ms2Bnap同源序列在萝卜—芥蓝异源四倍体中的克隆及表观遗传变异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雄性不育是高等植物一种常见的遗传学现象。从被子植物雄蕊原基分化到花粉成熟,要经历一系列形态、生理生化等方面的变化,如果这些变化任一过程出现异常,将导致雄性不育个体的产生。植物花粉的产生需要众多基因按照一定的时间、空间精细表达,是一个精准的基因调控过程。研究不同发育阶段花药和花粉特异基因的表达量可为花药基因的时空表达提供非常有价值的信息(Scott et al,1991)。
     萝卜-芥蓝异源四倍体是以萝卜为母本,芥蓝为父本,配制杂交组合,F1代经秋水仙素处理后经过连续自交得到稳定遗传的F10代,可以作为育种的桥梁作物以及饲料作物、油料作物,具有重要的研究价值。杂种F1代不育,在F10代以上育性恢复(Chen et al,2008),但仍有不育株出现,不育机制不详。
     本研究以萝卜-芥蓝异源四倍体(Raphanus sativus×Brassica alboglabra allopolyploids)F10代可育株和不育株花蕾为材料,通过半薄切片和石蜡切片,探讨此不育系花药败育时期及败育特点。该种不育材料属于单核花粉败育型不育,败育特点为:在四分体时期和单核花粉粒晚期绒毡层异常,出现液泡化现象。随着花粉粒的继续发育,液泡化现象有逐渐加剧,绒毡层细胞纵向伸长,侵占药室内部空间;形成的花粉粒凝集,与绒毡层一起解体,最终形成空的花粉囊,不能产生可见花粉粒。
     通过提取减数分裂期和单核期的花粉RNA,反转录为cDNA后以此为模板扩增育性相关基因ms2Bnap同源序列,结果仅减数分裂期能扩出产物。半定量RT-PCR实验表明ms2Bnap同源序列在花粉减数分裂时期可育株中的表达量高于不育株。另外,通过提取减数分裂时期的可育株、不育株花蕾DNA,对ms2Bnap同源序列进行克隆、测序,并将测序结果进行序列比对,比对结果表明:(1)从萝卜-芥兰异源四倍体中克隆的ms2Bnap同源序列mk和mb与ms2-gDNA、ms2Bnap-gDNA的同源性分别为82%和96%。(2)将mk和mb与ms2Bnap-gDNA进行序列比较分析显示:mk和mb有7个外显子、6个内含子,其中外显子大小为1961 bp,内含子大小为649 bp。每个内含子两端均存在典型的GT/AG双核苷酸结构。(3)将mk和mb的外显子序列进行比对,两者的同源性为99%。mk和mb外显子序列间有4个核苷酸存在差异。涉及到4个密码子,其中有两个密码子(AGG/AGA、ACA/ACC)突变为同义突变。另两个密码子(GCA/ACA、GAC/GAA)的突变为错义突变。
     本研究利用亚硫酸氢钠结合PCR(BSP)技术,选择ms2Bnap基因同源基因外显子中C+G含量高于40%的5个序列作为研究对象,初步检测减数分裂期ms2Bnap基因同源基因在F10可育、不育植株中的甲基化变异情况。F10可育株和不育株中f1-f5片段序列甲基化程度分别为2.5%和10.4%。可育和不育株中ms2Bnap基因同源序列的甲基化水平的差异可能与植物的育性相关。
Male sterility is an inheritable trait characterized by the inability of a plant to produce functional pollen. Pollen development is a complicated process and needs a lot of genes to express at certain time and space. In the process of pollen development in angiosperms, from stamens primordia differentiation to mature pollen, a series of morphological, physiological and biochemical changes have taken placed and if any abnormal change occurs, it will lead to male sterility. Data of different amount of gene expression can provide valuable information for anther development.
     F1 plants from intergeneric hybrids between Raphanus sativus L. (2n=18,RR) and Brassica alboglabra Bailey(2n=18,CC) were obtained by hand cross and through continuous selfing we get the stable genetic F10 generation. This new material has good prospects for the breeding of fodder crops or being used as a genetic bridge for intergenetic gene transfer. However, the lower seed fertility limited its practical utilization. Compared to F1 generation with complete sterility, F10 plants exhibited good fertility but there still had some sterile plants.The mechanisms of infertility are largely unknown.
     In present paper, paraffin and semi-thin sectioning were used to investigate the time of microspore abortion and characteristics of fertility alteration. Results showed that the male sterile line was abortive completely. The key stage of male sterility was from microsporocyte to microspores.The main characteristic was large vacuoles in tapetum. The tapetum of male sterile anther enlarged radial with a number of larger vacuoles; the surface of male sterile microspore was smooth without exine formation. Till the stage of later microspore, tapetum and microspores were disaggregated to be an empty pollen sac.
     RT-PCR was used to indentify the expressive stage of the gene homologous to ms2Bnap and the gene expression differences in F10 generation of Raphanus sativus×Brassica alboglabra allopolyploids male sterility and male fertility. The results showed that fragment homologous to ms2Bnap was steadily amplified from meiosis stage, while there was no PCR products using cDNA of single nucleus stage as template. These indicated that the gene homologous to ms2Bnap was not expressed in single nucleus stage. The gene expression amount in male fertility was higher than male sterility. Cloning and analyzing of sequence of gene homologous to ms2Bnap showed that there were four different nucleotides dispersed in the code region of the male sterility and male fertility, with two sites of synonymous mutations and two sites of missense mutation. This changes maybe related to sterility of F10 generation of Raphanus sativus×Brassica alboglabra allopolyploids.
     Bisulfite sequencing PCR was used to reveal DNA methylation variation of the gene homologous to ms2Bnap between male sterility and male fertility. The methylation ratio of fl-f5 fragments in sterile plants and fertile plants was 10.4% and 2.5%,respectively. This result indicate that the different methylation ratio between fertility and sterility may related to sterility of F10 generation of Raphanus sativus X Brassica alboglabra allopolyploids.
引文
1.董卫民,王宏,李凤兰.小麦在畜牧业生产中的应用.中国草食动物.2003,23(3):28-29.
    2.甘立军,夏凯,周燮.茉莉酸对拟南芥花粉育性的调控.植物生理学通讯,2004,40(3):269-274.
    3.景润春,黄青阳,朱英国.图位克隆技术在分离植物基因中的应用.遗传,2000,22(3):180-185.
    4.李德谋,侯磊,罗小英等.甘蓝型油菜隐性核不育两用系S45AB中与MS2Bnap基因同源片段的克隆及序列分析.作物学报,2002,28(1)1-5.
    5.李强,张慧,高凤云等.植物雄性育性相关基因的克隆方法.内蒙古农业科技,2008(3):21-24.
    6.李胜国,刘玉乐,田波.植物花粉发育的分子生物学研究进展.生物工程进展,1997,17(2):17-22.
    7.李象松,魏丽华,李炫丽等.萝卜-芥蓝异源四倍体F4和F10世代DNA甲基化变异的MSAP分析.华中农业大学学报,2010,29(1):96-100.
    8.李著华,王树人.基因的表达调控与Epigenetics.四川生理科学杂志,2006,28(1):29-33.
    9.刘宝,郝水.植物远缘杂交和多倍体化中的表观遗传变异.中国农业科技导报,2007,9(6):18-21.
    10.刘乐承,向殉,曹家树.白菜雄性不育相关基因BcMF4基因功能的RNAi验证.遗传,2006,28(11):1428-1434.
    11.刘忠松,宫春云,陈社员.植物雄性不育机理的研究及应用.北京:科学出版社,2000,47-48.
    12.龙欢,姚家玲,涂金星.3种甘蓝型油菜雄性不育系花药发育的细胞学研究.华中农业大学学报,2005,24(6):570-575.
    13.陆光远,伍晓明,陈碧云等.油菜种子萌发过程中DNA甲基化的MSAP分析.科学通报,2005,50(24):2750-2756.
    14.陆桂华,张景六,洪孟民.RTS启动子与GUS的嵌合基因在转基因水稻花药 中的专一性表达.植物生理学报,2000,26(2):164-170.
    15.史典义,赵晓菊,周正富,涂金星.植物细胞核雄性不育的分子机制.植物生理学通讯,2007,3(43):556-562.
    16.王道杰,李殿荣,黄飞等.油菜雄性核不育系及其等位系小孢子发育过程的比较研究.西北植物学报,2006,6(26):1159-1164.
    17.王丽侠,赵建伟,徐芳森,刘仁虎,孟金陵.与甘蓝型油菜重要经济性状有关的DNA克隆在拟南芥遗传图谱中的整合.遗传学报,2002,29(8):741-746.
    18.王子成,李忠爱,李锁平.MSAP技术及其在植物上的应用.生物技术通报,2006:195-196。
    19.武立鹏,朱卫国.DNA甲基化的生物学应用及检测方法进展. 中国检验医学杂志,2004,27(7):468-474.
    20.杨光圣,瞿波,傅廷栋.甘蓝型油菜显性细胞核雄性不育系宜3A花药发育的解剖学研究.华中农业大学学报,1999,18(5):3-5.
    21.叶纨芝,曹家树.植物雄性不育的分子机理.植物生理学通讯,2003,6(2):176-181.
    22.仪治本,孙毅,牛天堂等.高粱基因组DNA胞嘧啶甲基化在杂交种和亲本间差异研究.作物学报,2005,31(9):1138-1143.
    23.于玲,王莱,牛吉山陈佩度.植物抗病相关基因分离策略.西北植物学报.2002,22(6):1494-1503.
    24.余凤群,傅廷栋.甘蓝型油菜几个雄性不育系的细胞形态学研究.武汉植物学研究,1990,(3):119-216.
    25.余凤群.甘蓝型油菜12个雄性不育系和保持系的花药发育的细胞形态学研究.[硕士学位论文].武汉:华中农业大学图书馆,1987.
    26.张成敏,孙卫邦,张石宝等.四季秋海棠与球根秋海棠远缘杂种.园艺学报,2001,28(1):83-85.
    27.朱英国.水稻雄性不育生物学.武汉:武汉大学出版社,2000:158-180.
    28.张雪梅,董振生.甘蓝型油菜隐性上位互作核不育材料1665花药败育的细胞学研究.西北植物学报,2009,29(1):43-48.
    29.Aarts M G M, Dirkse W M, Stiekema W J, et al.Transposon tagging of a male sterility gene in Arabidopsis.Nature 363:715-717.
    30.Aarts M G M, Keijzer C J,Stiekema W J, et al.Molecular characterization of the CERI gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell,1995,7:2115-2127.
    31.Aarts M G M, Hodge R, Kalantidis K, et al. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J.1997,12(3):615-23.
    32.Adams K L, Wendel J F. Novel patterns of gene expression in polyploidy palnts. TRENDS in Genetics,2005,21:539-543.
    33.Adams R L P, Burdon R H.Molecular biology of DNA methylation. Springer series in molecular biology, New York:Springer-Verlag, c1985.
    34. Albertsen M C, Fox T W, Trimnell M R. Cloning and utilizing a maize nuclear male sterility gene.Proc.48th Ann. Corn and Sorghum Industry Res.Conf.224-233.
    35.Arts M G M, Dirkse W G, Stiekema W J, et al. Transposon tagging of a male sterility gene in Arabidopsis. Nature,1993,363(24):715-717.
    36.Bhandari N N.The microsporangium. In:Johri B M eds, Embryology of angiosperms.Berlin:Springer,1984.72-77.
    37. Busslinger M, Hurst J, Flavell R A. DNA methylation and the regulation of globin gene expression. Cell,1983,34(1):197-206.
    38.Cao X, Jacobsen S E.Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol,2002,12(13):1138-1144.
    39.Chapman G P. Regulation of photosynthetic sucrose synthesis:a role for calcium Planta,1987,182:234-243.
    40.Chen H G, Wu J S.Characterization of fertile amphidiploid between Raphanus sativus and Brassica alboglabra and the crossability with Brassica species.Genetic Resources and Crop Evolution.2008,55(1):143-150.
    41.Chen Z J, Comai L, Pikaard C S.Gene dosage and stochastic effects determine the severity and direction of uniparental rRNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids.Proc. Natl. Acad. Sci. U.S.A,1998,95:14891-14896.
    42.Chen Z J, Pikaard C S.Transcriptional analysis of nucleolar dominance in polyploidy plants:biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc. Natl. Acad. Sci. USA,1997,94: 3442-3447.
    43.Cho H J, Kim S,Kim M, Kim B D.Production of transgenic male sterile tobacco plants with the cDNA encoding a ribosome inactivating protein in Dianthus sinensis L. Mol Cells,2001,11:326-333.
    44. Cigan A M, Unger E, Xu R J, et al. Phenotypic complementation of ms45 maize requires tapetal expression of MS45. Sex. Plant Reprod.,2001,14:135-142.
    45.Comai L, Tyagi A P, Winter K, Holmes-Davis R, Reynolds S, Stevens Y and Byers B,Phenotypic instability and rapid gene silencing in newly formed Arabidopsis alloteraploids.Plant Cell,2000,12:1551-1568.
    46.Dhar M S,Pethe V V, Gupta V S,et al. Predominance and tissue specificity of adenine methylation in rice.Theor Appl Genet,1990,80:402-408.
    47.Ellis J G, Finnegan E J, Lawrence G J.Develping a transposon tagging system to isolate rust-resistance genes from flax. Theor Appl Genet,1992,85:46-54.
    48.Fedoroff N V, Furtek DB,Nelson O E. Cloning of the Bronze Locus in Maize by a simple and generalizable procedure using the transposable controlling element activator(Ac).Proc. Natl. Acad. Sci. USA,1984,81:3825-3829.
    49.Finnegan E J, Kovac K A. Plant DNA methyltransferases. Plant Mol. Biol,2000, 43:189-201.
    50.Fourmanm M, Barret P, Renard M, et al.The two genes homologous to Arabidopsis FAE1 co-seguegate with the two loci governing erucic acid content in Brassica napus.Thero.Appl.Genet.,1998,96:852-858.
    51.Frommer M, McDonald L E, Millar D S,et al. A genomic sequencing protocol that yield a positive display of 5-methylcytosine residues in individual DNA strands. Proceedings of the National Academy of Sciences,1992,89(5):1827-1831.
    52.Gale M D, Devos K. Plant comparative genetics after 10 years.Science,1998,282: 655-659.
    53.Galili G,Feldman M. Mapping of glutenin and gliadin genes located on chromosome 1B of common wheat. Molecular and General Genetics,1984,193: 293-298.
    54.Georg J, Norris S R, Rounsley S D, et al. Arabidopsis map-based cloning in the post-genome.Era PlantPhysiol,2002,129:440-450.
    55.Glover J, Grelon M, Craig S, et al.Cloning and characterization of MS5 from Arabi-dopsis:a gene critical in male meiosis.Plant J.1998,15(3):345-356.
    56.Goodrich J, Tweedie S.Remembrance of things past:chromatin remodeling in plant development. Annu Rev Cell Dev Biol,2002,18:707-746.
    57.Henikoff S,MatzkeM A. Exp loring and exp laining ep igenetic effects.Trends in Genetics,1997,13:293-295.
    58.Hodge R, Paul W, Draper J, et. al.Cold-plaque screening:a simple technique for the isolation of low abundance, differentially expressed transcripts from conventional cDNA libraries. Plant J,1992,2:257-260.
    59.Holliday R, Ho T. Evidence for gene silencing by endogenous DNA methylation. Proc. Natl. Acad. Sci. USA,1998,95:8727-8732.
    60. Holliday R. The inheritance of epigenetic effects.Science.1987,283(4824): 163-170.
    61.Hord C L H, Chen C, de Young B J, et al. The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell,2006, 18:1667-1680.
    62.Hu S W, Fan Y F, Zhao H X, Guo X L, et al. Analysis of MS2Bnap genomic DNA homologous to MS2 gene from Arabidopsis thaliana in two dominant digenic male sterile accessions of oilseed rape (Brassica napus L.).Theor Appl Genet.2006,113 (3):397-406.
    63.Ito T, Shino zaki K. The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol.2002,43(11):1285-1292.
    64.Jaenisch R, Bird A. Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals.Nature Genetics,2003,33:245-254.
    65.Jones D A, Thomas C M, Hammond-Kosack K E. Isolation of the tomoto Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science,1994,266: 789-793.
    66.Jones P A, Takai D.The role of DNA methylation in mammalian epigenetics. Science,2001,293(5532):1068-1070.
    67.Jung K H, Han M J, Lee Y S, et al. Rice Undeveloped Tapetuml is a major regulator of early tapetum development. Plant Cell,2005,17:2705-2722.
    68.Kamalay J C, Goldberg R B.Regulation of structural gene expression in tobacco. Cell,1980,19:935-946.
    69.Kankel M W, Ramsey D E, Stokes T L, et al. Arabidopsis MET1 cytosine methyltransferase mutants.Genetics,2003,163:1109-1122.
    70. Kawasaki H, Taira K, Induction of DNA methylation and gene silencing by short interfering RNAs in human cells.Nature,2004,431(7005):211-217.
    71.Lagercrantz U.Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics,1998,150:1217-1228.
    72.Lagercrantz U.Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes. Plant J,1996, (9)1:13-20.
    73.Lee J Y, Aldemita R R, Hodges T K. Isolation of a tapetum specific gene and promoter from rice.Int Rice Res Notes,1996,21:2-3.
    74.Lee Y H, Chung K H, Kim H U, et al. Induction of male sterile cabbage using a tapetum specific promoter from Brassica campestris L.ssp.pekinensis. Plant Cell Rep,2003,22:268-273.
    75.Lewis J, Bird A. DNA methylation and chromatin structure. FEBS Lett,1991, 285(2):155-159.
    76.Liang P, Paradee A B.Differential display of eukaryotic messrnger RNA by means of the polymerase chain reaction. Science,1992,257:967-970.
    77.Lindroth A M, Cao X F, et al. Requirement of CHROMOMENTHYLASE3 for maintenance of CpXpG methylation. Science,2001,292:2077-2080.
    78.Liu B, Wendel J F. Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol,2003,29(3):365-379.
    79.Liu B,Wendel J F. Non-Mendelian phenomena in polyploid genome evolution. Current Genomics,2002,(3):489-506.
    80.Liu F Q, Ni W M, Griffith M E, et al. The ASK1 and ASK2 genes are essential for Arabidopsis early development. The Plant Cell,2004,16(1):5-20.
    81.Lund G,Messing J, Viotti A. Endosperm specific demethylation and activation of intragenomic parasites.Trends Genet,1997,13:335-340.
    82.Luo H, Lee J Y, Hu Q,et al. RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species.Plant Mol Biol,2006,62:397-408.
    83.Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu ReV Plant Biol,2005,56:393-434.
    84.Maekawa M, Sugano K, Kashiwabara H, et al. DNA methylation analysis using bisulfite treatment and PCR-single-strand conformation polymorphism in colorectal cancer showing microsatellite instability. Biochem Biophys Res Commun,1999,262: 671-676.
    85.Mariani C,Beuckeleer M, Truettner J, et al.Induction of male sterility in plants by a chimaeric ribonuelease gene.Nature,1990,347:737-741.
    86.Martienssen R A, Colot V.DNA methlation and epigenetic inheritance in plants and filamentous fungi.Science,2001,293:1070-1074.
    87.Mascarenhas N T, Bashe D, Eisenberg A, et al. Messenger RNA in corn pollen and protein synthesis during germination and pollen tube growth. Theor Appl Genet, 1984,68:323-326.
    88.Matzke M A, Matzke A G.Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses.Cell Mol Sci,1998,54:94-103.
    89.Meinke D W. Arabidopsis thaliana:a model plant for genome analysis.Science, 1998,282(5389):662-682.
    90.Matzke M A, Mette M F, Aufsatz W, et al. Host defenses to parasitic sequences and the evolution of epigenetic control mechanisms.Genetica,1999,107:271-228.
    91.Messeguer R, Ganal M W, et al. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Mol Biol, 1991,16:753.
    92.Navashin M. Chromosomal alterations caused by hybridization and their bearing upon certain general genetic problems.Cytologia,1934,5:169-203.
    93.Oakeley E J, Podesta A, Jost J P. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc. Natl. Acad. Sci. USA,1997,94: 11721-11725.
    94. Pacini E. Tapetum and microspore function. In:Blackmore S,Knox R B eds, Microspores:Evolution and Ontogeny. London:Academic Press,1990,213-230.
    95. Paul M, Sanders, Anhthu Q, et al. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex. Plant Reprod.1999,11:297-322.
    96.Razin A, Cedar H. DNA methylation and gene expression. Microbiol Rev,1991, 55(3):451-458.
    97.Razin A, Cedar H.DNA methylation and genomic imprinting. Cell,1994,77(4): 473-476.
    98.Rechards E J.DNA methylation and plant development. Trend Genet,1997,13:319.
    99.Ronemus M J, Calbiati M, Tchnor C, et al. Demethylation-induced developmental pleiotropy in Arabidopsis. Science,1996,273(5275):654-657.
    100.Ruiz-Garcia L, Cervera M T, Martinze-Zapater J M. DNA methylation increases throughout Arabidopsis development. Planta,2005,222:301-306.
    101.Sadowski J, Osborn T C, Kole C, et al. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics,1997,146:1123-1129.
    102.Sanders P M, Anhthu Q,Koen Weterings. Anther developmental defects in Arabidopsis thaliana male-sterile mutants.Sex. Plant Reprod.,1999,11:297-322.
    103.Schiefthaler U, Balasubramantan S,Sieber P C, et al. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA,1999, 96:11664-11669.
    104.Scott R, Dagless E, Hodge R, et al. Patterns of gene expression in developing anthers of Brassica napus.Plant Mol. Biol.,1991,17(2):195-207.
    105.Selker E U.DNA methylation and chromatin structure:a view from below. Trends Biochem Sci,1990,15(3):103-107.
    106.Shen L L, Guo Y, Chen X L, et al. Optimizing annealing temperature overcomes bias in bisulfite PCR methylation analysis.Biotechniques,2007,42(1):48.
    107.Shivanna K R, Johri B M. The Angiosperm Pollen:Structure and Function. New York:John Wiley,1985,38-52.
    108.Sillito D, Parkin I A P, Mayerhofer R, Lydiate D J, Good A G Arabidopsis thaliana: a source of candidate disease-resistance genes for Brassica napus.Genome,2000, 43:452-460.
    109.Sorensen A M, Krober S,Unte U S,et al. The Arabidopsis ABORTED MICRO-SPORES (AMS) gene encodes a MYC class transcription factor. Plant J,2003,33: 413-423.
    110.Steven E, Jacobsena, et al. Ectopic hypermethylation of flower-specific genes in Arabidopsis. Current Biology,2000,10:179-186.
    111.Arabidopsis Genome Initiative.Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,2000,408(6814):796-815.
    112.Tsaftaris A S,Kafka M, Mechanisms of heterosis in crop plants.Journal of Crop Production,1998,1:95-111.
    113.Vanyushin B F. DNA methylation in plants. Curr Top Microbiol Immunol,2006, 301:67-122.
    114.Vizcay-Barrena G,Wilson Z A. Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. Exp Biol,2006,57:2709-2717.
    115.Warnecke P M, Stirzaker C, Song J, et al. Identification and resolution of artifacts in bisulfite sequencing. Methods,2002,27(2):101-107.
    116.Willing R P, Bashe D, Mascarenhas J P. An analysis of the quantity and diversity of messenger RNAs from pollen and shoots of Zea mays.Theoretical and Applied Genetics,1988,75(5):751-753.
    117.Wilson Z A, MorrolI S M, Dawson J, et al. The Arabidopsis MALE STERILITY1 (MS1)gene is a transcriptional regulator of male gametogenesis, with homology to the PHD finger family of transcription factors.Plant J,2001,28:27-39.
    118.Wolffe A P, Matzke M A. Epigenetics:regulation through repression. Science,1999, 286:481-486.
    119.Xiong L,Xu C,Saghai Maroof MA, et al.Patterns of cytosine methylation in an elite rice hybrid and its parental lines,detected by a methylation-sensitive amplification polymorphism technique.Mol Gen Genet,1999,261:439-446.
    120.Xiong Z, Laird P W. COBRA:a sensitive and quantitative DNA methylation assay. Nucleic Acids Res,1997,25:2532-2534.
    121.Yang W C, Sundaresan V.Genetics of gametophyte biogenesis in Arabidopsis. Curr. Opin Plant Biol.2000,3:53-57.
    122.Yang W C, Ye D, Xu J,et al. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes, 1999,13:2018-2117.
    123.Yang X, Makaroff C A, Ma H. The Arabidopsis MALE MEIOCYTE DEATH 1 gene encodes a PHD-finger protein that is required for male meiosis.Plant Cell, 2003,15:1281-1295.
    124.Yoder J A, Walsh C P, Bester T H. Cytosine methylation and the ecology of intragenomic parasites.Trends Genet,1997,13:335-340.
    125.Yu Y G,Buss G R, Maroof M A. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc. Natl. Acad. Sci. USA,1996,93(21):11751-11756.
    126.Zhao D Z, Wang G F, Speal B, et al. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev,2002,16:2021-2031.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700