亚基因组杂种优势表现的评估及新型甘蓝型油菜FAE1指纹图谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜(B.napus, AnAnCnCn)作为世界上重要的油料作物和能源作物之一日益受到广泛的重视。虽然种植面积一直名列前茅,但是由于其驯化历史较短和遗传基础相对狭窄,杂种优势的利用徘徊不前。本实验室通过将来源于埃塞俄比亚芥(B. carinata, BcBcCcCc)的Cc基因组和来源于白菜型油菜(B. rapa, ArAr)的Ar基因组部分替换常规甘蓝型油菜的An和Cn基因组,创建出ArCc外源含量在30-50%左右的第一代新型甘蓝型油菜,其与常规甘蓝型油菜配制的杂种表现出很强的杂种优势并且发现存在随着外源含量的提高杂种优势逐渐变强的规律。随后进一步通过种间杂交、遗传重组和分子标记辅助选择等技术手段构建出第二代新型甘蓝型油菜,其农艺性状得到改良,ArCc外源含量提高到40-80%。通过两年的产量试验发现第二代新型甘蓝型油菜与国内核不育系配制的杂种在种子产量和农艺性状上都表现出较强的杂种优势。
     在上述研究成果的基础上,本论文中我们将第二代新型甘蓝型油菜与来自德国的4个甘蓝型油菜不育系配制杂种,在连续两年的产量试验中发现杂种不管是在田间的农艺性状上,还是在种子产量和生物重等产量性状上都表现出很强的杂种优势。大约有50%的杂种在种子产量上表现出超标优势且全部的杂种表现出超亲优势,其中MSL101C'×M5R059这个杂种在两年的田间试验中种子产量性状上都排名第一,甚至和对照达到了1%的极显著水平。除了每角果粒数以外,其他农艺性状都表现出超标优势:株高上新型甘蓝型油菜和冬性不育系MSL012C'配制的杂种表现最优,平均为129.93 cm;杂种在主花序长度上大都集中在50-65 cm之间,杂种MSL012C'×DH23最长;角果长度(10个)则明显地体现出冬性不育系配制的杂种比春性不育系配制的杂种有更强的优势,平均长4 cm左右;而千粒重方面除了MSL522C×m5R156外,其他杂种和对照相比都存在一定的超标优势,主要表现为种子大且饱满,另外优良杂种的经济系数也和对照的商业杂种不相上下。通过近红外光谱仪对品质性状的测量,希望通过分子标记辅助选择等技术手段降低硫甙的含量,从而为将来的应用奠定基础。另外对第二代新型甘蓝型油菜和德国不育系配制的杂种小区产量和ArCc外源含量进行相关性分析,进一步证实随着ArCc外源含量的增加,亚基因组杂种优势更加明显这个规律。与此同时第二代新型甘蓝型油菜株系还作为轮回亲本与来自德国、澳大利亚等不同国家的材料回交,以便扩宽种质资源从而进一步地开拓新型甘蓝型油菜亚基因组间的杂种优势。
     新型甘蓝型油菜里的芥酸含量变异很大,幅度在0-60%之间,而芥酸作为一种长链脂肪酸,在芸薹属作物的种子中主要以22碳的形式存在。1995年通过将玉米转座子插入到拟南芥FAE1中使其突变,导致芥酸含量下降并认为FAE1是控制芥酸合成过程中的一个关键基因。后来随着一系列研究结果的报道,发现此基因在常规甘蓝型油菜中存在2个拷贝,分别位于A8染色体和C3染色体上并且这2个拷贝的FAE1基因恰好位于2个芥酸主效QTL的峰值处。本论文将测序后的不同芥酸含量的新型甘蓝型油菜FAE1序列与高芥酸的常规甘蓝型油菜宁油7号FAE1序列进行比对,发现高芥酸的新型甘蓝型油菜与高芥酸的常规甘蓝型油菜之间没有区别,低芥酸的新型甘蓝型油菜与低芥酸的常规甘蓝型油菜之间没有区别,而不同芥酸含量的新型甘蓝型油菜之间则存在SNP位点的差异,该结果一定程度上为进一步开拓新型甘蓝型油菜亚基因组杂种优势奠定基础。
As one of edible oil crops and raw materials for biodiesel in the world, B.napus is taken account of importance increasingly. Although the planting area is leading all the time, due to its limited historical domestication and narrow genetic foundation, the utilization of heterosis is stagnant. We replaced the An and Cn genome in traditional B. napus by introgressing Ar genome from B. rapa (ArAr) and Cc genome from B. carinata (BcBcCcCc) partially and led to develop the first new type B.napus whose ArCc exogenous content is 30-50%, and strong heterosis were exhibited in the hybrids resulted from the the first new type B.napus and the traditional B.napus. Also we found the law that as the exogenous content improved, the heterosis is stronger. Later we continued to use interspecific hybridization, genetic recombination, molecular assisted markers and other techniques to develop the second new type B.napus with improved agronomic traits and higher introgressed subgenomic component. The intersubgenomic hybrids resulted from the second new type B.napus and domestic nucleic male sterile lines exhibited great heterosis in seed yield and agronomic traits.
     Based on the above achievements, we crossed the second new type B.napus with four German male sterile lines in this study. In consecutive two-year field experiment, strong heterosis was found not only in agronomic traits but also in yield traits related to seed yield and biomass. Almost one half of the hybrids showed over check heterosis and all of them showed over parental heterosis, while the MSL101C'×m5R059 hybrid ranked first both in two years for seed yield, even achieving the 1% significant level as for control. Apart from the trait for seeds per pod, other traits exhibited over control heterosis in some sense:the hybrids made from new type B.napus with winter male sterile line MSL012C' perform better with an average value of 129.93 cm for plant height; the main inflorescence length for hybrids focused on 50-65 cm and the hybrid MSL012C'×DH23 was the longest; there's an obvious gap in the hybrids resulted from winter male sterile lines or spring male sterile lines for ten-pod length, while the former is 4 cm longer than the latter; all the hybrids exhibited over control heterosis for thousand-seed weight because the seeds were large and full excluding MSL522C×m5R156, and the economic coefficient for elite hybrids is equal to commercial control. For the quality traits which were measured by near-infrared reflectance spectroscopy, we hoped to use molecular assisted selections to reduce the glucosinolate content in order to lay the foundations for application in the future. In addition, we used the correlation analysis to confirm that as the ArCc exogenous content improved, the subgenomic heterosis is more obvious. At the same time, the second new type B.napus was used as recurrent parents to backcross with the materials from different countries, such as Germany and Australia in order to broaden the germplasm resource and extend the subgenomic heterosis in new type B.napus.
     The erucic acid in the new type B.napus differs from 0-60%, which belongs to long-chain fatty acid and exists in the seeds of Brassica species with twenty-two carbon. In 1995, James inserted maize transposon into Arabidopsis FAE1 to make it mutate and found the erucic acid content reduced, finally supposed that FAE1 is a key gene to control erucic acid synthesis. As lots of research results released, FAE1 has two copies in chromosome A8 and chromosome C3 in traditional B.napus, and the two copies located in the peak of two major QTL. According to the alignment about FAE1 between different erucic acid content new type B.napus and high erucic acid traditional B.napus cultivar Ningyou 7 after sequencing, we find there is no difference in high erucic acid new type B.napus and high erucic acid traditional B.napus, and there is no difference in low erucic acid new type B.napus and low erucic acid traditional B.napus, but there is SNP polymorphism in different erucic acid content new type B.napus.This result can lay the foundation for broadening the subgenomic heterosis in new type B.napus to some extent.
引文
1.蔡建生,杨人震,杨林.玉米自交系的配合力效应分析.福建农业科技.1993,6:5-7
    2.崔国惠,倪中福,吴利民等.普通小麦和斯卑尔脱小麦的种间杂种优势.麦类作物学报.2001,21(4):10-14
    3.傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版社,2000
    4.李景均,吴仲贤.群体遗传学.北京:农业出版社,1981
    5. 李宗芸,栗茂腾,黄荣桂等.基因组原位杂交辨别芸薹属异源四倍体AA,BB, CC基因组研究.中国油料作物学报.2002,24(1):10-14
    6.栗茂腾.甘蓝型油菜新类型创建及油菜亚基因组间杂种优势研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    7.李哲,王延波,石清琢等.玉米测验种配合力效应及遗传参数分析.国外农学杂粮作物.1999,19(6):16-19
    8.刘后利.油菜的遗传与育种.上海:上海科学技术出版社,1985
    9.刘后利.油菜遗传育种学.北京:中国农业大学出版社,2000
    10.刘纪麟.玉米育种学.北京:中国农业出版社,2002
    11.刘忠松,官春云,李洵等.甘蓝型油菜和芥菜型油菜种间杂交研究.中国油料作物学报.2001,23(2):82-86
    12.黄顺谋.油菜亚基因组间杂种优势的表现及其遗传基础的初步分析.[硕士学位论文].武汉:华中农业大学图书馆,2008
    13.钱伟.甘蓝型油菜与白菜型油菜亚基因组间杂种优势的研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    14.孙逢吉.芸薹属之杂种优势.中华农学会会报,1943,175:35-38
    15.唐甫林,胡石海,侯秀芳等.水稻株高对经济系数及产量影响的初探.上海农业科技.2000,5:9-10
    16.佟屏亚,程延年.玉米高产栽培经济系数的研究.北京农业科学.1996,14(4):1-4
    17.王镜岩,朱圣庚,徐长法.生物化学,第三版,高等教育出版社.2002
    18.汪念.甘蓝型油菜EMS突变体库的构建及TILLING、EcoTILLING技术的应用研究.[博士学位论文].武汉:华中农业大学图书馆,2009
    19.袁隆平.杂交水稻的育种战略设想.杂交水稻,1987,1:1-3
    20.张国栋.大豆品种经济系数与农艺性状相关性的分析.黑龙江农业科学.1980,2:60-63
    21.赵合句,李光明,李培武.秋发油菜产量要素分析.中国油料作物学报.1990,4:9-12
    22.邹珺.新型甘蓝型油菜的遗传改良及其基因组结构分析.[博士学位论文].武汉:华中农业大学图书馆,2009
    23. Andre B, Mary K B, David H, et al. Allelic genome structural variations in maize detected by array comparative genome hybridization. Theor Appl Genet,2010, 120(2):355-367
    24. Attia T, Robbelen G. Cytogenetic relationship within cultivated Brassica analyzed in amphidiploid from the three diploid ancestors. Can J Genet Cytol, 1986,28(3):323-329
    25. Barker G C, Larson T R, Graham I A, et al. Novel insights into seed fatty acid synthesis and modification pathways from genetic diversity and quantitative trait loci analysis of the Brassica C genome. Plant Physiol,2007,144(4):1827-1842
    26. Birchler J A, Auger D L, Riddle N C. In search of a molecular basis of heterosis. Plant Cell,2003,15(10):2236-2239
    27. Boppenmaier J, Melchinger A E, Sertz G. Genetic diversity for RFLPs in European maize inbreeds performance of crosses within between heterosis group for grain trait. Plant Breeding,1993,111(3):217-226
    28. Briggle L W. Heterosis in wheat:A review. Crop Sci,1963,3(5):407-412
    29. Bruce A B. The Mendelian theory of heredity and the augmentation of vigor. Science,1910,32(827):627-628
    30. Buckler E, Gaut B, McMullen M. Molecular and functional diversity of maize. Curr Opin Plant Biol,2006,9(2):172-176
    31. Chen S, Zou J, Cowling W A, et al. Allelic diversity in a novel gene pool of canola-quality Brassica napus enriched with alleles from B. rapa and B. carinata. Crop Pasture Sci,2010,61(6):483-492
    32. Chen X, Li M T, Shi J Q, et al. Gene expression profiles associated with intersubgenomic heterosis in Brassica napus. Theor Appl Genet,2008,117(7): 1031-1040
    33. Chen Z J. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci,2010,15(2):57-71
    34. Cheres M T, Miller J F, Crane J M, et al. Genetic distance as a predictor of heterosis and hybrid performance within and between heterotic groups in sunflower. Thero Appl Genet,2000,100(6):889-894
    35. Cheung F, Trick M, Drou N, et al. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell,2009,21(7):1912-1928
    36. Choudhary B R, Joshi P, Ramarao S. Interspecific hybridization between Brassica carinata and Brassica rapa. Plant Breeding,2000,119(5):417-420
    37. Crow J F. Alternative hypotheses of hybrid vigor. Genetics,1948,33(5): 477-487
    38. Diers B W, Mcvetty P B E, Osborn T C. Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape(Brassica napus L.). Crop Sci,1996,36(1):79-83
    39. Downey R K, Robbelen G. Brassica species. In:Robbelen G, Downey P K, Ashri A. Oil Crops of the World. New York:McGraw-Hill,1989.339-362
    40. Duvick D N. Heterosis:feeding people and protecting natural resources. In: Coors J G, Pandey S, editors. The genetics and exploitation of heterosis in crops. Madison (WI):Crop Science Society of America,1999.19-30
    41. East E M. Heterosis. Genetics,1936,21(4):375-397
    42. Flink-Garcia S A, Thuillet A C, Yu J, et al. Maize association population:A high-resolution platform for quantitative trait locus dissection. Plant J,2005, 44(6):1054-1064
    43. Fu H, Dooner H K. Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA,2002,99(14):9573-9578
    44. Grant I, Beversdorf W D. Heterosis and combining ability estimates in spring-planted oilseed rape(Brassica napus L.). Can J Genet Cytol,1985,27(4): 472-478
    45. Guil J L, Rodfiguez G I, Torija E. Nutritional and toxic factors in selected wild edible plants. Plant Foods Hum Nutr,1997,51(2):99-107
    46. Guo M, Rupe M A, Yang X, et al. Genome-wide transcript analysis of maize hybrids:allelic additive gene expression and yield heterosis. Theor Appl Genet, 2006,113(5):831-845
    47. Hua J P, Xing Y Z, Xu C G, et al. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics,2002,162(4):1885-1895
    48. Iria F, Eduard M, Iban E, et al. On the genetic control of heterosis for fruit shape in melon (Cucumis Melo L.). J Hered,2009,100(2):229-235
    49. James D W, Lim E, Keller J, et al. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell,1995,7(3):309-319
    50. Jones D F. Dominance of linked factors as a means of accounting for heterosis. Genetics,1917,2(5):466-479
    51. Katavic V, Mietkiewska E, Barton D L, et al. Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Eur JBiochem,2002,269(22):5625-5631
    52. Katavic V, Barton D L, Giblin E M, et al. Gaining insight into the role of serine 282 in B. napus FAE1 condensing enzyme. Febs Lett,2004,562(1-3):118-124
    53. Krieger U, Lippman Z B, Zamir D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet,2010,42(5):459-466
    54. Ku H M, Doganlar S, Chen K Y, et al. The genetic basis of pear-shaped tomato fruit. Theor Appl Genet,1999,99(5):844-850
    55. Lee M E B, Godshalk K R, Woodman W W. Association of restriction fragment length polymorphisms among maize inbreeds with agronomic performance of their crosses. Crop Sci,1989,29(4):1067-1071
    56. Li B, Wu R. Genetic causes of heterosis in juvenile aspen:a quantitative comparison across intra- and inter-specific hybrids. Theor Appl Genet,1996, 93(3):380-391
    57. Li M T, Qian W, Meng J L, et al. Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosome Res,2004,12(5):417-426
    58. Li M T, Li Z Y, Zhang C Y, et al. Reproduction and cytogenetic characterization of interspecific hybrids derived from crosses between Brassica carinata and B. rapa. Theor Appl Genet,2005,110(7):1284-1289
    59. Li M T, Chen X, Meng J L. Intersubgenomic heterosis in rapeseed production with a partial new-typed Brassica napus containing subgenome Ar firom B. rapa and Cc from Brassica carinata. Crop Sci,2006,46(1):234-242
    60. Li Z K, Luo L J, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics,2001,158(4):1737-1753
    61. Li Z K, Pinson S R, Park W D, et al. Epistasis for three grain yield components in rice (Oryza Sativa). Genetics,1997,145(2):453-465
    62. Lippman Z B, Zamir D. Heterosis:revisiting the magic. Trends Genet,2007, 23(2):60-66
    63. Liu R, Qian W, Meng J. Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus x B-campestris). Theor Appl Genet,2002,105(6-7):1050-1057
    64. Melchinger A E, Lee M, Lamkey K R, et al. Genetic diversity for restriction fragment length polymorphism relation to estimated genetic effect in maize inbreds. Crop Sci,1990,30(5):1033-1040
    65. Meng J, Shi S, Gan L, et al. The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campesrtis (AA) and B. carinata (BBCC) with B. napus. Euphytica,1998,103(3):329-333
    66. Mika V, Tillmann P, Koprna R, et al. Fast prediction of quality parameters in whole seeds of oilseed rape (Brassica napus L.). Plant, Soil and Environ,2003, 49(4):141-145
    67. Monforte A J, Tanksley S D. Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits:breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet,2000,100(3-4):471-479
    68. Nath U K, Goswami G, Clemens R, et al. Inheritance and variation of erucic acid content in a transgenic rapeseed (Brassica napus L.) doubled haploid population. Mol Breeding,2009,23(1):125-138
    69. Nathan M S, Kai Y, Yan F, et al. Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. Plos Genet,2009,5(11):1-17
    70. Peleman J D, Wye C, Zethof J, et al. Quantitative trait locus(QTL)isogenic recombinant analysis:a method for high-resolution mapping of QTL within a single population. Genetics,2005,171(3):1341-1352
    71. Pires J C, Zhao J W, Schranz M E, et al. Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc,2004,82(4):675-688
    72. Qian W, Liu R, Meng J. Genetic effects on biomass yield in interspecific hybrids between Brassica napus and B. rapa. Euphytica,2003,134(1):9-15
    73. Qian W, Chen X, Fu D, et al. Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theor Appl Genet,2005,110(7):1187-1194
    74. Qian W, Sass O, Meng J, et al. Heterotic patterns in rapeseed(Brassica napus L.): I. Crosses between spring and Chinese semi-winter lines. Theor Appl Genet, 2007,115(1):27-34
    75. Qiu D, Morgan C, Shi J, et al. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet,2006, 114(1):67-80
    76. Quijada P A, Udall J A, Lambert B, et al. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed(Brassica napus L.): Identification of genomic regions from winter germplasm. Theor Appl Genet, 2006,113(3):549-561
    77. Rahman M, Sun Z, Mc Vetty P B, et al. High throughput genome-specific and gene-specific molecular markers for erucic acid genes in Brassica napus for marker-assisted selection in plant breeding. Theor Appl Genet,2008,117(6): 895-904
    78. Rajeev K V, Andreas G, Mark E. Genomics-assisted breeding for crop improvement. Trends Plant Sci,2005,10(12):621-630
    79. Rice J S, Dudley J W. Gene effects responsible for inbreeding depression in autotetraploid maize. Crop Sci,1974,14(3):390-393
    80. Riday H, Charles B E, Austin C T, et al. Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata. Euphytica,2003,131(1):37-45
    81. Schranz M E, Lysak M A, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae:building blocks of crucifer genomes. Trends Plant Sci,2006, 11(11):535-542
    82. Semel Y, Nissenbaum J, Menda N, et al. Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci USA,2006,103(35): 12981-12986
    83. Sernyk R L, Stefansson B R. Heterosis in summer rape (Brassica napus L.). Can J Plant Sci,1983,63(2):407-413
    84. Shull G H. The composition of a field of maize. Am Breeders Assoc Rep,1908,4: 296-301
    85. Smith O S, Smith J S L, Bowen S L, et al. Similarities among a group of elite maize as measured by Pedigree, F1 grain yield, grain yield, heterosis, and RFLPs. Theor Appl Genet,1990,80(6):833-840
    86. Sneath P H A, Sokal R R. 'Numerical taxonomy.'Freeman:San Francisco, CA, 1973
    87. Sprague G F, Tatum L A. General vs. specific combining ability in single crosses of corn. J. Am. Soc. Agron.1942,34(10):923-932
    88. Stuber C W, Lincoln S, Wolff D W, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics,1992,132(3):823-839
    89. Ulrike B, Heiko C B. Evaluation B-genome intergration in Brassica napus with GISH. Proceeding of the 10th international Rapeseed Congress,1999, Canberra, Australia
    90. U N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot,1935,7: 389-452
    91. Wang N, Wang Y, Tian F, et al. A functional genomics resource for Brassica napus:development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol,2008,180(4):751-765
    92. Warwick S I, Black L D. Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassicae)-chloroplast genome and cytodeme congruence. Theor Appl Genet,1991,82(1):81-92
    93. Wu G, Wu Y, Xiao L, et al. Zero erucic acid trait of rapeseed(Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor Appl Genet,2008,116(4):491-499
    94. Wu Y, Xiao L, Wu G, et al. Cloning of fatty acid elongase 1 gene and molecular identification of A and C genome in Brassica species. Sci China C Life Sci,2007, 50(3):343-349
    95. Xiao J, Li J, Yuan L, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics,1995, 140(2):745-754
    96. Yu S B, Li J X, Xu C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,1997,94(17): 9226-9231
    97. Van der knaap E, Lippman Z B, Tanksley S D. Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theor Appl Genet,2002,104(2-3):241-247
    98. Zhao X X, Chai Y, Liu B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids. Plant Sci,2007, 172(5):930-938
    99. Zou J, Zhu J L, Huang S M, et al. Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor Appl Genet,2010,120(2):283-290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700