H B, Murray M F, Sharp P A. 2003. Embryonic stem cell-specific MicroRNAs. Developmental Cell, 5: 351-358.
    Hu Y F, Zhang Z J, Sieber-Blum M. 2006. An epidermal neural crest stem cell (EPI-NCSC) molecular signature. Stem Cells, 24: 2692-2702.
    Huang da W, Sherman B T, Lempicki R A. 2009. Systematic and integrative analysis of large gene lists?using DAVID bioinformatics resources. Nature Protocols, 4: 44-57.
    Huang S, Law P, Francis K, Palsson B O, Ho A D. 1999. Symmetry of initial cell divisions among primitive hematopoietic progenitors is independent of ontogenic age and regulatory molecules. Blood, 94: 2595-2604.
    Hunt D P, Morris P N, Sterling J, Anderson J A, Joannides A, Jahoda C, Compston A, Chandran S. 2008. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin. Stem Cells, 26: 163-172.
    Huttner W B, Kosodo Y. 2005. Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Current Opinion in Cell Biology, 17: 648-657.
    Imamura O, Satoh Y, Endo S, Takishima K. 2008. Analysis of extracellular signal-regulated kinase 2 function in neural stem/progenitor cells via nervous system-specific gene disruption. Stem Cells, 26: 3247-3256.
    Ito M, Yang Z, Andl T, Cui C, Kim N, Millar S E, Cotsarelis G. 2007. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature, 447: 316-320.
    Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka I R. 2006. Dissecting self-renewal in stem cells with RNA interference. Nature, 442: 533-538.
    Ivanova N B, Dimos J T, Schaniel C, Hackney J A, Moore K A, Lemischka I R. 2002. A stem cell molecular signature. Science, 298: 601-604.
    Ivey K N, Muth A, Arnold J, King F W, Yeh R F, Fish J E, Hsiao E C, Schwartz R J, Conklin B R, Bernstein H S. 2008. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell, 2: 219-229.
    Jaenisch R, Young R. 2008. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 132: 567-582.
    James D, Levine A J, Besser D, Hemmati-Brivanlou A. 2005. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132: 1273-1282.
    Jan Y N, Jan L Y. 2001. Asymmetric cell division in the Drosophila nervous system. Nat Rev Neurosci, 2: 772-779.
    Janzen V, Forkert R, Fleming H E, Saito Y, Waring M T, Dombkowski D M, Cheng T, DePinho R A, Sharpless N E, Scadden D T. 2006. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature, 443: 421-426.
    Jessen K R, Mirsky R. 2005. The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci, 6: 671-682.
    Jiang Y, Jahagirdar B N, Reinhardt R L, Schwartz R E, Keene C D, Ortiz-Gonzalez X R, Reyes M, Lenvik T, Lund T, Blackstad M. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418: 41-49.
    Joannides A, Gaughwin P, Schwiening C, Majed H, Sterling J, Compston A, Chandran S. 2004. Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet, 364: 172-178.
    Joseph N M, Morrison S J. 2005. Toward an understanding of the physiological function of Mammalian stem cells. Developmental Cell, 9: 173-183.
    Ju Z, Choudhury A R, Rudolph K L. 2007. A dual role of p21 in stem cell aging. Annals of the New YorkAcademy of Sciences, 1100: 333-344.
    Jude C D, Climer L, Xu D, Artinger E, Fisher J K, Ernst P. 2007. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell, 1: 324-337.
    Judson R L, Babiarz J E, Venere M, Blelloch R. 2009. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature Biotechnology, 27: 459-461.
    Kagalwala M N, Singh S K, Majumder S. 2008. Stemness is only a state of the cell. Cold Spring Harb Symp Quant Biol, 73: 227-234.
    Kai T, Spradling A. 2004. Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature, 428: 564-569.
    Kamminga L M, Bystrykh L V, de Boer A, Houwer S, Douma J, Weersing E, Dontje B, de Haan G. 2006. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood, 107: 2170-2179.
    Kanellopoulou C, Muljo S A, Kung A L, Ganesan S, Drapkin R, Jenuwein T, Livingston D M, Rajewsky K. 2005. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes & Development, 19: 489-501.
    Karnik P, Tekeste Z, McCormick T S, Gilliam A C, Price V H, Cooper K D, Mirmirani P. 2009. Hair follicle stem cell-specific PPARgamma deletion causes scarring alopecia. J Invest Dermatol, 129: 1243-1257.
    Kidder B L, Palmer S, Knott J G. 2009. SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells, 27: 317-328.
    Kiel M J, Yilmaz O H, Iwashita T, Yilmaz O H, Terhorst C, Morrison S J. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121: 1109-1121.
    Kim J, Chu J, Shen X, Wang J, Orkin, S H. 2008. An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 132: 1049-1061.
    Kim J, Lo L, Dormand E, Anderson D J. 2003. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron, 38: 17-31.
    Kim J B, Sebastiano V, Wu G, Arauzo-Bravo M J, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D. 2009a. Oct4-induced pluripotency in adult neural stem cells. Cell, 136: 411-419.
    Kim V N, Han J, Siom, M C. 2009b. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 10: 126-139.
    Kim W Y, Sharpless N E. 2006. The regulation of INK4/ARF in cancer and aging. Cell, 127: 265-275.
    Kippin T E, Martens D J, van der Kooy D. 2005. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes & Development, 19: 756-767.
    Kleber M, Lee H Y, Wurdak H, Buchstaller J, Riccomagno M M, Ittner L M, Suter U, Epstein D J, Sommer L. 2005. Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling. The Journal of Cell Biology, 169: 309-320.
    Knoblich J A. 2008. Mechanisms of asymmetric stem cell division. Cell, 132: 583-597.
    Krivtsov A V, Armstrong S A. 2007. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer, 7: 823-833.
    Kruger G M, Mosher J T, Bixby S, Joseph N, Iwashita T, Morrison S J. 2002. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness.Neuron, 35: 657-669.
    Kuriyama S, Mayor R. 2008. Molecular analysis of neural crest migration. Philosophical Transactions of the Royal Society of London, 363: 1349-1362.
    Lang D, Lu M M, Huang L, Engleka K A, Zhang M, Chu E Y, Lipner S, Skoultchi A, Millar S E, Epstein J A. 2005. Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature, 433: 884-887.
    Lechler T, Fuchs E. 2005. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature, 437: 275-280.
    Lee H Y, Kleber M, Hari L, Brault V, Suter U, Taketo M M, Kemler R, Sommer L. 2004. Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science, 303: 1020-1023.
    Lee K F, Simon H, Chen H, Bates B, Hung M C, Hauser C. 1995. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature, 378: 394-398.
    Lee K J, Jessell T M. 1999. The specification of dorsal cell fates in the vertebrate central nervous system. Annual Review of Neuroscience, 22: 261-294.
    Lee T I, Jenner R G, Boyer L A, Guenther M G, Levine S S, Kumar R M, Chevalier B, Johnstone S E, Cole M F, Isono K. 2006. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell, 125: 301-313.
    Lehrke M, Lazar M A. 2005. The many faces of PPARgamma. Cell, 123: 993-999.
    Leimeroth R, Lobsiger C, Lussi A, Taylor V, Suter U, Sommer L. 2002. Membrane-bound neuregulin1 type III actively promotes Schwann cell differentiation of multipotent Progenitor cells. Developmental Biology, 246: 245-258.
    Lengner C J, Camargo F D, Hochedlinger K, Welstead G G, Zaidi S, Gokhale S, Scholer H R, Tomilin A, Jaenisch R. 2007. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell, 1: 403-415.
    Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P, Van Lohuizen M, Marino S. 2004. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature, 428: 337-341.
    Levi B P, Morrison S J. 2008. Stem cells use distinct self-renewal programs at different ages. Cold Spring Harbor Symposia on Quantitative Biology, 73: 539-553.
    Li H Y, Say E H, Zhou X F. 2007a. Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cells, 25: 2053-2065.
    Li J, Wang G, Wang C, Zhao Y, Zhang H, Tan Z, Song Z, Ding M, Deng H. 2007b. MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation, 75: 299-307.
    Li L, Xie T. 2005. Stem cell niche: structure and function. Annual Review of Cell and Developmental Biology, 21: 605-631.
    Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson R E, Schulze E N, Song H, Hsieh C L. 2008. Germline competent embryonic stem cells derived from rat blastocysts. Cell, 135: 1299-1310.
    Lim D A, Huang Y C, Swigut T, Mirick A L, Garcia-Verdugo J M, Wysocka J, Ernst P, Alvarez-Buylla A. 2009. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature, 458: 529-533.
    Liu A, Niswander L A. 2005. Bone morphogenetic protein signalling and vertebrate nervous system development. Nat Rev Neurosci, 6: 945-954.
    Loh Y H, Wu Q, Chew J L, Vega V B, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J. 2006. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38: 431-440.
    Lorenz K, Sicker M, Schmelzer E, Rupf T, Salvetter J, Schulz-Siegmund M, Bader A. 2008. Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp Dermatol, 17: 925-932.
    Mabie P C, Mehler M F, Kessler J A. 1999. Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype. J Neurosci, 19: 7077-7088.
    Mahmud N, Devine S M, Weller K P, Parmar S, Sturgeon C, Nelson M C, Hewett T, Hoffman R. 2001. The relative quiescence of hematopoietic stem cells in nonhuman primates. Blood, 97: 3061-3068.
    Maisel M, Herr A, Milosevic J, Hermann A, Habisch H J, Schwarz S, Kirsch M, Antoniadis G, Brenner R, Hallmeyer-Elgner S. 2007. Transcription profiling of adult and fetal human neuroprogenitors identifies divergent paths to maintain the neuroprogenitor cell state. Stem Cells, 25: 1231-1240.
    Marson A, Levine S S, Cole M F, Frampton G M, Brambrink T, Johnstone S, Guenther M G, Johnston W K, Wernig M, Newman J. 2008. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 134: 521-533.
    Martin G R. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78: 7634-7638.
    Mason I. 2007. Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci, 8: 583-596.
    Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov A A. 2007. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biology, 9: 625-635.
    Matsuda T, Nakamura T, Nakao K, Arai T, Katsuki M, Heike T, Yokota T. 1999. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. The EMBO Journal, 18: 4261-4269.
    McKenzie I A, Biernaskie J, Toma J G, Midha R, Miller F D. 2006. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci, 26: 6651-6660.
    McMahon K A, Hiew S Y, Hadjur S, Veiga-Fernandes H, Menzel U, Price A J, Kioussis D, Williams O, Brady H J. 2007. Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell, 1: 338-345.
    Mei L, Xiong W C. 2008. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci, 9: 437-452.
    Meletis K, Wirta V, Hede S M, Nister M, Lundeberg J, Frisen J. 2006. p53 suppresses the self-renewal of adult neural stem cells. Development, 133: 363-369.
    Mello C C, Schubert C, Draper B, Zhang W, Lobel R, Priess J R. 1996. The PIE-1 protein and germline specification in C. elegans embryos. Nature, 382: 710-712.
    Meshorer E, Misteli T. 2006. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol, 7: 540-546.
    Meulemans D, Bronner-Fraser M. 2004. Gene-regulatory interactions in neural crest evolution and development. Developmental Cell, 7: 291-299.
    Meyer D, Birchmeier C. 1995. Multiple essential functions of neuregulin in development. Nature, 378: 386-390.
    Miller F D, Gauthier A S. 2007. Timing is everything: making neurons versus glia in the developing cortex. Neuron, 54: 357-369.
    Mishra L, Derynck R, Mishra B. 2005. Transforming growth factor-beta signaling in stem cells and cancer. Science, 310: 68-71.
    Mishra S K, Braun N, Shukla V, Fullgrabe M, Schomerus C, Korf H W, Gachet C, Ikehara Y, Sevigny J, Robson S C. (2006). Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development, 133: 675-684.
    Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113: 631-642.
    Molofsky A V, He S, Bydon M, Morrison S J, Pardal R. 2005. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes & Development, 19: 1432-1437.
    Molofsky A V, Pardal R, Iwashita T, Park I K, Clarke M F, Morrison S J. 2003. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 425: 962-967.
    Molofsky A V, Slutsky S G, Joseph N M, He S, Pardal R, Krishnamurthy J, Sharpless N E, Morrison S J. 2006. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature, 443: 448-452.
    Morris J K, Lin W, Hauser C, Marchuk Y, Getman D, Lee K F. 1999. Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron, 23: 273-283.
    Morrison S J, Kimble J. 2006. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 441: 1068-1074.
    Morrison S J, Perez S E, Qiao Z, Verdi J M, Hicks C, Weinmaster G, Anderson D J. 2000. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell, 101: 499-510.
    Morrison S J, Spradling A C. 2008. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132: 598-611.
    Morrison S J, White P M, Zock C, Anderson D J. 1999. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell, 96: 737-749.
    Morrison S J, Wright D E, Weissman I L. 1997. Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proceedings of the National Academy of Sciences of the United States of America, 94: 1908-1913.
    Mosher J T, Yeager K J, Kruger G M, Joseph N M, Hutchin M E, Dlugosz A A, Morrison S J. 2007. Intrinsic differences among spatially distinct neural crest stem cells in terms of migratory properties, fate determination, and ability to colonize the enteric nervous system. Developmental Biology, 303: 1-15.
    Nagoshi N, Shibata S, Kubota Y, Nakamura M, Nagai Y, Satoh E, Morikawa S, Okada Y, Mabuchi Y, Katoh H. 2008. Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell, 2: 392-403.
    Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S. 2008. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26: 101-106.
    Nakajima T, Ota M, Ito K. 2008. Differentiation of autonomic neurons by BMP-independent mechanisms. Cell and Tissue Research, 332: 25-35.
    Nakamura N, Ramaswamy S, Vazquez F, Signoretti S, Loda M, Sellers W R. 2000. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Molecular and Cellular Biology, 20: 8969-8982.
    Ng F, Boucher S, Koh S, Sastry K S, Chase L, Lakshmipathy U, Choong C, Yang Z, Vemuri M C, Rao M S. 2008. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood, 112: 295-307.
    Nichols J, Smith A. 2009. Naive and primed pluripotent states. Cell Stem Cell, 4: 487-492.
    Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95: 379-391.
    Nishino J, Kim I, Chada K, Morrison S J. 2008. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell, 135: 227-239.
    Niwa H, Burdon T, Chambers I, Smith A. 1998. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes & Development, 12: 2048-2060.
    Ogawa M. 1993. Differentiation and proliferation of hematopoietic stem cells. Blood, 81: 2844-2853. Orford K W, Scadden D T. 2008. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet, 9: 115-128.
    Ota M, Ito K. 2006. BMP and FGF-2 regulate neurogenin-2 expression and the differentiation of sensory neurons and glia. Dev Dyn, 235: 646-655.
    Pardal R, Clarke M F, Morrison S J. 2003. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer, 3: 895-902.
    Pardal R, Ortega-Saenz P, Duran R, Lopez-Barneo J. 2007. Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell, 131: 364-377.
    Park I K, Qian D, Kiel M, Becker M W, Pihalja M, Weissman I L, Morrison S J, Clarke M F. 2003. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423: 302-305.
    Passegue E, Wagers A J, Giuriato S, Anderson W C, and Weissman I L. 2005. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. The Journal of Experimental Medicine, 202: 1599-1611.
    Patthey C, Gunhaga L, Edlund T. 2008. Early development of the central and peripheral nervous systems is coordinated by Wnt and BMP signals. PloS One, 3: e1625.
    Pittenger M F, Mackay A M, Beck S C, Jaiswal R K, Douglas R, Mosca J D, Moorman M A, Simonetti D W, Craig S, Marshak, D.R. 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284: 143-147.
    Plikus M V, Mayer J A, de la Cruz D, Baker R E, Maini P K, Maxson R, Chuong C M. 2008. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature, 451: 340-344.
    Poche R A, Furuta Y, Chaboissier M C, Schedl A, Behringer R R. 2008. Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Muller glial cell development. The Journal of Comparative Neurology, 510: 237-250.
    Qi X, Li T G, Hao J, Hu J, Wang J, Simmons H, Miura S, Mishina Y, Zhao G Q. 2004. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proceedings of the National Academy of Sciences of the United States of America, 101: 6027-6032.
    Raballo R, Rhee J, Lyn-Cook R, Leckman J F, Schwartz M L, Vaccarino F M. 2000. Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J Neurosci, 20: 5012-5023.
    Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan R C, Melton D A. 2002. "Stemness": transcriptional profiling of embryonic and adult stem cells. Science, 298: 597-600.
    Reya T, Morrison S J, Clarke M F, Weissman I L. 2001. Stem cells, cancer, and cancer stem cells. Nature, 414: 105-111.
    Reynolds B A, Rietze R L. 2005. Neural stem cells and neurospheres--re-evaluating the relationship. Nature Methods, 2: 333-336.
    Reynolds B A, Weiss S. 1992. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255: 1707-1710.
    Rosen E D, Sarraf P, Troy A E, Bradwin G, Moore K, Milstone D S, Spiegelman B M, Mortensen R M. 1999. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell, 4: 611-617.
    Sahar D E, Longaker M T, Quarto N. 2005. Sox9 neural crest determinant gene controls patterning and closure of the posterior frontal cranial suture. Developmental Biology, 280: 344-361.
    Sailer M H, Hazel T G, Panchision D M, Hoeppner D J, Schwab M E, McKay R D. 2005. BMP2 and FGF2 cooperate to induce neural-crest-like fates from fetal and adult CNS stem cells. Journal of Cell Science, 118: 5849-5860.
    Samuels I S, Karlo J C, Faruzzi A N, Pickering K, Herrup K, Sweatt J D, Saitta S C, Landreth G E. 2008. Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci, 28: 6983-6995.
    Sasai Y, Lu B, Steinbeisser H, De Robertis E M. 1995. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature, 376: 333-336.
    Sauka-Spengler T, Bronner-Fraser M. 2008. A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol, 9: 557-568.
    Scadden D T. 2006. The stem-cell niche as an entity of action. Nature, 441: 1075-1079.
    Schmid R S, McGrath B, Berechid B E, Boyles B, Marchionni M, Sestan N, Anton E S. 2003. Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 100: 4251-4256.
    Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. (2007). Genome regulation by polycomb and trithorax proteins. Cell, 128: 735-745.
    Shah N M, Anderson D J. 1997. Integration of multiple instructive cues by neural crest stem cells reveals cell-intrinsic biases in relative growth factor responsiveness. Proceedings of the National Academy ofSciences of the United States of America, 94: 11369-11374.
    Shah N M, Groves A K, Anderson D J. 1996. Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell, 85: 331-343.
    Shah N M, Marchionni M A, Isaacs I, Stroobant P, Anderson, D J. 1994. Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell, 77: 349-360.
    Shen Q, Zhong W, Jan Y N, Temple S. 2002. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development, 129: 4843-4853.
    Shin S, Sun Y, Liu Y, Khaner H, Svant S, Cai J, Xu Q X, Davidson B P, Stice S L, Smith A K. 2007. Whole genome analysis of human neural stem cells derived from embryonic stem cells and stem and progenitor cells isolated from fetal tissue. Stem Cells, 25: 1298-1306.
    Silva J, Smith A. 2008. Capturing pluripotency. Cell, 132: 532-536.
    Singh S K, Kagalwala M N, Parker-Thornburg J, Adams H, Majumder S. 2008. REST maintains self-renewal and pluripotency of embryonic stem cells. Nature, 453: 223-227.
    Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel C G, Zavolan M, Svoboda P, Filipowicz W. 2008. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nature Structural & Molecular Biology, 15: 259-267.
    Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn F G. 2005. Regulation of miRNA expression during neural cell specification. The European Journal of Neuroscience, 21: 1469-1477.
    Smith A G. 2001. Embryo-derived stem cells: of mice and men. Annual Review of Cell and Developmental Biology, 17: 435-462.
    Sommer L. 2006. Growth factors regulating neural crest cell fate decisions. Advances in Experimental Medicine and Biology, 589: 197-205.
    Song L, Webb N E, Song Y, Tuan R S. 2006. Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem Cells, 24: 1707-1718.
    Spana E P, Kopczynski C, Goodman C S, Doe C Q. 1995. Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development, 121: 3489-3494.
    Sparmann A, van Lohuizen M. 2006. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer, 6: 846-856.
    Spivakov M, Fisher A G. 2007. Epigenetic signatures of stem-cell identity. Nat Rev Genet, 8: 263-271.
    Stead E, White J, Faast R, Conn S, Goldstone S, Rathjen J, Dhingra U, Rathjen P, Walker D, Dalton S. 2002. Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene, 21: 8320-8333.
    Stemple D L, Anderson D J. 1992. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell, 71: 973-985.
    Strome S, Wood W B. 1983. Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell, 35: 15-25.
    Suh H, Consiglio A, Ray J, Sawai T, D'Amour K A, Gage F H. 2007. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell, 1: 515-528.
    Suh M R, Lee Y, Kim J Y, Kim S K, Moon S H, Lee J Y, Cha K Y, Chung H M, Yoon H S, Moon S Y. 2004. Human embryonic stem cells express a unique set of microRNAs. Developmental Biology, 270: 488-498.?
    Sun Y, Nadal-Vicens M, Misono S, Lin M Z, Zubiaga A, Hua X, Fan G, Greenberg M E. 2001. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell, 104: 365-376.
    Surani M A, Hayashi K, Hajkova P. 2007. Genetic and epigenetic regulators of pluripotency. Cell, 128: 747-762.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131: 861-872.
    Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126: 663-676.
    Tay Y, Zhang J, Thomson A M, Lim B, Rigoutsos I. 2008. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455: 1124-1128.
    Taylor K M, LaBonne C. 2007. Modulating the activity of neural crest regulatory factors. Current Opinion in Genetics & Development, 17: 326-331.
    Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz D M, Nakano Y, Meyer E M, Morel L, Petersen B E, Scott E W. 2002. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 416: 542-545.
    Terskikh A V, Miyamoto T, Chang C, Diatchenko L, Weissman I L. 2003. Gene expression analysis of purified hematopoietic stem cells and committed progenitors. Blood, 102: 94-101.
    Thomas S, Thomas M, Wincker P, Babarit C, Xu P, Speer M C, Munnich A, Lyonnet S, Vekemans M, Etchevers H C. 2008. Human neural crest cells display molecular and phenotypic hallmarks of stem cells. Hum Mol Genet, 17: 3411-3425.
    Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M. 1998. Embryonic stem cell lines derived from human blastocysts. Science, 282: 1145-1147.
    Toma J G, Akhavan M, Fernandes K J, Barnabe-Heider F, Sadikot A, Kaplan D R, Miller F D. 2001. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3: 778-784.
    Toma J G, McKenzie I A, Bagli D, Miller F D. 2005. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells, 23: 727-737.
    Tomita Y, Matsumura K, Wakamatsu Y, Matsuzaki Y, Shibuya I, Kawaguchi H, Ieda M, Kanakubo S, Shimazaki T, Ogawa S. 2005. Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. The Journal of Cell Biology, 170: 1135-1146.
    Tumbar T, Guasch G, Greco V, Blanpain C, Lowry W E, Rendl M, Fuchs E. 2004. Defining the epithelial stem cell niche in skin. Science, 303: 359-363.
    Vallier L, Mendjan S, Brown S, Chng Z, Teo A, Smithers L E, Trotter M W, Cho C H, Martinez A, Rugg-Gunn P. 2009. Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development, 136: 1339-1349.
    van der Lugt N M, Domen J, Linders K, van Roon M, Robanus-Maandag E, te Riele H, van der Valk M, Deschamps J, Sofroniew M, van Lohuizen M. 1994. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes & Development, 8: 757-769.
    van Os R, Kamminga L M, Ausema A, Bystrykh L V, Draijer D P, van Pelt K, Dontje B, de Haan G. 2007. A Limited role for p21Cip1/Waf1 in maintaining normal hematopoietic stem cell functioning. Stem Cells,25: 836-843.
    Vasudevan S, Tong Y, Steitz J A. 2007. Switching from repression to activation: microRNAs can up-regulate translation. Science, 318: 1931-1934.
    Viale A, De Franco F, Orleth A, Cambiagh V, Giuliani V, Bossi D, Ronchini C, Ronzoni S, Muradore I, Monestiroli S. 2009. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature, 457: 51-56.
    Vincentz J W, Barnes R M, Rodgers R, Firulli B A, Conway S J, Firulli A B. 2008. An absence of Twist1 results in aberrant cardiac neural crest morphogenesis. Developmental Biology, 320: 131-139.
    Viswanathan S R, Daley G Q, Gregory R I. 2008. Selective blockade of microRNA processing by Lin28. Science, 320: 97-100.
    Wagers A J, Weissman I L. 2004. Plasticity of adult stem cells. Cell, 116: 639-648.
    Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W. 2005. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol, 33: 1402-1416.
    Wang L, Schulz T C, Sherrer E S, Dauphin D S, Shin S, Nelson A M, Ware C B, Zhan M, Song C Z, Chen X. 2007a. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood, 110: 4111-4119.
    Wang Q, Huang Z, Xue H, Jin C, Ju X L, Han J D, Chen Y G. 2008a. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood, 111: 588-595.
    Wang Y, Baskerville S, Shenoy A, Babiarz J E, Baehner L, Blelloch R. 2008b. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nature Genetics, 40: 1478-1483.
    Wang Y, Blelloch R. 2009. Cell cycle regulation by MicroRNAs in embryonic stem cells. Cancer Research, 69: 4093-4096.
    Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. 2007b. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genetics, 39: 380-385.
    Watabe T, Miyazono K. 2009. Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res, 19: 103-115.
    Weissman I L. 2000. Stem cells: units of development, units of regeneration, and units in evolution. Cell, 100: 157-168.
    Weissman I L, Anderson D J, Gage F. 2001. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annual Review of Cell and Developmental Biology, 17: 387-403.
    Wernig M, Meissner A, Cassady J P, Jaenisch R. 2008. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2: 10-12.
    Whitworth K, Springer G K, Forrester L J, Spollen W G, Ries J, Lamberson W R, Bivens N, Murphy C N, Mathialagan N, Green J A. 2004. Developmental expression of 2489 gene clusters during pig embryogenesis: an expressed sequence tag project. Biol Reprod, 71: 1230-1243.
    Whitworth K M, Agca C, Kim J G, Patel R V, Springer G K, Bivens N J, Forrester L J, Mathialagan N, Green J A, Prather R S. 2005. Transcriptional profiling of pig embryogenesis by using a 15-K member unigene set specific for pig reproductive tissues and embryos. Biol Reprod, 72: 1437-1451.
    Whitworth K M, Li R, Spate L D, Wax D M, Rieke A, Whyte J J, Manandhar G, Sutovsky M, Green J A,
    Sutovsky P, Prather R S. 2009. Method of oocyte activation affects cloning efficiency in pigs. Mol Reprod Dev, 76: 490-500.
    Wilson A, Laurenti E, Oser G, van der Wath R C, Blanco-Bose W, Jaworski M, Offner S, Dunant C F, Eshkind L, Bockamp E. 2008. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell, 135: 1118-1129.
    Wilson A, Murphy M J, Oskarsson T, Kaloulis K, Bettess M D, Oser G M, Pasche A C, Knabenhans C, Macdonald H R, Trumpp A. 2004. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes & Development, 18: 2747-2763.
    Wodarz A. 2005. Molecular control of cell polarity and asymmetric cell division in Drosophila neuroblasts. Current Opinion in Cell Biology, 17: 475-481.
    Wong C E, Paratore C, Dours-Zimmermann M T, Rochat A, Pietri T, Suter U, Zimmermann D R, Dufour S, Thiery J P, Meijer D. 2006. Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. The Journal of Cell Biology, 175: 1005-1015.
    Wong R C, Pera M F, Pebay A. 2008. Role of gap junctions in embryonic and somatic stem cells. Stem Cell Reviews, 4: 283-292.
    Wu M, Kwon H Y, Rattis F, Blum J, Zhao C, Ashkenazi R, Jackson T L, Gaiano N, Oliver T, Reya T. 2007. Imaging hematopoietic precursor division in real time. Cell Stem Cell, 1: 541-554.
    Xu N, Papagiannakopoulos T, Pan G, Thomson J A, Kosik K S. 2009. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 137: 647-658.
    Xu R H, Peck R M, Li D S, Feng X, Ludwig T, Thomson J A. 2005. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nature Methods, 2: 185-190.
    Yan Z, Wang Z, Sharova L, Sharov A A, Ling C, Piao Y, Aiba K, Matoba R, Wang W, Ko M S. 2008. BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cells, 26: 1155-1165.
    Yao S, Chen S, Clark J, Hao E, Beattie G M, Hayek A, Ding S. 2006. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proceedings of the National Academy of Sciences of the United States of America, 103: 6907-6912.
    Yi R, O'Carroll D, Pasolli H A, Zhang Z, Dietrich F S, Tarakhovsky A, Fuchs E. 2006. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nature Genetics, 38: 356-362.
    Yi R, Pasolli H A, Landthaler M, Hafner M, Ojo T, Sheridan R, Sander C, O'Carroll D, Stoffel M, Tuschl T. 2009. DGCR8-dependent microRNA biogenesis is essential for skin development. Proceedings of the National Academy of Sciences of the United States of America, 106: 498-502.
    Yi R, Poy M N, Stoffel M, Fuchs E. 2008. A skin microRNA promotes differentiation by repressing 'stemness'. Nature, 452: 225-229.
    Yilmaz O H, Valdez R, Theisen B K, Guo W, Ferguson D O, Wu H, Morrison S J. 2006. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441: 475-482.
    Ying Q L, Nichols J, Chambers I, Smith A. 2003. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115: 281-292.
    Ying Q L, Nichols J, Evans E P, Smith A G. 2002. Changing potency by spontaneous fusion. Nature, 416: 545-548.
    Ying Q L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A. 2008. The groundstate of embryonic stem cell self-renewal. Nature, 453: 519-523.
    Yoshida S, Shimmura S, Nagoshi N, Fukuda K, Matsuzaki Y, Okano H, Tsubota K. 2006. Isolation of multipotent neural crest-derived stem cells from the adult mouse cornea. Stem Cells, 24: 2714-2722.
    Yu B D, Hess J L, Horning S E, Brown G A, Korsmeyer S J. 1995. Altered Hox expression and segmental identity in Mll-mutant mice. Nature, 378: 505-508.
    Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science, 318: 1917-1920.
    Zernicka-Goetz M, Morris S A, Bruce A W. 2009. Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet, 10: 467-477.
    Zhang J, Grindley J C, Yin T, Jayasinghe S, He X C, Ross J T, Haug J S, Rupp D, Porter-Westpfahl K S, Wiedemann L M. 2006. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature, 441: 518-522.
    Zhao C, Sun G, Li S, Shi Y. 2009a. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nature Structural & Molecular Biology, 16: 365-371.
    Zhao M, Isom S C, Lin H, Hao Y, Zhang Y, Zhao J, Whyte J J, Dobbs K B, Prather R S. 2009b. Tracing the stemness of porcine skin-derived progenitors (pSKP) back to specific marker gene expression. Cloning Stem Cells, 11: 111-122.
    Zheng H, Ying H, Yan H, Kimmelman A C, Hiller D J, Chen A J, Perry S R, Tonon G, Chu G C, Ding Z. 2008. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature, 455: 1129-1133.
    Zhong W, Chia W. 2008. Neurogenesis and asymmetric cell division. Current Opinion in Neurobiology, 18: 4-11.
    Zhou B, Wang S, Mayr C, Bartel D P, Lodish H F. 2007. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proceedings of the National Academy of Sciences of the United States of America, 104: 7080-7085.
    Zimmerman L B, De Jesus-Escobar J M, Harland R M. 1996. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell, 86: 599-606.
    Zirlinger M, Lo L, McMahon J, McMahon A P, Anderson D J. 2002. Transient expression of the bHLH factor neurogenin-2 marks a subpopulation of neural crest cells biased for a sensory but not a neuronal fate. Proceedings of the National Academy of Sciences of the United States of America, 99: 8084-8089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700