IEEE 802.16e OFDM系统MAC层调度和资源管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着移动通信的快速发展和无线宽带接入的迫切需要,IEEE 802.16e快速登台亮相。但是,相对其比较成熟的市场环境,IEEE 802.16e标准尚存在诸多技术问题,其中包括MAC层调度和资源管理。MAC层调度和资源管理是服务基站(BS)对可分配传输资源进行有效管理的调度操作,涉及调度服务、动态频率选择、休眠模式和越区切换等操作。IEEE 802.16e标准只定义了MAC层调度和资源管理的功能模块以及各模块的基本内容和实施原则,并没有提出具体的可操作方案或实施算法。因此,对于MAC层调度和资源管理的研究,特别是在提高系统资源利用率和支持终端移动性方面,具有非常重要的现实意义和实用价值。
     本文首先研究了调度服务算法对可分配传输资源的有效管理。基于PF(Proportional Fairness)调度算法,提出了非实时、实时和综合调度服务优化算法;根据资源分配单元的不同将非实时和综合调度服务算法分别区分为基于OFDM符号(Symbol)和子信道(Subchannel)的算法;通过对实时业务的数学建模,提出了一种调度服务类型:irtPS(优化的实时查询调度)。仿真结果显示,这些优化算法满足了各种调度服务类型的QoS要求,以短时间不公平为代价保证了长时间公平,并在兼顾公平的前提下实现了系统资源利用率的最大化。
     其次,研究了动态频率选择方案对可分配传输资源容量的影响。提出了一种优化的动态频率选择方案,该方案是对资源分配单元和调度信息传递在子信道域、调制编码域和子载波域的三维选择。仿真结果显示,当IEEE 802.16e OFDM系统工作在非许可频段时,引入该优化方案后,BER性能和系统容量较引入前均有所改善,但BER性能的改善也以牺牲一定的系统容量为代价。
     再次,研究了移动终端(MS)通过休眠模式来减少其对可分配传输资源的占用。提出了最大化休眠模式能量节省效率的方法,以减少移动终端对空中接口资源的占用,从而提高系统资源的利用率。并对两种休眠模式状态进行了数学建模:单个功率节省类型I和多个功率节省类型组合。数学分析结果显示,基于最佳的休眠模式时间参数设置,可以最大化休眠模式的能量节省效率。
     最后,研究了越区切换对MAC层调度和资源管理的影响。为了最大化系统资源利用率,提出了基于不同的调度服务类型选择越区切换机制的方案,该方案在满足调度服务延时性能的基础上,最小化越区切换相关的MAC层开销。仿真结果显示,越区切换延时性能的改善是以一定的MAC层开销为代价,在满足调度服务延时性能基础上,可以选择MAC层开销较小的越区切换机制。
Recently, with rapid development of mobile communication and urgent requirement of wireless broadband access, IEEE 802.16e comes into existance. But, compared with its mature market, IEEE 802.16e specification has many technical problems, such as MAC Layer Scheduling and Resource Management. The MAC Layer Scheduling and Resource Management refers to operation of serving BS (Base Station) to manage effectively allocable transmission resources, which involves Scheduling Services, Dynamic Frequency Selection, Sleep Mode, Handover etc. IEEE 802.16e specification only defines function modules of MAC Layer Scheduling and Resource Management, as well as the basic content and implementation rules of the function modules, but does not propose specifically the feasible schemes or implementing algorithms. Hence, studies of MAC Layer Scheduling and Resource Management, especially on how to improve utilization efficiency of system resources and how to support mobility of the terminal, have great realistic significance and economical value.
     This paper firstly investigates Scheduling Service algorithms by which effective management of allocable transmission resources is implemented. It proposes non-real-time, real-time and integrated scheduling service algorithms based on PF (Proportional Fairness) scheduling algorithm; according to different definitions of traffic allocation units, divides non-real-time and integrated scheduling service algorithms respectively into algorithms based on OFDM symbol and those based on subchannel; proposes a real-time scheduling service type, irtPS (Improved Real-Time Polling Scheduling), by mathematically modelling real-time traffic. Simulation results show that the proposed algorithms can satisfy QoS requirements of each scheduling service type, ensure long-time fairness at the expense of short-time fairness, and maximize utilization efficiency of system resources taking fairness into account.
     Secondly, this paper studies Dynamic Frequency Selection scheme which redefines allocable transmission resources. It proposes an improved Dynamic Frequency Selection scheme, in which traffic allocation unit and scheduling information delivery are selected by subchannel domain, modulation and coding domain, subcarrier domain. Simulation results show that, when IEEE 802.16e OFDM system working at unlicensed bands, the proposed scheme can improve BER performance and system capacity, but the improvement of BER performance is achieved at the expense of sytem capacity.
     Thirdly, this paper explores how to reduce MS’s (Mobile Subscriber) occupation of allocable transmission resources through sleep mode. It proposes a method by which energy saving efficiency of the sleep mode is maximized, thus MS’soccupation of air-interface resources is reduced, and then utilization efficiency of system resources is increased; models mathetically two sleep mode states, including single Power Saving Class I and several Power Saving Classes coexisting with each other. Mathetical analysises show that energy saving efficiency of the sleep mode is maximized by optimizing time parameter configuration of the sleep mode.
     Finally, this paper inspects influence of handover on MAC Layer Scheduling and Resource Management. It proposes a scheme that, in order to maximize utilization efficiency of system resources, different handover mechanisms are selected depending on distinct scheduling service types, and this scheme minimizes MAC layer overhead related to handover on prerequisite of guaranteeing delay performance of scheduling services. Simulation results show that delay performance of handover is improved at the expense of more MAC overhead, and the handover mechanism with less MAC overhead can be selected on the basis of guaranteeing delay performance of scheduling services.
引文
[1] Walter Honcharenko, Jan P. Kruys, David Y. Lee, et al, Broadband Wireless Access, IEEE Communications Magazine, 1997, 35(1): 20-26.
    [2] Roger B. Marks, the IEEE 802.16 Working Group on Broadband Wireless, IEEE Network, 1999, 13(2): 4-5.
    [3] About the IEEE, http://www.ieee.org/web/aboutus/home/index.html.
    [4] LAN/MAN Standards Communittee of the IEEE Computer Society, IEEE Std 802.15.1-2005, IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for wireless personal area networks (WPANs), New York, NY 10016-5997, USA: IEEE, June 2005.
    [5] LAN/MAN Standards Communittee of the IEEE Computer Society, IEEE Std 802.15.3b-2005, IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANS), New York, NY 10016-5997, USA: IEEE, May 2006.
    [6] LAN/MAN Standards Communittee of the IEEE Computer Society, IEEE Std 802.15.3b-2005, IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANS), New York, NY 10016-5997, USA: IEEE, September 2006.
    [7] LAN/MAN Standards Communittee of the IEEE Computer Society, IEEE Std 802.11-1997, Information technology- Telecommunications and information exchange between systems- Local and metropolitan area networks- Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, New York, NY 10016-5997, USA: IEEE, 1997.
    [8] LAN/MAN Standards Communittee of the IEEE Computer Society, IEEE Std 802.11-2007, IEEE standard for Information technology- Telecommunications and information exchange between systems- Local and metropolitan area networks- Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, New York, NY 10016-5997, USA: IEEE, June 2007.
    [9] LAN/MAN Standards Communittee of the IEEE Computer Society, IEEE Std 802.11a-1999, Supplement to IEEE Standard for Information technology- Telecommunications and information exchange between systems- Local and metropolitan area networks- Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5GHZ Band, New York, NY 10016-5997, USA: IEEE, December 1999.
    [10]张金文,802.16宽带无线城域网技术,北京:电子工业出版社,2006,III-IV.
    [11] LAN/MAN Standards Communittee of the IEEE Computer Society, IEEE Std 802.16-2004, IEEE Standard for Local and metropolitan area networks– Parts16: Air Interface for Fixed Broadband Wireless Access Systems, New York, NY 10016-5997, USA: IEEE, October 2004.
    [12] LAN/MAN Standards Communittee of the IEEE Computer Society, IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor1-2005, IEEE Standard for Local and metropolitan area networks– Parts16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems– Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, New York, NY 10016-5997, USA: IEEE, February 2006.
    [13] WiMAX Forum Overview, http://www.wimaxforum.org/about/.
    [14] Israel Koffman, Vincentzio Roman, Broadband Wireless Access Solutions Based on OFDM Access in IEEE 802.16, IEEE Communications Magazine, 2002, 40(4): 96-103.
    [15] LAN/MAN Standards Communittee of the IEEE Computer Society, IEEE Std 802.16-2001, IEEE Standard for Local and metropolitan area networks– Parts16: Air Interface for Fixed Broadband Wireless Access Systems, New York, NY 10016-5997, USA: IEEE, April 2002.
    [16] IEEE Standards Association Overview, http://standards.ieee.org/sa/sa-view.html.
    [17] LAN/MAN Standards Communittee of the IEEE Computer Society, IEEE Std 802.16a-2003, IEEE Standard for Local and metropolitan area networks– Parts16: Air Interface for Fixed Broadband Wireless Access Systems– Amendment 2: Medium Access Control Modifications and Additional Physical Layer Specifications for 2-11 GHz, New York, NY 10016-5997, USA: IEEE, April 2003.
    [18] LAN/MAN Standards Communittee of the IEEE Computer Society, IEEE Std 802.16c-2002, IEEE Standard for Local and metropolitan area networks– Parts16: Air Interface for Fixed Broadband Wireless Access Systems– Amendment 1: Detailed System Profiles for 10-66 GHz, New York, NY 10016-5997, USA: IEEE, January 2003.
    [19] LAN/MAN Standards Communittee of the IEEE Computer Society, IEEE Std 802.16f-2005, IEEE Standard for Local and metropolitan area networks– Parts16: Air Interface for Fixed Broadband Wireless Access Systems– Amendment 1: Management Information Base, New York, NY 10016-5997, USA: IEEE, December 2005.
    [20] Liang Xiao, Shidong Zhou, Yan Yao, Qos-Oriented Scheduling Algorithm for Mobile Multimedia in OFDM, IEEE Communication Society, Proceedings of Personal, Indoor and Mobile Radio Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2003, 545~549.
    [21] Patrick Svedman, Sarah Kate Wilson, Leonard J., et al, A Simplified Opportunistic Feedback and Scheduling Scheme for OFDM, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2004, 1878-1882.
    [22] Ying Jun Zhang, Khaled Ben Letaief, Adaptive Resource Allocation and Scheduling for Multiuser Packet-based OFDM Networks, IEEE Communication Society, Proceedings of International Confernce on Communictaions, Piscataway, NJ 08855-1331, USA: IEEE, 2004, 2949-2953.
    [23] Lei Li, Zhisheng Niu, An Integrated Subchannel Scheduling Algorithm for Adpative Modulation and Coding (AMC) MIMO-OFDM Wireless Systems, IEEE, Proceedings of Joint Conference of the 10th Asia-Pacific Confernce on Communications and the 5th International Symposium on Multi-Dimensional Mobile Communications, NY 10016-5997, USA: IEEE, 2004, 90-94.
    [24] Jun Cai, Xuemin Shen, Jon W. Mark, Downlink Resource Management with Adaptive Modulation and Dynamic Scheduling for OFDM Wireless Communication Systems, IEEE, Proceedings of Wireless Communications and Networking Conference, New York, NY 10016-5997, USA: IEEE, 2004, 2143-2147.
    [25] Ying Jun Zhang, Soung Chang Liew, Link-Adaptive Largest-Weighted-Throughput Packet Scheduling for Real-Time Traffics in Wireless OFDM Networks, IEEE, Proceedings of Global Telecommunications Conference, New York, NY 10016-5997, USA: IEEE, 2005, 2490-2494.
    [26] Zhi Zhang, Ying He, Edwin K. P. Chong, Opportunistic Downlink Scheduling for Multiuser OFDM Systems, IEEE, Proceedings of Wireless Communications and Networking Conference, New York, NY 10016-5997, USA: IEEE, 2005, 1206-1212.
    [27] Antoni Morell, Antonio PASCUAL-Iserte, Ana I. Perez-Neira, et al, Robust Scheduling in MIMO-OFDM Multi-user Systems Based on Convex Optimization, IEEE Signal Processing Society, Proceedings of First International Workshop on Computitional Advances in Multi-Snsor Adaptive Processing, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2005, 113-116.
    [28] Mohanmed Ali Regaeig, Noureddine Hamdi, Mohamed-Slim Alouini, Switched-Based Reduced Feedback OFDM Multi-user Opportunistic Scheduling, IEEE, Proceedings of International Symposium on Personal, Indoor and Mobile Radio Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2005, 2495-2499.
    [29] Guocong Song, Ye Li, Utility-Based Resource Allocation and Scheduling in OFDM-Based Wireless Broadband Networks, IEEE Communication Magazine, 2005, 43(12): 127-134.
    [30] Zhifeng Diao, Dongxu Shen, Victor O. K. Li, An Adaptive Packet Scheduling Algorithm in OFDM Systems with Smart Antennas, IEEE, International Symposium on Personal, Indoor and Mobile Radio Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2005, 2151-2155.
    [31] Thomas Michel, Gerhard Wunder, Minimum Rates Scheduling for OFDM Broadcast Channels, IEEE, Proceedings of International Conference on Acoustics, Speech and Signal Processing, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 41-44.
    [32] Rainer Grunheid, Hermann Rohling, Karsten Bruninghaus, et al, Self-Organized Beamforming and Opportunistic Scheduling in an OFDM-based Cellular Network, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 813-817.
    [33] Ander Persson, Tony Ottosson, Gunther Auser, Inter-Sector Scheduling in Multi-user OFDM, IEEE Communication Society, Proceedings of International Confernce on Communictaions, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 4415-4419.
    [34] Lichun Wang, Chengwei Chiu, Chujung Yeh, et al, Coverage Enhancement for OFDM-based Spatial Multiplexing Systems by Scheduling, IEEE, Proceedings of Wireless Communications and Networking Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 1440-1444.
    [35] Jinri Huang, Zhisheng Niu, Buffer-Aware and Traffic-Depedent Packet Scheduling in Wireless OFDM Networks, IEEE, Proceedings of Wireless Communications and Networking Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 1556-1660.
    [36] Nobuhiko Miki, Yoshihisa Kishiyama, Kenichi Higuchi, et al, Optimum Adaptive Modulation and Channel Coding Scheme for Frequency Domain Channel-Dependent Scheduling in OFDM Based Evoloved UTRA Downlink, IEEE, Proceedings of Wireless Communications and Networking Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 1785-1790.
    [37]李黎,朱光喜,肖啸,OFDM下行链路的跨层自适应传输算法,华中科技大学学报,2005,33(9):22-25。
    [38]俞一帆,纪红,乐光新,一种基于OFDM的具有QoS保证的无线IP分组调度算法,北京邮电大学学报,2006,29(3):28-29。
    [39] A. Jajali, R. Padovani, R. Pankaj, Data Throughput of CDMA-HDR a High Efficiency-High Data Rate Personal Communication Wireless System, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2000, 1854-1858.
    [40] Anchun Wang, Xiaoming She, Shidong Zhou, et al, Asymptotic Analysis of Fair Scheduling in the OFDM Systems, IEEE Communication Society, International Symposium on Personal, Indoor and Mobile Radio Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2003, 1186-1191.
    [41] Changho Suh, seunghoon Park, Youngkwon Cho, Efficient Algorithm for Proportional Fairness Scheduling in Multicast OFDM Systems, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2005, 1880~1884.
    [42] Guanding Yu, Zhaoyang Zhang, Peiliang Qiu, Fair Resource Scheduling Algorithm for Wireless OFDM Systems, IEEE, Proceedings of International Conference on Communications, Circuits and Systems, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2005, 374-377.
    [43] Haiying, Julei Zhu, Roshdy H. M. Hafez, Novel Scheduling Algorithms for Multimedia Service in OFDM Broadband Wireless Systems, IEEE Communication Society, Proceedings of International Conference on Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 772-777.
    [44] Hanbyul Seo, Byeong Gi Lee, Proportional-Fair Power Allocation with CDF-Based Scheduling for Efficient Multiuser OFDM Systems, IEEE Transactions on Wireless Communication, 2006, 5(5): 978-983.
    [45] Zhen Kong, Jiangzhou Wang, Yukwong Kwok, A New Cross Layer Approach to Qos-Aware Proportional Fairness Packet Scheduling in Downlink of OFDM Wireless Systems, IEEE, Proceedings of International Conference on Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 5695-5700.
    [46] Daehyon Kim, Aura Ganz, Fair and Efficient Multihop Scheduling Algorithm for IEEE 802.16 BWA Systems, IEEE, Proceedings of International Conference on Broadband Networks, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2005, 895-901.
    [47] Vandana Singh, Vinod Sharma, Efficient and Fair Scheduling of Uplink and Downlink in IEEE 802.16 OFDMA Networks, IEEE, Proceedings of Wireless Communications and Networking Conference, New York, NY 10016-5997, USA: IEEE, 2006, 984-990.
    [48] Seungwoon Kim and Ikjun Yeom, TCP-Aware Uplink Scheduling for IEEE 802.16, IEEE Communications Letters, 2007, 11(2): 146-148.
    [49] Jonny Sun, Yanling Yao, Hongfei Zhu, Quality of Service Scheduling for 802.16 Broadband Wireless Access Systems, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 1221-1225.
    [50] Harish Shetiya, Vinod Sharma, Algorithms for Routing and Centralized Scheduling in IEEE 802.16 Mesh Networks, IEEE, Proceedings of Wireless Communications and Networking Conference, New York, NY 10016-5997, USA: IEEE, 2006, 147-152.
    [51] Nararat Ruangchaijatupon, Yushen Ji, Adaptive with Firness in IEEE 802.16e Networks, IEEE, Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 1976-1979.
    [52] R.Perumalraja, J.Jackson Juliet Roy, S.Radha, Multimedia Supported Uplink Scheduling for IEEE 802.16d OFDMA Network, IEEE, Proceedings of Annual India Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 1-5.
    [53] Howon Lee, taesoo Kwon, Dong-Ho Cho, Geunhwi Lim, et al, Performance Analysis of Scheduling Algorithms for VoIP Services in IEEE 802.16e Systems, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 1231-1235.
    [54] K. vinay, N. Sreenivasulu, D. Jayaram, et al, Performance Evaluation of End-to-End Delay by Hybrid Scheduling Algorithm for QoS in IEEE 802.16 Network, IEEE, Proceedings of IFIP International Conference on Wireless and Optical Communications Networks, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2006, 1-5.
    [55] R. Iyengar, K. Kar, B. Sikdar, Scheduling Algorithms for Point-to-Multipoint Operation in IEEE 802.16 Networks, IEEE, International Symposium on Modelling and Optimzation in Mobile, Ad Hoc and Wireless Networks, Los Almitos, CA, USA: 2006, 1-7.
    [56] Chihong Jiang, Tzechieh Tsai, Token Bucket Based CAC and Packet Scheduling for IEEE 802.16 Broadband Wireless Access Networks, IEEE Communications Society, Proceedings of Consumer Communications and Networking Conference, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2006, 183-187.
    [57] Jonny Sun, Yaling Yao, Hongfei Zhu, Quality of Service Scheduling for 802.16 Broadband Wireless Access Systems, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 1221-1225.
    [58] Leonardo Badia, Andrea Baiocchi, Alfredo Todini, et al, On the Impact of Physical Layer Awareness on Scheduling and Resource Allocation in Broadband Multicellular IEEE 802.16 Systems, IEEE Wireless Communications, 2007, 14(1): 36-43.
    [59] Howon Lee, Taesoo Kwon, Dong-Ho Cho, An Efficient Uplink Scheduling Algorithm for VoIP Services in IEEE 802.16 BWA Systems, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2004, 3070-3074.
    [60] Dusit Niyato, Ekram Hossain, Queue-Aware Uplink Bandwidth Allocation and Rate Control for Polling Service in IEEE 802.16 Broadband Wireless Networks, IEEE Transactions on Mobile Computing, 2006, 5(6): 668-679.
    [61] Howon Lee, Taesoo Kwon, An Enhanced Uplink Scheduling Algorithm Based on Voice Activity for VoIP Services in IEEE 802.16d/e System, IEEE Communication Letters, 2005, 9(8): 691-693.
    [62] Antonio Lera, Antonella Molinaro, Sara Pizzi, Channel-Aware Scheduling for QoS and Fairness Provisioning in IEEE 802.16/WiMAX Broadband Wireless Access Systems, IEEE Networks, 2007, 21(5): 34-41.
    [63] Dusit Niyato, Ekram Hossain, Queue-Aware Uplink Bandwidth Allocation for Polling Service in IEEE 802.16 Broadband Wireless Networks, IEEE, Proceedings of Global Telecommunications Conference, New York, NY 10016-5997, USA: IEEE, 2005, 3702-3706.
    [64] Masakazu Sengoku, Telephone Traffic in a Mobile Radio Communicaion System Using Dynamic Frequency Assignments, IEEE Transactions on Vehicular Technology, 1980, 29(2): 270-278.
    [65] H C Tan, M K Gurcan, Dynamic Frequency Sharing for Radio-Local Area Networks, IEE, Proceedings of International Confernece on Mobile Radio and Personal Communications, Stevenage, UK: IEE, 1991, 286-292.
    [66] Marc Peter Althoff, Markus Scheibenbogen, Peter Seidenberg, G-CBWL: A Dynamic Frequency Allocation Technique Suitable for GSM, IEEE, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Piscataway, NJ 08855-1331, USA: IEEE, 1998: 1443-1447.
    [67] Ana Pajares, Juan Carlos Guerri, Manuel Esteve, et al, Dynamic Frequency and Resource Allocation with Adaptive Error Control Based on RTP for Multimedia QoS Guarantees in Wireless Networks, IEEE CS, Proceedings of International Conference on Multimedia Computing and Systems, Los Almitos, CA, USA: IEEE, 1999: 333-337.
    [68] Jose Gimenez, Pablo Tapia, Matti Salmenkaita, et al, Analysis of Dynamic Frequency and Channel Assignement in Irregular Network Environment, IEEE, International Symposium on Wireless Personal Multimedia Communications, Piscataway, NJ 08855-1331, USA: IEEE 2002, 863-867.
    [69] Yuqin Chen, Ning Han, SungHwan Shon, et al, Dynamic Frequency Allocation Based on Graph Coloring and Local Bargaining for Multi-Cell WRAN System, IEEE Communication Society, Proceedings of Asia Pacific Conference on Communications, Piscataway, NJ 08855-1331, USA: IEEE 2006, 1-5.
    [70]许国军,沈连丰,胡静,小区域移动通信系统动态频率选择算法的研究,电子学报,2003,31(10):1598-1600。
    [71]许国军,沈连丰,宋铁成,WLAN/WPAN环境中模拟退火动态频率选择算法的研究,通信学报,2004, 25(5):59-66。
    [72] James O. Neel, Jeffrey H. Reed, Performance of Distributed Dynamic Frequency Selection Schemes for Interference Reducing Networks, Proceedings of MILCOM 2006, Piscataway, NJ 08855-1331, USA: IEEE 2006, 1-7.
    [73] Wonjong Rehee, John M. Cioffi, Increase in Capacity of Multiuser OFDM System Using Dynamic Subchannel Allocation, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2000, 1085-1089.
    [74] Teo Choon Heng Alen, As Madhukumar, Capacity Enhancement of a Multi-User OFDM System Using Dynamic Frequency Allocation, IEEE Transactions on Broadcasting, 2003, 49(4): 344-353.
    [75] Yuqin Chen, SungHwan Shon, Dynamic Frequency selection in OFDMA, IEEE, Proceedings of International Conference Advanced Communication Technology, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2006, 574-578.
    [76] A. Czylwik, Adaptive OFDM for Wideband Radio Channels, IEEE Communication Society, Proceedings of Global Telecommunications Conference, New York, NY 10016-5997, USA: IEEE, 1996, 713-718.
    [77] C. Y. Wong, C. Y. Tsui, et al, A Real-Time Subcarrier Allocation Scheme for Multiple Access Downlink OFDM Transmission, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 1999, 1124-1128.
    [78] Teo Choon Heng Alen, AS Madhukumar, Francois Chin, Capacity Enhancement of a Multi-User OFDM System Using Dynamic Frequency Allocation, IEEE Transactions on Broadcasting, Piscataway, NJ 08855-1331, USA: IEEE, 2003, 49(4): 1866-1870.
    [79] Shahab Sanayei, Aria Nosratinia, Naofal Aldhahir, Opportunistic Dynamic Subchannel Allocation in Multiuser OFDM Networks with Limited Feedback, IEEE, IEEE Information Theory Workshop, Piscataway, NJ 08855-1331, USA: IEEE, 2004, 182-186.
    [80] Yibing Lin, Yumin Chuang, Modeling the Sleep Mode for Cellular Digital Packet Data, IEEE Communications Letters, 1999, 3(3): 63-65.
    [81] Jae-Woo So, Dong-Ho Cho, On Effect of Timer Object for Sleep Mode Operation in cdma2000 System, IEEE, Proceedings of International Conference on Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2000, 555-559.
    [82] Carla-Fabiana Chiasserini, Ramesh R. Rao, Improving Energy Saving in Wireless Systems by Using Dynamic Power Management, IEEE Transactions on Wireless Communications, 2003, 2(5): 1090-1100.
    [83] Sun-Jung Kwon Yun Won Chung, Dan Keun, Sung, Queueing Model for Sleep-Mode Operation in Cellular Digital Packet Data, IEEE Transactions on Vechicular Technology, 2003, 52(4): 1158-1162.
    [84] Luis Alonso, Ramon Agusti, Automatic Rate Adaption and Energy-Saving Mechanisms Based on Cross-Layer Information for Packet-Switched Data Networks, IEEE Radio Communications, 2004, 42(3): 15-20.
    [85] Qingchun Yu, Huabei Zhou, Advanced MAC Protocol with Adjustable Sleep Mode for Wireless Sensor Networks, IEEE, Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2006, 1-4.
    [86] Lefteris Mamatas, Vassilis Tsaoussidis, Transport Protocol Behavior and Energy-Saving Potential, IEEE, Proceedings of Conference on Local Computer Networks, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 889-896.
    [87] Jun-Bae Seo, Seung-Que Lee, Performance Analysis of Sleep Mode Operation in IEEE802.16e, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2004, 1169-1173.
    [88] Sayande Mukherjee, Kin K. Leung, Protocol and Control Mechanisms to Save Terminal Energy in IEEE802.16 Networks, IEEE, Proceedings of Pacific Rim Conference on Communications, Computers and Signal Processing, Piscataway, NJ 08855-1331, USA: IEEE, 2005, 5-8.
    [89] Yang Xiao, Energy Saving Mchanism in the IEEE 802.16e Wireless MAN, IEEE Communication Letters, 2005, 9(7): 595-597.
    [90] Yang Xiao, Performance Analysis of an Energy Saving Mechanism in the IEEE 802.16e Wireless MAN, IEEE, Proceedings of Consumer Communications and Networking Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 406-410.
    [91] Yan Zhang and Masayuki Fujise, Energy Management in the IEEE802.16e MAC, IEEE Communication Letters, 2006, 9(4): 311-313.
    [92] Neung-Hyung Lee, Saewoong Bahk, MAC Sleep Mode Control Considering Downlink Traffic Pattern and Mobility, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2005, 2074-2080.
    [93] Youlin Chen, Shiaoli Tsao, Energy-efficient Sleep-mode Operations for Broadband Wireless Access Systems, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 1112-1116.
    [94] Fangming Xu, Wei Zhong, Zheng Zhou, A Novel Adaptive Energy Saving Mode in IEEE 802.16e System, IEEE, Proceedings of MILCOM 2006, Piscataway, NJ 08855-1331, USA: IEEE, 1-6.
    [95] Kwanghun Han, sunghyun Choi, Performance Analysis of Sleep Mode Operation in IEEE 802.16e Mobile Broadband Wireless Access Systems, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 1141-1145.
    [96] Shengqing Zhu, Tianlei Wang, Enhanced Power Efficient Sleep Mode Operation for IEEE 802.16e Based WiMAX, IEEE, IEEE Mobile WiMAX Symposium, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 43-47.
    [97] N. Mohanmmad Pour Nejatian, M.M. Nayebi, Evaluating the Effect of non-Poisson Traffic Patterns on Power Consumption of Sleep Mode in the IEEE 802.16e MAC, IEEE, Proceedings of International Conference on Wireless Optical Communications Networks, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 1-5.
    [98]刘利,李津生,洪佩琳,IEEE 802.16e休眠模式算法的研究和改进,计算机学报,2007,30(1):146-157。
    [99] Yin Ge, Gengsheng Kuo, An Efficient Sleep Mode Management Scheme in IEEE 802.16e Networks, IEEE, Proceedings of International Conference on Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 5957-5962.
    [100] Mingon Kim, Minho Kang, Jungyul Choi, Performance Evaluation of the Sleep Mode Operation in the IEEE 802.216e MAC, IEEE Communications Society, Proceedings of International Conference on Advanced Communication Technology, New York, NY 10016-5997, USA: IEEE, 2007, 602-607.
    [101] Yunju Park, Gang Uk Hwang, Performance Modelling and Analysis of the Sleep-Mode in IEEE802.16e WMAN, IEEE, Proceedings of Vechicular Technology Confernce, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 2801-2806.
    [102] Sik Choi, Gyung-Ho Hwang, Fast handover scheme for real-time downlink services in IEEE 802.16e BWA system, IEEE, Proceedings of Vehicular Technology Conference, Piscataway, NJ 08855-1331, USA: IEEE, 2005, 2028-2032.
    [103] Doo Hwan Lee, Kyandoghere Kyamakya, Jean Paul Umondi, Fast handover algorithm for IEEE 802.16e broadband wireless access system, IEEE Communication Society, International Symposium on Wireless Pervasive Computing, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2006, 1-6.
    [104] Abhinav Garg, Kin Choong Yow, Determing the Best Network to Handover Among Various IEEE 802.11 and IEEE 802.16 Networks by A Mobile Device, IEE, Proceedings of Mobility Conference, Stevenage UK: IEE, 2005, 1-6.
    [105] Kyung-Ah Kim, Chong-Kwon Kim, Tongsok Kim, A seamless-Handover Mechanism for IEEE 802.16e Broadband Wireless Access, Intel Corporation, Lecture Notes in Computer Science, Heidelgerg D-69121, Germany: Springr Verlag, 2005, 527-534.
    [106] Minsik Shim, Hwasung Kim, Sangho Lee, A Fast Handover Mechanism for IPv6 Based WiBro System, IEEE, Proceedings of International Conference Advanced Communication Technology, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2006.
    [107] Yonghui Zhang, Xinhua Jiang, Zhangxi Lin, A Pre-Anticipated Handover Seamless QoS Scheme for IEEE 802.16e Based on Mobile Station Character Pattern, IEEE, Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2006, 1-4.
    [108] Sergey Moiseev, Stanislav Filin, Mikhail Kondakov, et al, Load-Balancing QoS-Guaranteed Handover in the IEEE 802.16e OFDMA Network, IEEE, Proceedings of Global Telecommunications Conference, New York, NY 10016-5997, USA: IEEE, 2006, 1-5.
    [109] Jinsoo Park, Dong-Hee Kwon, Young-Joo Suh, An Interaged Handover Scheme for Fast Mobile IPv6 over IEEE 802.16e Sytems, IEEE, Proceedings of Vechicular Technology Confernce, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 2743-2747.
    [110] Huijuan Yao, Gengsheng Kuo, An Integrated QoS-Aware Mobility Architecture for Seamless Handover in IEEE 802.16e Mobile BWA Networks, IEEE, Proceedings of MILCOM 2006, Piscataway, NJ 08855-1331, USA: IEEE, 2006, 1-7.
    [111] Ok Sik Yang, Seong Gon Choi, Jun Kyun Choi, et al, A Handover Framework for Seamless Service Support Between Wired and Wireless Networks, IEEE, Proceedings of International Conference Advanced Communication Technology, Piscataway, NJ 08855-1331, USA: IEEE Computer Society, 2006, 1791-1796.
    [112] Wenhua Jiao, Pin Jiang, Yuanyuan Ma, Fast Handover Scheme for Real-Time Applications in Mobile WiMAX, IEEE, Proceedings of International Conference on Communications, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 6038-6042.
    [113] Sang Hoon Lee, Youngnam Han, A Novel Inter-FA Handover Scheme for Load Balancing in IEEE 802.16e System, IEEE, Proceedings of Vechicular Technology Confernce, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 763-767.
    [114] Ji Hyun Park, Ki-Young Han, Dong-Ho Cho, Reducing Inter-Cell Handover Events based on Cell ID Information in Multi-hop Relay Systems, IEEE, Proceedings of Vechicular Technology Confernce, Piscataway, NJ 08855-1331, USA: IEEE, 2007, 743-747.
    [115] Vinh Dien Hoang, Maode Ma, Ryu Miura, et al, A Novel Way for Handover in Maritime WiMAX Mesh Network, Proceedings of International Conference on Telecommunications, New York, NY 10016-5997, USA: IEEE, 2007, 1-4.
    [116] David J Wright, Maintaining QoS During Handover Among Multiple Wireless Access Technologies, Proceedings of International Conference on Management of Mobile Business, New York, NY 10016-5997, USA: IEEE, 2007, 00-00.
    [117] Moon Kim, Su-Yong Kim, Sung-Joon Cho, A Study of Seamless Handover Service and QoS in Heterogeneous Wireless Networks, IEEE Communications Society, Proceedings of International Conference on Advanced Communication Technology, New York, NY 10016-5997, USA: IEEE, 2007, 1922-1925.
    [118] Minsik Shim, Hwasung Kim, Ilkyeun Ra, A Handover Mechanism for Reliable Multicast Service over WiBro Networks, IEEE Communications Society, Proceedings of International Conference on Advanced Communication Technology, New York, NY 10016-5997, USA: IEEE, 2007, 1081-1085.
    [119] Sun-Hee Lim, Okyeon Yi, Chang-Hoon Jung, et al, A Fast and Efficient Authentication Protocol for a Seamless Handover Between a WLAN AND WiBro, Proceedings of International conference on Communication systems Software and Middleware. Piscataway, NJ, USA: IEEE, 2007, 1-7.
    [120] Balamurali N., Devendra Jalihal, Robust timing and frequency synchronization algorithm for IEEE802.16 OFDM systems, IEEE, Proceedings of International Conference on Signal Processing and Communications. Piscataway, NJ, USA: IEEE Computer Society, 2004: 234-238.
    [121] Yiqun Ge, Wuxian Shi, Guobin Sun, A study of iterative joint synchronization for time offset and frequency offset in IEEE802.16d WirelessMAN OFDM system, IEEE, Proceedings of International Conference on Information, Communication and Signal Processing. Piscataway, NJ, USA: IEEE Computer Society, 2005: 1217-1221.
    [122] Jie-Ping Xu, Bo-Ran Guan, An efficient timing synchronization scheme for OFDM systems in IEEE 802.16d, IEEE, Proceedings of Asia-Pacific Microwave Conference. Piscataway, NJ, USA: IEEE, 2005.
    [123] Guojun Dong, Jufeng Dai, Robust Joint Timing and Frequency Synchronization Algorithm for IEEE802.16e OFDM System, Transactions of Tianjin University, 2007, 13(5): 360-364.
    [124]尹长川,罗涛,多载波宽带无线通信技术,北京:北京邮电大学出版社,2004,26-32。
    [125] P. T. Brady, A model for generating ON-OFF speech patterns in two-way conversations, Bell System Technical Journal, 1969, 48(7): 2445-2472.
    [126] Ali M. Dawood, Mohammed Ghabari, Content-based MPEG Video Traffic Modeling, IEEE Transactions on Multimedia, 1999, 1(1): 77-87.
    [127] C.H. Lie, C.K. Kodikara, MPEG-encoded Variable Bit-Rate Video Traffic, IEE Proceedings: Communications, 2005, 152(5): 749-756.
    [128] Channel Model for Fixed Broadband Wireless Access, IEEE802.16a-03/01, June 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700