一个新的油菜转化体系的优化和血红蛋白基因SLR2097向甘蓝型油菜中的转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜(Brassica napus)是重要的经济作物之一。传统常规育种技术在油菜重要经济性状的遗传改良中起到重要作用,但随着生产需求对品种要求的日益提高,常规育种技术的局限性也日显突出。因此采用新技术将新的基因资源引入油菜十分必要。利用农杆菌介导的遗传转化引入外源基因为油菜产量、品质、抗性和其它性状的遗传改良提供了新途径,该技术也是现代生物学研究中了解特定基因功能与表达模式不可缺少的手段。但现有农杆菌介导的油菜转化方法还存在着转化效率不高、重复性差、转化周期长等问题,因而限制了该技术的广泛应用。因此,建立一个转化效率高、重复性好、转化周期短的油菜转化体系是势在必行的。
     血红蛋白(Hemoglobin)普遍存在于动物、植物、细菌、真菌、酵母、藻类、原生动物等生物体中。血红蛋白在动物体中的生理功能主要是结合氧并协助其运输,从而促进机体中氧的供应、呼吸链电子流量、ATP酶活力等;血红蛋白在微生物体中可以促进菌体的生长、蛋白质的合成、代谢产物的产生等;最近,也有文章报道血红蛋白能促进烟草的生长、提高烟草叶中叶绿素与尼古丁的含量等。
     本研究旨在用农杆菌(Agrobacterium tumefactiens)介导的转化方法,以甘蓝型油菜品种宁油12号的子叶节为外植体,优化一个转化周期短、重复性好的遗传转化体系。从而用优化了的遗传转化体系,将血红蛋白基因(SLR2097)导入油菜中,研究血红蛋白对油菜的影响。主要研究内容和结论如下:
     1.用含有携带GFP基因的植物双元表达载体pCAMBIA1303的农杆菌来侵染甘蓝型油菜品种宁油12号的子叶节外植体,从而优化油菜的遗传转化体系。实验结果显示,在含有浓度为4 mg/L的6-BA与0.04 mg/L的NAA的筛选培养基中获得了最高的小芽发育率为94.38%;而当用含有浓度为200μM的乙酰丁香酮与0.02%的silwet L77,OD值为0.8的农杆菌悬浮液来侵染油菜的子叶节10 min并在含有浓度为200μM的乙酰丁香酮与0.02%的silwet L77的培养基中共培养时,获得了最高的转化率为6.96%;转基因植株是用PCR技术、Southern blotting分析来鉴定的;在荧光显微镜下也观察到了转基因植株中的GFP基因的表达。
     2.文献表明血红蛋白能促进烟草的生长、提高烟草叶中叶绿素与尼古丁的含量。本研究以蓝细菌(Synechocystis sp.PCC 6803)为材料,采用PCR技术从蓝细菌的基因组DNA中克隆了SLR2097基因的ORF,此ORF全长375 bp,编码一个由123个氨基酸残基组成的多肽链,推测其编码的多肽链的相对分子质量为30.39kD,理论等电点为5.26。比较蓝细菌的SLR2097与其它13种生物的血红蛋白基因编码的氨基酸序列发现,这些生物的SLR2097基因编码的氨基酸序列的保守性非常低,除了有一个共同的基序F-[LF]-x(4)-[G]-G-[PAT]-x(2)-[YW]-x-[GSE]-x(1,5)-[LW]-x(3)-H之外,几乎再没有共同的序列。
     3.构建携带35S启动子的植物双元表达载体pCAMBIA1300-CaMV35S。并将SLR2097基因连入此表达载体上,转化农杆菌菌株LBA4404。然后,利用优化了的遗传转化体系,将SLR2097基因导入甘蓝型油菜中。用10 mg/L与20 mg/L的潮霉素来筛选转基因植株,并用PCR技术鉴定转基因植株。从观察结果来看,转基因油菜比野生型油菜要早熟。
Brassica napus is one of the most important oil crops.Conventional breeding has made tremendous contribution to the improvement of economic trait.The increasing demand on production of diferent oils such as edible oil,industrial oil needs new technology in rapeseed breeding to further enhance both the productivity and adaptability of new cultivars.So it was necessary to adopt new technology to transfer the new genes into rapeseed.Genetic engineering offered new possibilities to improve the crop in various special characters that were difficult to obtain by traditional breeding procedures.Important traits,such as rapeseed yield,quality,disease and insect tolerance, male sterility,and the other special characaters,have been introduced into the crops by genetic transformation,and genetic transformation was also used to detect the function of different genes.However,it was very difficult to use the present Agrobacterium-mediated transformation in many genotypes because there existed serious low transformation frequency,low reproducibility and long-term transformation. Therefore,it is essential to found an efficient Agrobacterium-mediated transformation system that has short period.
     Hemoglobin existed in most organisms including animals,plants,protozoa,algae, bacteria and fungi.Hemoglobin in animal can bound and transport oxygen in order to improve provision of oxygen,fluence of electrons in respiratory chain,vigor of ATPase; and hemoglobin in microbacteria can promote growth of microbacteria,synthesis of protein and production of metabolite.Recently,a paper reports that Vitreoscilla hemoglobin can enhance growth of tobacco,the chlorophyll content and the nicotine content of it.
     Using cotyledonary nodes as explants,an efficient system for Agrobacterium-mediated transformation of Brassica napus cv."Ningyou12" was developed through optimizing the infection conditions and the concentrations of phytohormone.And then hemoglobin gene SLR2097 of Synechocystis was transformed into Brassica napus with the optimized transformation system in order to research the influence of SLR2097 gene on Brassica napus cv."Ningyou12".The major study contents and conclusions are as follows:
     1.Cotyledonary nodes of Brassica napus cv."Ningyou12" were infected with Agrobacterium tumefactiens containing expression vector pCAMBIA1303-GFP in order to optimize genetic transformation system.Different combinations of optical densities and infection durations and different concentrations of acetosyingone and silwet L77 were evaluated for the efficient infection of Agrobacterium.Maximum transformation frequency was 6.96%when cotyledonary nodes were infected for 10 min with Agrobacterium suspension of which the OD was 0.8 and then co-cultivated on the medium with 200μM acetosyingone and 0.02%silwet L77.In addition,concentrations of 6-benzyladenine and naphthalene acetic acid were also optimized.Maximum green plantlet frequency was 94.38%when cotyledonary nodes were cultivated on the medium containing 4 mg/L 6-BA and 0.04 mg/L NAA after co-cultivation.Evidences for transformation were confirmed by PCR analysis,Southern blotting analysis.The expression of GFP gene in transgenic plants was also observed with fluorescence microscope.
     2.The literatures indicated that hemoglobin can improve growth of transgenic tobacco and increase the chlorophyll content and the nicotine content of transgenic tobacco.The open reading frame of hemoglobin gene SLR2097 was cloned from genomic DNA of Synechocystis sp.PCC 6803.Sequence analysis indicated that the open reading frame of hemoglobin gene SLR2097 was only 375 bp,which encoded a 123 amino acid polypeptide chain belonging to the truncated hemoglobin family. Molecular weight of its deduced protein was 13.9kDa and theoretical pI of its deduced protein was 5.27.Multiple sequence alignment demonstrated that hemoglobin gene of Synechocystis shared low sequence identity with another twelve organisms,and there was only a common motif 'F-[L]-x(4)-[G]-G-[T]-x(2)-[Y]-x-[G]-[R]-x-[M]-x(3)-H' among thirteen species.
     3.Expression vector pCAMBIA1300-CaMV35S was constructed successfully. And then SLR2097 was ligated into the vector pCAMBIA1300-CaMV35S.Finally,the pCAMBIA1300-CaMV35S containing SLR2097 was transformed into A.tumefactiens strain LBA4404.The hemoglobin gene SLR2097 of Synechocystis was transformed into Brassica napus with the optimized transformation system.And transgenic plants were identified with PCR analysis.Phenotype analysis of transgenic Brassica napus indicated that exogenous expression of hemoglobin gene SLR2097 led to the earlier maturity.
引文
[1]王关林,方宏筠,植物基因工程原理与技术。北京:科学出版社,1998
    [2]王关林,方宏筠,植物基因工程。北京:科学出版社,2002
    [3]王景雪,孙毅。农杆菌介导的植物基因转化研究进展。生物技术通报,1999,1:7-13
    [4]Horsch R B,Fry J,Holffinan N L,et al.A simple and general method for transferring genes into plants.Sc,1984,27:1229-1231
    [5]陶余敏,唐庆华。农杆菌转化单子叶植物的可能性及问题。植物生理学通讯,1992,28(6):402-406
    [6]吴乃虎。基因工程原理(第二版)。北京:科学出版社,2001
    [7]Charest P J,Holbrook L A,Gabard J,et al.Agrobacterium-mediated transformation of thin cell layer explant from Brassica narpus L.Theor Appl Genet,1988,75:438-445
    [8]Poulsen G B.Genetic transformation of Brassica.Plant Breeding,1996,115:209-225
    [9]Charest P J,Iyer V N,Miki B L.Virulence of Agrobacterium tumufaciens strains with Brassica napus and Brassica juncea.Plant Cell Rep,1989,8:303-306
    [10]Holbrook L A,Miki B L.Brassica grown gall tumourigenesis and in vitro of transformed tissue.Plant Cell Rep,1985,4:329-322
    [11]Fry J,Bamason A,Morsch R P.Transformation of Brassica napus with Agrobacterium tumufaciens based vectors.Plants Cell Rep,1987,6:321-325
    [12]程振东,卫志明,许智宏。根癌农杆菌对甘蓝型油菜的转化及转基因植株的再生。植物学报,1994,36(9):657-663
    [13]Pua E C,Mehra P,Nagy F,et al.Transgenic plants of Brassica napus L.Bio Technol,1987,5:815-817
    [14]卫志明,黄健秋,徐淑平等。甘蓝下胚轴的高效再生和农杆菌介导Bt基因转化甘蓝。上海农业学报,1998,14(2):11-18
    [15]佘建明,蔡小宁,朱祯等。结球甘蓝的离体再生及基因转化条件研究。江苏农业学报,1996,12(3):6-9
    [16]郎春秀,胡张华等。油菜农杆菌转基因体系的建立及转PEP反义基因油菜的获得。浙江农业学报,1999,11(2):55-58
    [17]张广辉,巩振辉等。大白菜和油菜真空渗入遗传转化法初报。西本农业学报,1998,6(4):1-4
    [18]张海燕等。将商陆抗病毒蛋白(PAP)cDNA导入油菜获得抗病毒转基因植株。科学通报,1998,43(23):2534-2537
    [19]程振东等。用PEG法把外源基因导入甘蓝型油菜用原生质体再生转基因植株。实验生物学报,1994,27(3):341-347
    [20]Schroder M,et al.Transformation of Brassica napus by using the aadA gene as selectable marker and inheritance studies of the marker genes.Physiol Plant,1994,92:37-46
    [21]Chapel M,Glimelius K.Temporary inhibition of cell wall synthesis improves the transient expression of the GUS gene in Brassica napus mesophyll protoplasts.Plant Cell Rep,1990,9:105-108
    [22]Bergman P,Glimelius K.Electroporation of rapeseed protoplasts-transient and stable transformation.Physiol Plant,1993,88:604-611
    [23] Neuhaus G, Spangenberg G, Scheid 0 M, et al. Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor Appl.Genet, 1987,75: 34-36
    [24] Becker H C, Loptien H, Robbelen G. Breeding: an overview. In: Gomez-Campo (Ed.), Biology of Brassica Coenospecies, Elsevier Science B.V., the Netherlands. 1999,413-460
    [25] Kohno-Murase J, Murse M, Ichikawa H, Imamura J. Effects of an antisense napin gene on seed storage compounds in transgenic Brassica napus seeds. Plant Mol Biol, 1994,26:1115-1124
    [26] Shains D K, Charles J A. Plant biotechnology. Butterworth Publishers, 1989, 5-48
    [27] Denis M, Vliet A V, Leyns F, Krebbers E, Renard M. Field evaluation of transgenic Brassica napus lines carrying a seed-specific chimeric 2S albumin gene. Plant Breeding, 1995, 114:97-107
    [28] Dehesh K, Jones A, Knutzon K S, Voelker T A. Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana. Plant J, 1996,9(2): 167-172
    [29] Dehesh K, Edwards P, Fillatti J, Slabaugh M, Byrne J. KAS IV: a 3-ketoacyl-ACP synthase from Cuphea sp. Is a medium chain specific condensing enzyme. Plant J, 1998,15(3): 383-390
    [30] Eccleston V, Cramner A M, Voelker T A. Medium-chain fatty acid biosynthesis and utilization in Brassica napus plants expression lauroyl-acyl carrier protein thioesterase. Planta, 1996,198:46-53
    [31] Voeker T A, Worrell A C, Anderson L, Bleibaum J, Fan C, Hawkins D J, Radke S E, Davies H M. Fatty acid biosynthesis redirected to medium chains in transgenic oil seed plants. Science,1992,257:72-74
    [32] Verwoert I IG S, Linder K H, Walsh M C, Nijkamp H J, Stuitije A R. Modification of Brassica napus seed oil by expression of the Escherichia coli fob H gene, encoding 3-ketoacyl-acyl carrier protein synthaseIII. Plant Mot Bio, 1995,27: 875-886
    [33] Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J. Targeting of the Arabidopsis homomeric acetyl-coenzyme a carboxylase to plastids of rapeseed. Plant Physiol, 199,113:75-81
    [34] Lassner M W, Levering C K, Davies H M, Knutzon D S. Lysophosphatidic acid acylteransferase from meadowfoam mediates insertion of erucic acid at the sn-2 position of triacylglycerol in transgenic rapeseed oil. Plant Physiol, 1995,109: 1389-1394
    [35] Stoutjesdijk P A, hurlestone C, Singh S P, Green A G. High-oleic acid Australian Brassica napus and B. Juncea varieties produced by co-suppression of endogenous 12-desaturase.Bioche Soc Trans, 2000,28: 838-940
    [36] Hawkins D J, Kridl J C. Characterization of aryl-ACP thiosterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. P1 nt J, 1998,13(6): 743-752
    [37] Katavic V, Friesen W, Barton D L, Gossen K K, Giblin E M, Luciw T, An J, Zou J, Mackenzie S L, Keller W A, Males D, Taylor D C. Utility of the Arabidopsis FAEI and yeast SLC1-1 genes for improvmenats in erucic acid and oil content in rapeseed. Bioch Soc, 2000, 28(6):935-937
    
    [38]刘后利。农作物品质育种。湖北科学技术出版社,2001,509-516
    [39] Chavadej S, Brisson N, Mcneil J N, Luca V D. Redirection of tryptophane leads to production of low indole glucosinolate canola. Proc. Natl. Acad. Sci. USA, 1994, 91: 2166-2170
    [40] Ponstein A S, Bade J B , Verwoerd T C, Molendijk L, Storms J, Beudeker R F, Pen J. Stable expression of phytase (phyA) in canola (Brassica napus) seeds: towards a commercial product. Mot Breeding, 2002,10: 31-44
    [41]Tsang E W T,Yang J,Chang Q,Nowak G,Kolenovsky A,Mcgregor D I,Keller W A.Chlorophyll reduction in the seed of Brassica napus with a glutamate 1-semialdehyde amino transferase antisense gene.Plant Mol Biol,2003,51:191-201
    [42]Grison R,Grezes-Besset B,Schneider M,Lucante N,Olsen L,LeguayJ J,Toppan A.Field tolerance to fungal pathogens of Brassica napus constitutvely expressing a chimeric chitinase gene.Nature Biotech,1996,14:643-650
    [43]Kazan K,Goulter K C,Way H M,Manners J M.Expression o f a pathogenesis-related peroxidase of Stylosanthes humilis in transgenic tobacco and canola and its effect on disease development.Plant Sri,1998,136:207-217
    [44]Kazan K,Rusu A,Marcus J P,Goulter K C,Manners J M.Enhanced quantitative resistance to Leptosphaeria maculans conferred by expression of a novel antimicrobial peptide in canola (Brassica napus L.).Mol Breeding,2002,10:63-70
    [45]卢爱兰,陈正华,孔令洁,方荣祥,寸守铣,莽克强。抗芜莆花叶病毒转基因甘蓝型油菜的研究。遗传学报,1996,23(1):77-83
    [46]Ramachandran S,Buntim G D,All J N.Survival,development,and oviposition of resistant diamondback moth(Lepidoptera plutellidae)on transgenic canola producing a Bacillus thuringiensis toxin.Jof Economic Entomology,1998,91(6):1239-1244
    [47]Stewart C N,Jr.,Adang M J,All J N,Raymer P L,Ramachandran S,Parrot W A.Insect control and dosage effects in transgenic canola containing asynthetic Bacillus thuringiensis crylAc gene.Plant Physiol,1996,112:115-120
    [48]林良斌,官春云,周小云,何业华,杨志新。转基因抗虫油菜中Bt杀虫蚩白基因稳定遗传和高效表达及抗虫性研究。作物学报,2002,28(2):175-178
    [49]Radbe Y,Deraison C,Bonade-Bottino M,Girard C,Nardon C,Jouanin L.Effects of the cysteine protease inhibitor oryzacystatin(OC-Ⅰ)on different aphids and reduced performance of Myzus persicae on OC-1 expressing transgenic oilseed rape.Plant Sci,2003,164:441-450
    [50]Thomas P.Weeds,insects and disease of canola.In canola growers manual.Canola Council of Canada,Winnipeg,MB,1995,1001-1063
    [51]Joel D M,Kleifeld Y,Losner-Gosher D,Herzlinger G,Gressel J.Transgenic crops against parasites.Nature,1995,374:220
    [52]De Block M,De Brouwer D,Tenning P.Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants.Plant Physiol,1989,91:694-701
    [53]钟蓉,刘余乐,朱峰,李胜国。转TA29-barnase基因的甘蓝型油菜的雄性不育的研究。植物学报,1996,38(7):582-585
    [54]Kumar A,Rakow G,Downey R K.Genetic characterization of glufosinate-anunonium tolerant summer rape lines.Crop Sci,1998,38:1489-1494
    [55]Kumar A,Rakow G,Downey R K.Isogenic analysis of glufosinate-ammonium tolerant and susceptible summer rape lines.Ca J of Plant Sci,1996,78(3):401-408
    [56]Miki B L,Labbe H,Hatori J,Ouellet T,Sunoharaq Charest P J,lyer V N.Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxy acid synthase genes and analysis of herbicide resistance.Theor Appl Genet,1990,80:449-458
    [57]Beriant J N,Horsman G P,Devine M D.Phloem transport of D,L-glufosinate and acetyl-L-glufosinate in glufosinate-resistant and -susceptible Brassica napus.Plant Physiol,1999,121:619-627
    [58]James C.Global review of commercialized transgenic crops:2002.ISAAA briefs,2002,No.27
    [59]Huang J,Hirji R,Adam L,Rozwadowoki K L,Hammerlindl J K,Keller W A,Selvaraj G.Genetic engineering of glyinebetaine production toward enhancing stress tolerance in plants:Metabolic limitations.Plant Physiol,2000,122:747-756
    [60]Zhang H,Hodson J N,Williams J P,Blumwald E.Engineering salt-tolerant Brassica plants:Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation.Proc Natl Acad Sci USA,2001,98(22):12832-12836
    [61]Ruiz J M,Blumwald E.Salinity-induced glutathione synthesis in Brassica napus.Planta,2002,214:965-969
    [62]甄伟,陈溪,孙思洋,胡莺雷,林忠平。冷诱导基因的转录因子CBF1转化油菜和烟草及抗寒性鉴定。自然科学进展,2000,10(12):1104-1108
    [63]Mariani C,Beuckeleer M D,Truetmer J,Leemans J,Goldberg R B.Induction of male sterility in plants by a chimaeric ribonuclease gene.Nature,1990,347:737-741
    [64]Mariani C,Gossele V,Beuckeleer M D,De Block M,Goldberg R B,Greef W D,Leemans J.A chimaeric ribonuciease-inhibitor gene restores fertility to male sterile plants.Nature,1992,357:384-387
    [65]Denis M,Delourme M,Gourret J P,Mariani C,Renard M.Expression of engineered nuclear male sterility in Brassica napus.Plant Physiol,1993,101:1295-1304
    [66]Houmiel K L,Stater S,Broyles D,Casagrande L,Colbum S,Gonzalez K,Mitsky T A,Reiser S E,Shah D,Taylor N B,Tran M,Valentin H E,Gruys K J.Poly(β-hydroxybutyrate)production in oilseed leukplast of Brassica napus.Planta,1999,209:547-550
    [67]Parmenter D L,Boothe J G,van Rooijen G J H,Yeung E C,Moloney M M.Production of biologically active hirudin in plant seeds using oleosin partitioning.Plant Mol Biol,1995,29:1167-1180
    [68]罗小英,李德谋,候磊,杨光伟,金治平,裴炎。抑制叶片衰老自动控制元件在油菜中的表达。农业生物技术学报,2002,10(4):317-320
    [69]Rieger M A,Preston C,Powles S B.Risks of gene flow from transgenic herbicide-resestant calona(Brassica napus)to weedy relatives in southern Australian cropping system.Aust J Agric Res,1999,50:115-128
    [70]Scheffler J A,Parkinson R,Dale P J.Evaluating the efectiveness of isolation distances for field plots of oilseed rape(Brassica napus)using a herbicide-resistance transgene as a selectable marker.Plant Breeding,1995,114:317-321
    [71]Paul E M,Thomopson C,Dunwell J M.Gene dispersal from genetically modified oil seed rape in the field.Euphytica,1995,81:283-289
    [72]Scot S E,Wilkinson M J.Transgene risk is low.Science,1998,393:320
    [73]Crawley M J,Hails R S,Rees M,Kohn D,Buxton J.Ecology of transgenic oilseed rape in natural habitats.Nature,1993,363:620-623
    [74]Crawley M J,BrownS L,Hails R S,Kohn D D,Rees M.Transgenic crops against parasites.Nature,1995,374:220
    [75]Robert S,BaumannU.Resistance to the herbicide glyphosate.Science,1998,395:25-26
    [76]侯丙凯,陈正华。苏云金杆菌杀虫蛋白基因克隆及油菜叶绿体遗传转化研究。遗传,2001,23(1):39-40
    [77]Poole R K,Hughes M N.New functions for the ancient globin family:bacterial responses to nitric oxide and nitrosative stress.Molecular Microbiol,2000,36(4):775-783
    [78] Hardison R C.A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc Natl Acad Sci USA, 1996, 93(12): 5675-5679
    [79] Holmberg N, Lilius G, Bailey J E, Bulow L. Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production. Nat Biotechnol, 1997,15(3): 244-247
    [80] Tsai P S, Hatzimanikatis V, Bailey J E. Effect of Vitreoscilla hemoglobin dosage on microaerobic Escherichia coli carbon and energy metabolism. Biotechnol Bioeng, 1996, 49:139-150
    [81] Tsai P S, Nageli M, Bailey J E. Intracellular expression of Vitreoscilla hemoglobin modifies microaerobic Escherichia coli metabolism through elevated concentration and specific activity of cytochrome O. Biotechnol Bioeng, 2002, 79: 558-567
    [82] Park K W, Kim K J, Howard A J et al. Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiqinol oxidases. J Biol Chem, 2002,277: 33334-33337
    [83] Bollinger C J T, Bailey J E, Kallio P T. Novel hemoglobins to enhance microaerobic growth and substrate utilization in Escherichia coli. Biotechnol Prog, 2001,17: 788-808
    [84] Frey A K, Bailey J E, Kallio P T. Expression of Alcaligenes eutrophus flavohemoglobin and engineered Vitreoscilla hemogeobin-reductase fusion protein for improved hypoxic growth of Escherichia coli. Appl Environ Microbiol, 2000, 66: 98-104
    [85] Kaur R, Pathania R, Sharma V et al. Chimeric Vitreoscilla hemoglobin (VHb) carrying a flavoreductase domain relieves nitrosative stress in Escherichia coli :new insight into the functional role of VHb. App Environ Microbiol, 2002,68:152-160
    [86] Frey A O, Fiaux J, Szyperski et al. Dissection of central carbon metabolism of hemoglobinexpressing Escherichia coli by ~(13)0C nuclear magnetic resonance flux distribution analysis in microaerobic bioprocesses. Appl Environ Microbiol, 2002,68:152-160
    [87] Cardoza V, Stewart C N. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep,2003,21:599-604
    [88] Knutzon D S, Thompson G A, Radke S E, Johnson W B, Knauf V C, Kridl J C. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene Proc Natl Acad Sci, 1992, 89: 2624-2628.
    [89] Altenbach S B, Kuo C C, Staraci L C, Pearson K W, Wainwright C, Georgescu A, Townsend J. Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol Biol, 1992,18:235-245.
    [90] McCormac A C, Wu H, Bao M, Wang Y X R, Elliott M C, Chen D F. The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivam L.) and barley (Hordeum vulgare L.). Euphytica, 1998,99:17-25
    [91] Babic V, Datla R S, Scoles G J, Keller W A. Development of an efficient Agrobacterium-mediated transformation system for Brassica carinata. Plant Cell Rep, 1998, 17:183-188.
    [92] Mathews H, Bharathan N, Litz R E, Narayanan K R, Rao P S C R B. Transgenic plants of mustard Brassica juncea (L.) Czern and Coss. Plant Sci, 1990, 72: 245-252.
    [93] Moloney M M, Walker J M, Sharma, K K. High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep, 1989, 8: 238-242.
    [94] Radke S E, Andrews B M, Moloney M M, Crouch M L, Kridl J C, Knauf V C. Transformation of Brassica napus L. using Agrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theoretical and Appl Genet, 1988,75:685-694.
    [95] Mukhopadhyay A, Arumugam N, Nandakumar P B A, Pradhan A K, Gupta V, Pental D.Agrobacterium-mediated genetic transformation of oilseed Brassica campestris:Transformation frequency is strongly influenced by the mode of shoot regeneration. Plant Cell Rep, 1992,11:506-513.
    [96] Radke S E, Turner J C, Facciotti D. Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens. Plant Cell Rep, 1992, 11: 499-505
    [97] Takasaki T, Hatakeyama K, Ojima K, Watanabe M, Toriyama KKH. Factors influencing Agrobacterium-mediated transformation of Brassica rapa L. Breed Sci, 1997,447: 127-134.
    [98] Chuong P V, Pauls K P, Beversdorf W D. Protoplast culture and plant regeneration from Brassica carinata Braun. Plant Cell Rep, 1987, 6: 67-69.
    [99] Pua E C, Mehra-Palta A, Nagy F, Chua N H. Transgenic Plants of Brassica napus L.Biotechnology, 1987, 5: 815-817
    
    [100] Doyle J J. Isolation of plant DNA from fresh tissues. Focus, 1990,12:13-15
    [101] Rashid H, Toriyama K, Hinata K, Transgenic plant production from leaf discs of Moricandia arvensis using Agrobacterium tumefaciens. Plant Cell Rep, 1996, 15: 799-803
    [102] Hachey J E, Sharma K. K, Moloney M M. Efficient shoot regeneration of Brassica campestris using cotyledon explants cultured in vitro Plant Cell Rep, 1991,9: 549-554.
    [103] Xiang Y, Wong W K R, Ma M C, Wong R S C. Agrobacterium-mediated transformation of Brassica campestris ssp. Parachinensis with synthetic Bacillus thuringiensis crylAb and crylAc genes. Plant Cell Rep, 2000,19:251-256.
    [104] Ooms G, Bains A, Burrell M, Karp A, Wilcow E. Genetic manipulation in cultivars of oilseed rape (Brassica napus) using Agrobacterium. Thero Appl Genet, 1985,71:325-329
    [105] Perutz M F. Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. Annu Rev Biochem, 1979,48: 327-386
    
    [106] Perutz M F. Structure and function of hemoglobin. Harvey Lect, 1969, 63: 213-261
    [107] Scott N L, Lecomte J T. Cloning, expression, purification and preliminary characterization of a putative hemoglobin from the cyanobacterium Synechocystis sp. PCC 6803. Protein Sci, 2000,9(3): 587-597
    
    [108] Pesce A, Couture M, Dewilde S, Guertin M, Yamauchi K, Ascenzi P, Moens L, Bolognesi M.A novel two-over-two a-helical sandwich fold is characteristic of the truncated hemoglobin family. Embo J, 2000, 19(11): 2424-2434
    
    [109] Moens L, Vanfleteren J, Van de Peer Y, Peeters K, Kapp O, Czeluzniak J, Goodman M, Blaxter M, Vinogradov S. Globins in non-vertebrate species: dispersal by horizontal gene transfer and evolution of the structure-function relationships. Mol Bio Evol, 1996,13(2): 324-333
    [110] Weber R E, Vinogradov S N. Nonvertebrate hemoglobins: functions and molecular adaptations.Physiol Rev, 2001, 81(2): 569-628
    
    [111] Lecomte J T J, Scott N L, Vu B C, Falzone C J. Binding of Ferric Heme by the Recombinant Globin from the Cyanobacterium Synechocystis sp. PCC 6803. Biochemistry, 2001, 40(21):6541-6552
    
    [112] Khosla C, Curtis J E, DeModena J, Rinas U, Bailey J E. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Biotechnology,1990, 8(9): 849-853

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700