ZnO纳米材料的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌是一种直接带隙的半导体材料,室温下禁带宽度为3.37eV,并且具有高达60meV的激子束缚能,在发光二极管、紫外光探测器、气敏元件、光催化、压电器件、生物荧光标记以及太阳能电池等诸多领域有着广阔的应用前景。对ZnO纳米材料的结构可控制备、性能调控、发光机理及室温铁磁性的起源等基本问题的研究具有重要的理论价值和实际意义。本文对ZnO纳米材料的控制合成、掺杂、复合与表面修饰、光学和磁学性能以及光催化、光伏电池应用等进行了系统的研究,主要内容如下:
     1.以油酸作为表面活性剂和结构导向剂,采用溶胶-凝胶法合成出尺寸为3-4纳米的六方棱柱形的ZnO量子点。通过控制反应溶液的浓度和反应时间,成功实现了ZnO量子点到量子棒的转变。与球形ZnO量子点相比,六方棱柱形ZnO量子点具有更高的光催化活性。六方棱柱形ZnO量子点的高催化活性主要归因于它独特的结构特征。这种结构具有大面积的以锌封端的(001)极性晶面,这种极性纳米晶被认为在ZnO光催化方面起主要作用。
     2.通过溶胶凝胶法,以自制的油酸锌为前驱体,合成出2.2到7.8纳米之间尺寸可调的ZnO量子点。系统研究了ZnO量子点可见发光的起源以及属性。研究表明,ZnO量子点表面的单电离氧空位决定了可见发光的起源和发光强度;在缺陷不变的条件下,可见发光峰位由尺寸决定,并且空穴从价带到预先存在的深的施主能级(由单电离氧空位引发)的跃迁导致了ZnO量子点的可见发光。
     3.观察到了所合成的ZnO量子点的室温铁磁性。X射线衍射和X光电子谱表明ZnO量子点是纯净的,没有其他物相或杂质存在。研究发现饱和磁化强度随量子点尺寸的变大而减小,光致发光结果表明可见发光强度随尺寸的变化趋势与饱和磁化强度相同,并且两者都与g值为2.0056的电子核磁共振(EPR)信号紧密相关。分析表明,该EPR信号来源于单电离氧空位,单电离氧空位为ZnO量子点室温铁磁性的起源。ZnO量子点在空气中退火的实验数据进一步证实了该观点。
     4.以氯铂酸为铂源,采用在乙二醇中化学还原的方法,以一定量的铂纳米粒子修饰ZnO纳米棒。X光电子谱、光致发光光谱以及吸收光谱的结果表明铂原子充当了电子捕获者的角色,这有利于电子空穴的分离。因此,铂-氧化锌异质结构的光催化活性得到明显改善,铂的最佳修饰量为1%。同时,为了解决光催化剂的可回收性问题,以铂镍合金粒子对ZnO纳米棒进行了修饰。结果表明当镍纳米粒子单独修饰在ZnO纳米棒上时,虽然其具有磁性可以被磁性分离,但是其光催化活性相比于纯的ZnO纳米棒下降很多。当铂镍合金粒子修饰ZnO纳米棒,所形成异质结构不仅仍有磁性,而且催化活性与纯的ZnO纳米棒相当。
     5.分别采用溶胶-凝胶法和沉淀法合成了尺寸比较均一的ZnO量子点与硫化铅量子点。利用这两种量子点成功制备出量子点PN异质结构型太阳能电池,并测试了电池的性能。该制备方法工艺简单,成本低,有望在下一代太阳能电池上获得应用。
Zinc oxide (ZnO) is a kind of direct band gap semiconductor with wide band gap of3.37eV at room temperature and large exciton binding energy of60meV. It may find wide potential applications in many fields, such as light-emitting diodes, UV light detectors, gas sensors, piezoelectrics, photocatalysis, biological labeling, and solar cell et al. The studies on the basic problems of controllable synthesis, properties tunning, photoluminescence mechanism and origin of room temperature ferromagnetism of ZnO nanostructures possess very important theoretical value and practical significance. In this article, systematic investigation have been done on the controllable synthesis, doping, composite and surface modification, applications in photocatalysis and solar cell of ZnO nanomaterials. The main contents are summarized as follows:
     1. The hexagonal faceted ZnO quantum dots (QDs) about3-4nm were prepared via a sol-gel route by using oleic acid (OA) as the capping agent. Controlling the concentration of reaction solution and synthesis time, the structure of ZnO was successfully transformed from quantum dots to quantum rods. Compared with spherical ZnO QDs, the hexagonal faceted ZnO QDs show enhanced photocatalytic activity. Besides small size of ZnO QDs, the enhanced photocatalytic activity can mainly be ascribed to the special hexagonal morphology. This structure contains more Zn-terminated (001) faces, which is considered to play a key role in photocatalytic performance of ZnO.
     2. A sol-gel route was developed to synthesize ZnO QDs with tunable diameters in a range of2.2-7.8nm, using self-made zinc-oleate complex as a precursor. To get a real understanding on the mechiansm of visible light emission, we systematically study the origin and property of visible light emisison of ZnO QDs. Based on analysis, two important points can be obtained:one is that single ioned oxygen vacancies determine the origin and intensity of visible emission of ZnO QDs; another is that the visible emission peak position of ZnO QDs is decided by their size, and a transition of holes from the preexisting deep donor energy level to the valence band is responsible for the visible emission of the ZnO QDs.
     3. Room temperature ferromagnetism (RT FM) was observed in synthesized ZnO quantum dots (QDs). The results of X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicate that the ZnO QDs are pure and no other phase or impurities exist. It was also found that the saturation magnetization decreased with size increasing of the ZnO QDs. The results of photoluminescence (PL) show that the intensities of visible light emission have the same changing trend as that of FM, and both of them are directly associated with an electron paramagnetic resonance (EPR) signal with g=2.0056. This EPR signal is triggered by singly ionized oxygen vacancies. Therefore, it is reasonable to consider that singly ionized oxygen vacancy is the origin of RT FM in pure ZnO QDs. Experimental data on the annealed ZnO QDs in air further confirm this conclusion.
     4. Platium (Pt) nanoparticles with controllable loading content are modified on ZnO nanorods (NRs) using chloroplatinic acid (H2PtCl6) as Pt precursor via a chemical reduction process in ethylene glycol. It is indicated from x-ray photoelectron spectroscopy (XPS), PL and UV-vis spectra that the deposited Pt atoms can act as electron acceptors and facilitate the electron-hole separation. Therefore, the Pt-ZnO heterostructures display obviously enhanced photocatalytic activity with an optimal loading value of1.0atom Pt%. Meanwhile, in order to resolve the reclclable issue of photocatalysts, nickel (Ni) and Pt was simultaneously deposited to form PtNi19alloy on the ZnO NRs. This is mainly considering that nickel is also the metal like Pt and it is magnetic. It is found that when Ni nanoparticles were modified on ZnO NRs, although they are magnetic and can be seperated by magnetic force, the photocatalytic activity becomes poorer than that of pure ZnO NRs. When alloyed PtNi nanoparticles were modified on ZnO NRs, the composites are magnetic, and show almost the same photocatalytic activity as that of pure ZnO NRs.
     5. Via sol-gel method, ZnO QDs with uniform size were synthesized. PbS QDs with more uniform size were synthesized via a chemical precipitation. Using these two kinds of QDs, we prepared QDs P-N junction heterostructure solar cell and tested their performance. This preparation method is simple and low-cost, and may find potential application in next generation solar cells.
引文
1. Ozgur,U.; Alivov, Ya. I.; Liu, C.; Teke.A.; Reshchikov, M. A., A comprehensive review of ZnO materials and devices. J. Appl. Phys.2005,98(041301).1-103.
    2. Wang, Z. L., Nanostructures of zinc oxide. Materials Today.2004,7 (6),26-33.
    3. Bahnemann, D. W.; Kormann, C.; Hoffmann, M. R., Preparation and characterization of quantum size zinc oxide:a detailed spectroscopic study. J. Phys. Chem.1987,91 (14), 3789-3798.
    4. Gu, Y.; Kuskovsky, I. L.; Yin, M.; O'Brien, S.; Neumark, G. F., Quantum confinement in ZnO nanorods. Appl. Phys. Lett.2004,85 (17).3833-3835.
    5. Chen, Z.; Li, X. X.; Du, G.; Chen, N.; Suen, A. Y. M., A sol-gel method for preparing ZnO quantum dots with strong blue emission. J. Lumin.2011,131 (10),2072-2077.
    6. Spanhel, L.; Anderson, M. A., Semiconductor clusters in the sol-gel process:quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J. Am. Chem. Soc. 1991,113(8),2826-2833.
    7. Meulenkamp, E. A., Synthesis and Growth of ZnO Nanoparticles. J. Phys. Chem. B 1998,102 (29),5566-5572.
    8. Shi, H. Q.; Li, W. N.; Sun, L. W.; Liu. Y.; Xiao, H. M.; Fu. S. Y., Synthesis of silane surface modified ZnO quantum dots with ultrastable, strong and tunable luminescence. Chem. Commun. 2011,47 (43),11921-11923.
    9. Xiong, H. M.; Wang, Z. D.; Xia, Y. Y., Polymerization Initiated by Inherent Free Radicals on Nanoparticle Surfaces:A Simple Method of Obtaining Ultrastable (ZnO)Polymer Core-Shell Nanoparticles with Strong Blue Fluorescence. Adv. Mater.2006,18 (6).748-751.
    10. Xiong, H. M.; Liu, D. P.; Xia, Y. Y.; Chen, J. S., Polyether-Grafted ZnO Nanoparticles with Tunable and Stable Photoluminescence at Room Temperature. Chem. Mater.2005,17 (12). 3062-3064.
    11. Xiong, H. M.; Wang, Z. D.; Liu, D. P.; Chen, J. S.; Wang, Y. G.; Xia, Y. Y., Bonding Polyether onto ZnO Nanoparticles:An Effective Method for Preparing Polymer Nanocomposites with Tunable Luminescence and Stable Conductivity. Adv. Funct. Mater.2005,15(11),1751-1756.
    12. Xiong, H. M.; Xu, Y.; Ren, Q. G.; Xia. Y. Y., Stable Aqueous ZnO@Polymer Core-Shell Nanoparticles with Tunable PhotoLuminescence and Their Application in Cell Imaging. J. Am. Chem. Soc.2008,130 (24),7522-7523.
    13. Schwartz, D. A.; Norberg, N. S.; Nguyen, Q. P.; Parker, J. M.; Gamelin, D. R., Magnetic Quantum Dots:Synthesis, Spectroscopy, and Magnetism of Co2+-and Ni2+-Doped ZnO Nanocrystals.J. Am. Chem. Soc.2003,125 (43),13205-13218.
    14. Pacholski, C.; Kornowski, A.; Weller, H., Self-Assembly of ZnO:From Nanodots to Nanorods. Angew.Chem. Int. Ed.2002,41 (7),1188-1191.
    15. van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink. A., Identification of the transition responsible for the visible emission in ZnO using quantum size effects. J. Lumin. 2000,90(3-4).123-128.
    16. Fu, Y. S.; Du, X. W.; Kulinich. S. A.; Qiu, J. S.; Qin, W. J.; Li. R.;Sun, J.; Liu, J., Stable Aqueous Dispersion of ZnO Quantum Dots with Strong Blue Emission via Simple Solution Route. J. Am. Chem. Soc.2007,129 (51).16029-16033.
    17. Wang, Z. L., Zinc oxide nanostructures:growth, properties and applications. J. Phys.: Condens. Matter 2004,16(25),829-858.
    18. Yang, P.; Yan, H.; Mao. S.; Russo, R.; Johnson, J.; Saykally. R.; Morris. N.; Pham, J.; He. R.; Choi, H. J., Controlled Growth of ZnO Nanowires and Their Optical Properties. Adv. Funct. Mater.2002,12 (5).323-331
    19. Zhao, Q. X.; Willander, M.; Morjan, R. E.; Hu, Q.-H.; Campbell, E. E. B., Optical recombination of ZnO nanowires grown on sapphire and Si substrates. Appl. Phys. Lett.2003, 83(1),165-167.
    20. Kumar, S.; Nann, T., Shape Control of Ⅱ-Ⅵ Semiconductor Nanomaterials. Small 2006,2 (3). 316-329.
    21. Liu, B.; Zeng, H. C., Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm. J. Am. Chem. Soc.2003,125 (15).4430-4431.
    22. Liang, J.; Liu. J.; Xie, Q.; Bai, S.; Yu, W.; Qian, Y., Hydrothermal Growth and Optical Properties of Doughnut-Shaped ZnO Microparticles. J. Phys. Chem. B 2005,109 (19), 9463-9467.
    23. Pal, U.; Santiago, P.. Controlling the Morphology of ZnO Nanostructures in a Low-Temperature Hydrothermal Process. J. Phys. Chem.B 2005,109 (32),15317-15321.
    24. Kuo, C. L.; Kuo, T. J.; Huang, M. H., Hydrothermal Synthesis of ZnO Microspheres and Hexagonal Microrods with Sheetlike and Platelike Nanostructures. J. Phys. Chem. B 2005,109 (43).20115-20121.
    25. Liu, B.; Zeng, H. C., Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process. J. Am. Chem. Soc.2004,126(51),16744-16746.
    26. Zhang, H.; Yang. D.; Ji, Y.; Ma, X.; Xu, J.; Que, D., Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process. J. Phys. Chem. B 2004,108 (13).3955-3958.
    27. Bagnall, D. M.; Chen, Y. F.; Zhu, Z.; Yao, T.; Koyama, S.; Shen, M. Y.; Goto, T., Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett.1997,70 (17),2230-2232.
    28. Qi, H.; Li, Q.; Wang, C.; Zhang, L.; Lv, L., Effects of oxygen pressure on n-ZnO/p-Si heterojunctions fabricated using pulsed laser deposition. Vacuum 2007,81 (8),943-946.
    29. Kaidashev. E. M.; Lorenz, M.; von Wenckstern, H.; Rahm, A.; Semmelhack, H. C.; Han, K. H.; Benndorf, G.; Bundesmann, C.; Hochmuth, H.; Grundmann, M., High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Appl. Phys. Lett.2003,82 (22),3901-3903.
    30. Hayamizu, S.; Tabata. H.; Tanaka, H.; Kawai, T., Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition. J. Appl. Phys.1996,80 (2),787-791.
    31. Craciun, V.; Elders, J.; Gardeniers, J. G. E.; Boyd,1. W., Characteristics of high quality ZnO thin films deposited by pulsed laser deposition. Appl. Phys. Lett.1994,65 (23),2963-2965.
    32. Chen, Y.; Bagnall, D. M.; Zhu, Z.; Sekiuchi, T.; Park, K.-t.; Hiraga, K.; Yao, T.; Koyama, S.; Shen, M. Y.; Goto, T., Growth of ZnO single crystal thin films on c-plane (0001) sapphire by plasma enhanced molecular beam epitaxy. J. Cryst. Growth 1997,181 (1-2),165-169.
    33. Makino. T.; Isoya, G.; Segawa, Y.; Chia, C. H.; Yasuda. T.; Kawasaki. M.; Ohtomo, A.; Tamura, K.; Koinuma, H., Optical spectra in ZnO thin films on lattice-matched substrates grown with laser-MBE method. J. Cryst. Growth 2000,214-215 (0),289-293.
    34. Bao, D.; Gu. H.; Kuang. A., Sol-gel-derived c-axis oriented ZnO thin films. Thin Solid Films 1998,312(1-2),37-39.
    35. Natsume, Y.; Sakata, H., Zinc oxide films prepared by sol-gel spin-coating. Thin Solid Films 2000,372(1-2),30-36.
    36. Liu, Y.; Gorla, C.; Liang, S.; Emanetoglu. N.; Lu, Y.; Shen, H.; Wraback, M., Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. J. Electron. Mater.2000,29 (1), 69-74.
    37. Yamamoto, H.; Saiga, N.; Nishimori. K., ZnO thin films deposited on various LiNbO3 substrates by RF-sputtering. Appl. Surf. Sci.2001,169-170 (0),517-520.
    38. Moustaghfir, A.; Tomasella, E.; Ben Amor, S.; Jacquet, M.; Cellier, J.:Sauvage, T., Structural and optical studies of ZnO thin films deposited by r.f. magnetron sputtering:influence of annealing. Surf. Coat. Technol.2003,174-175 (0),193-196.
    39. Guo, X. L.; Tabata, H.; Kawai, T., p-Type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N2O plasma. Opt. Mater.2002,19 (1),229-233.
    40. Lin. C. C.; Chen, S. Y.; Cheng, S. Y.; Lee. H. Y., Properties of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering. Appl. Phys. Lett.2004,84 (24).5040-5042.
    41. Huang. J.; Ye, Z.; Chen, H.; Zhao, B.; Wang, L., Growth of N-doped p-type ZnO films using ammonia as dopant source gas. J. Mater. Sci. Lett.2003,22 (4).249-251.
    42. Singh, A. V.; Mehra. R. M.; Wakahara, A.; Yoshida, A., p-type conduction in codoped ZnO thin films. J. Appl Phys.2003,93 (1),396-399.
    43. Djurisic, A. B.; Leung, Y. H., Optical Properties of ZnO Nanostructures. Small 2006,2 (8-9), 944-961.
    44. Hsu. H. C.;Hsieh,. W. F., Excitonic polaron and phonon assisted photoluminescence of ZnO nanowires. Solid State Commun.2004,131 (6),371-375.
    45. Ozaki, S.; Tsuchiya. T.; Inokuchi. Y.:Adachi, S., Photoluminescence and photomodulated transmittance spectroscopy of ZnO nanowires. Phys.status solidi (a) 2005,202 (7),1325-1335.
    46. Kwok, W. M.; Djurisic, A. B.; Leung, Y. H.; Chan, W. K.; Phillips, D. L.; Chen, H. Y.; Wu, C. L.; Gwo, S.; Xie, M. H., Study of excitonic emission in highly faceted ZnO rods. Chem. Phys. Lett.2005,412(1-3),141-144.
    47. Chen, S. J.; Liu, Y. C.; Shao. C. L.; Mu, R.; Lu, Y. M.; Zhang, J. Y.; Shen, D. Z.; Fan, X. W., Structural and Optical Properties of Uniform ZnO Nanosheets. Adv. Mater.2005,17 (5), 586-590.
    48. Tong, Y. H.; Liu, Y. C.; Lu, S. X.; Dong, L.; Chen, S. J.; Xiao, Z. Y., The Optical Properties of ZnO Nanoparticles Capped with Polyvinyl Butyral. J. Sol-Gel Sci. Technol.2004,30 (3), 157-161.
    49. Zhang, X. H.; Liu. Y. C.; Wang, X. H.; Chen. S J.; Wang, G. R.; Zhang, J.Y.; Lu, Y. M.; Shen. D. Z.; Fan, X. W., Structural properties and photoluminescence of ZnO nanowalls prepared by two-step growth with oxygen-plasma-assisted molecular beam epitaxy. J. Phys.:Condens. Matter.2005,17(19).3035-3042.
    50. Sun, H. W.; Kim. G. Y.; Jung, Y. S.; Choi, W. K.; Byun, D., Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis. J. Appl. Phys.2005,97 (4), 044305-6.
    51. Meyer, B. K.; Alves, H.; Hofmann, D. M.; Kriegseis, W.; Forster, D.; Bertram, F.; Christen, J.; Hoffmann, A.; Straβburg, M.; Dworzak, M.; Haboeck, U.; Rodina, A. V., Bound exciton and donor-acceptor pair recombinations in ZnO. Phys.status solidi (b) 2004.241 (2),231-260.
    52. Teke, A.; Ozgur,U.; Dogan, S.; Gu, X.; Morkoc, H.; Nemeth, B.; Nause, J.; Everitt, H. O., Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys. Rev. B 2004,70(19),195207.
    53. Gutowski. J.; Presser. N.; Broser,I., Acceptor-exciton complexes in ZnO:A comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy. Phys. Rev. B 1988,38 (14).9746-9758.
    54. Strassburg, M.; Rodina. A.;Dworzak, M.; Haboeck. U.; Krestnikov, I. L.; Hoffmann. A.; Gelhausen, O.; Phillips, M. R.; Alves, H. R.; Zeuner, A.; Hofmann. D. M.; Meyer, B. K., Identification of bound exciton complexes in ZnO. Phys.status solidi (b) 2004,241 (3), 607-611.
    55. Look. D. C.; Coskun, C.; Claflin. B.; Farlow, G. C., Electrical and optical properties of defects and impurities in ZnO. Physica B:Condensed Matter 2003,340-342 (0),32-38.
    56. Look, D. C.; Jones, R. L.; Sizelove, J. R.; Garces. N. Y.; Giles. N. C.; Halliburton, L. E., The path to ZnO devices:donor and acceptor dynamics. Phys. status solidi (a) 2003,195 (1), 171-177.
    57. Wang, R. C.; Liu, C. P.; Huang, J. L.; Chen, S. J., ZnO symmetric nanosheets integrated with nanowalls. Appl. Phys. Lett.2005,87 (5),053103(1-3).
    58. Fan, H. J.; Scholz. R.; Kolb. F. M.; Zacharias, M.; Gosele, U.; Heyroth, F.; Eisenschmidt, C.; Hempel, T.; Christen, J., On the growth mechanism and optical properties of ZnO multi-layer nanosheets. Appl. Phys. A 2004,79 (8).1895-1900.
    59. Fan, H. J.; Scholz. R.; Kolb, F. M.; Zacharias, M., Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals. Appl. Phys. Lett.2004,85 (18),4142-4144.
    60. Liu, X.; Wu, X.; Cao, H.; Chang, R. P. H., Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys.2004,95 (6),3141-3147.
    61. Ng, H. T.; Chen, B.; Li, J.; Han, J.; Meyyappan, M.; Wu, J.; Li, S. X.; Haller, E. E., Optical properties of single-crystalline ZnO nanowires on m-sapphire. Appl. Phys. Lett.2003,82 (13), 2023-2025.
    62. Meng, X. Q.; Shen, D. Z.; Zhang, J. Y.; Zhao. D. X.; Lu, Y. M.; Dong, L.; Zhang, Z. Z.; Liu, Y. C.; Fan, X. W., The structural and optical properties of ZnO nanorod arrays. Solid Slate Common.2005,135 (3),179-182.
    63. Huang, L.; Wright, S.; Yang, S.; Shen, D.; Gu, B.; Du, Y., ZnO Well-Faceted Fibers with Periodic Junctions. J. Phys. Chem. B 2004,108 (52),19901-19903.
    64. Yang, Q.; Tang, K.; Zuo, J.; Qian, Y., Synthesis and luminescent property of single-crystal ZnO nanobelts by a simple low temperature evaporation route. Appl. Phys. A 2004,79 (8), 1847-1851.
    65. Choopun, S.; Hongsith, N.; Tanunchai, S.; Chairuangsri, T.; Krua-in. C.; Singkarat, S.; Vilaithong, T.; Mangkomtong. P.; Mangkorntong, N., Single-crystalline ZnO nanobelts by RF sputtering. J. Cryst. Growth 2005,282 (3-4),365-369.
    66. Yu, W.; Li, X.; Gao, X., Catalytic Synthesis and Structural Characteristics of High-Quality Tetrapod-Like ZnO Nanocrystals by a Modified Vapor Transport Process. Crys. Growth Des. 2004,5(1),151-155.
    67. Hur. T.B.; Hwang, Y.H.; Kim, H.K., Quantum confinement in Volmer-Weber-type self-assembled ZnO nanocrystals. Appl. Phys. Lett.2005,86 (19),193113.
    68. Zhang, L.; Yin. L.; Wang, C.; lun, N.; Qi, Y.; Xiang, D., Origin of Visible Photoluminescence of ZnO Quantum Dots:Defect-Dependent and Size-Dependent. J. Phys. Chem. C 2010,114 (21),9651-9658.
    69. Hu, J. Q.; Ma, X. L.; Xie, Z. Y.; Wong. N. B.; Lee. C. S.; Lee, S. T., Characterization of zinc oxide crystal whiskers grown by thermal evaporation. Chem. Phys. Lett.2001,344 (1-2). 97-100.
    70. Mahamuni, S.; Borgohain. K.; Bendre, B. S.; Leppert, V. J.; Risbud, S. H., Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J. Appl. Phys.1999, 85(5),2861-2865.
    71. Jin, B. J.; Im, S.; Lee, S. Y., Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films 2000,366 (1-2),107-110.
    72. Xu, X. L.; Lau. S. P.; Chen, J. S.; Chen, G. Y.; Tay, B. K., Poly crystal line ZnO thin films on Si (100) deposited by filtered cathodic vacuum arc. J. Cryst. Growth 2001,223 (1-2), 201-205.
    73. Xue, Z. Y.; Zhang, D. H.; Wang, Q. P.; Wang, J. H., The blue photoluminescence emitted from ZnO films deposited on glass substrate by rf magnetron sputtering. Appl. Surf. Sci.2002, 195(1-4),126-129.
    74. Dai, L.; Chen, X. L.; Wang. W. J.; Zhou, T.; Hu, B. Q., Growth and luminescence characterization of large-scale zinc oxide nanowires. J. Phys.:Condens. Matter.2003,15(13), 2221-2226.
    75. Hu, J. Q.; Bando. Y., Growth and optical properties of single-crystal tubular ZnO whiskers. Appl. Phys. Lett.2003,82 (9),1401.
    76. Studenikin, S. A.; Golego, N.; Cocivera, M., Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys.1998,84 (4). 2287-2294.
    77. Kohan. A. F.; Ceder, G.; Morgan. D.; Van de Walle, C. G., First-principles study of native point defects in ZnO. Phys. Rev. B 2000,61 (22),15019-15027.
    78. Chris G, V. d. W., Defect analysis and engineering in ZnO. Physica B:Condens. Matter.2001, 308-310(0),899-903.
    79. Lin, B.; Fu. Z.; Jia, Y., Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett.2001,79 (7),943.
    80. Xu, P. S.; Sun, Y. M.; Shi, C. S.; Xu, F. Q.; Pan, H. B., The electronic structure and spectral properties of ZnO and its defects. Nucl. Instrum. Methods Phys. Res., Sect.B 2003,199 (0), 286-290.
    81. Li, H.; Huang, Y.; Zhang. Y.; Qi. J.; Yan, X.; Zhang. Q.:Wang. J., Self-catalytic Synthesis. Structures, and Properties of High-Quality Tetrapod-Shaped ZnO Nanostructures. Crys. Growth Des.2009,9 (4),1863-1868.
    82. Heo, Y. W.; Norton. D. P.; Pearton, S. J., Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy. J. Appl. Phys.2005,98 (7),073502.
    83. Zhao, Q. X.; Klason. P.; Willander, M.; Zhong. H. M.; Lu, W.;Yang. J. H., Deep-level emissions influenced by O and Zn implantations in ZnO. Appl. Phys. Lett.2005,87 (21), 211912.
    84. Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A.; Gnade, B. E., Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys.1996, 79(10),7983-7990.
    85. van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh. D.; Meijerink, A., The luminescence of nanocrystalline ZnO particles:the mechanism of the ultraviolet and visible emission. J. Lumin. 2000,87-89 (0).454-456.
    86. Garces. N. Y.; Wang. L.; Bai, L.; Giles, N. C.; Halliburton, L. E.; Cantwell, G., Role of copper in the green luminescence from ZnO crystals. Appl. Phys. Lett.2002,81 (4),622.
    87. Monticone, S.; Tufeu, R.; Kanaev, Complex Nature of the UV and Visible Fluorescence of Colloidal ZnO Nanoparticles. J. Phys. Chem. B 1998,102 (16),2854-2862.
    88. Djurisic, A. B.; Choy, W. C. H.; Roy. V. A. L.; Leung. Y. H.; Kwong, C. Y.; Cheah. K. W.: GunduRao, T. K.; Chan, W. K.; FeiLui, H.; Surya, C., Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures. Adv. Funct. Mater.2004,14 (9), 856-864.
    89. Gu, Y.; Kuskovsky, I. L.; Yin, M.; O'Brien, S.; Neumark, G. F., Quantum confinement in ZnO nanorods. Appl. Phys. Lett.2004,85 (17),3833.
    90. van Dijken. A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink. A., Identification of the transition responsible for the visible emission in ZnO using quantum size effects. J. Lumin. 2000,90(3-4),123-128.
    91. Van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A., The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation. J. Phys. Chem.B 2000,104 (8).1715-1723.
    92. Xiong. H. M.; Shchukin, D. G.; Mohwald, H.; Xu, Y.; Xia, Y. Y., Sonochemical Synthesis of Highly Luminescent Zinc Oxide Nanoparticles Doped with Magnesium(11). Angew.Chem.Int.Ed.2009,48 (15),2727-2731.
    93. Ohno. H., Making Nonmagnetic Semiconductors Ferromagnetic. Science.1998,281 (5379), 951-956.
    94. Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D., Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science.2000,287 (5455), 1019-1022.
    95. Saeki, H.; Tabata, H.; Kawai, T., Magnetic and electric properties of vanadium doped ZnO films. Solid Stale Commun.2001,120 (11),439-443.
    96. Chu, D.; Zeng, Y.-P; Jiang, D., Synthesis of Room-Temperature Ferromagnetic Co-Doped ZnO Nanocrystals under a High Magnetic Field. J. Phys. Chem. C. 2007,111(16),5893-5897.
    97. Wang, X. F.; Xu, J. B.; Zhang. B.; Yu. H. G.; Wang, J.; Zhang. X.; Yu, J. G.; Li, Q., Signature of Intrinsic High-Temperature Ferromagnetism in Cobalt-Doped Zinc Oxide Nanocrystals. Adv. Mater.2006,18 (18).2476-2480.
    98. Bhattacharyya, S.; Gedanken, A., Synthesis, Characterization, and Room-Temperature Ferromagnetism in Cobalt-Doped Zinc Oxide (ZnO:Co2+) Nanocrystals Encapsulated in Carbon. J. Phys. Chem. C.2008,112 (12),4517-4523.
    99. Balti, I.; Mezni. A.; Dakhlaoui-Omrani, A.; Leone. P.; Viana. B.:Brinza, O.; Smiri. L.S.; Jouini, N., Comparative Study of Ni- and Co-Substituted ZnO Nanoparticles:Synthesis, Optical, and Magnetic Properties. J. Phys. Chem. C.2011,115 (32),15758-15766.
    100. Liu, H.; Zhang. X.; Li. L.; Wang, Y. X.; Gao, K. H.; Li. Z. Q.; Zheng, R. K.; Ringer, S. P.; Zhang, B.; Zhang, X. X., Role of point defects in room-temperature ferromagnetism of Cr-doped ZnO. Appl. Phys. Lett.2007,91 (7),072511.
    101. Roy, V. A. L.; Djurisic, A. B.; Liu, H.; Zhang, X. X.; Leung, Y. H.; Xie, M. H.; Gao, J.; Lui, H. F.; Surya, C., Magnetic properties of Mn doped ZnO tetrapod structures. Appl. Phys. Lett. 2004,84 (5),756-758.
    102. Diaconu, M.:Schmidt, H.; Hochmuth, H.; Lorenz, M.; Benndorf, G.; Spemann, D.; Setzer. A.; Esquinazi, P.; Poppl, A.; von Wenckstern, H.; Nielsen, K. W.; Gross, R.; Schmid. H.; Mader. W.; Wagner, G.; Grundmann, M., Room-temperature ferromagnetic Mn-alloyed ZnO films obtained by pulsed laser deposition. J. Magn. Magn. Mater.2006,307 (2),212-221.
    103. Luo, J.; Liang, J. K.; Liu, Q. L.; Liu, F. S.; Zhang, Y.; Sun, B. J.; Rao, G. H., Structure and magnetic properties of Mn-doped ZnO nanoparticles. J. Appl. Phys.2005,97 (8),086106.
    104. Lawes. G.; Risbud, A. S.; Ramirez. A. P.; Seshadri. R., Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO. Phys Rev B.2005,71 (4),045201.
    105. Hong, N. H.; Sakai, J.; Brize, V., Observation of ferromagnetism at room temperature in ZnO thin films. J. Phys.:Condens. Matter.2007,19 (3),036219.
    106. Belghazi, Y.; Schmerber, G.; Colis, S.; Rehspringer, J. L.; Dinia, A.; Berrada, A., Extrinsic origin of ferromagnetism in ZnO and Zn[sub 0.9]Co[sub 0.1]O magnetic semiconductor films prepared by sol-gel technique. Appl. Phys. Lett.2006,89 (12),122504.
    107. Kittilstved, K. R.; Gamelin, D. R., Activation of High-TC Ferromagnetism in Mn2+-Doped ZnO using Amines. J. Am. Chem. Soc.2005,127 (15),5292-5293.
    108. Gao. D.; Zhang, Z.; Fu, J.; Xu, Y.; Qi, J.; Xue, D., Room temperature ferromagnetism of pure ZnO nanoparticles. J. Appl. Phys.2009,105 (11),113928.
    109. Riaz. S.; Naseem, S.; Xu, Y., Room temperature ferromagnetism in sol-gel deposited un-doped ZnO films. J. Sol-Gel. Sci. Techn.2011,59 (3),584-590.
    110. Wang, Z. L., ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng., R. 2009,64(3-4),33-71.
    111. Wang, Z. L., Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science. 2006,312(5771),242-246.
    112. Qin, Y.; Wang, X.; Wang, Z. L., Microfibre-nanowire hybrid structure for energy scavenging. Nature.2008,451 (7180),809-813.
    113. He, J. H.; Hsin, C. L.; Liu, J.; Chen, L. J.; Wang, Z. L., Piezoelectric Gated Diode of a Single ZnO Nanowire. Adv. Mater.2007,19 (6),781-784.
    114. Zhou, J.; Fei, P.; Gu, Y.; Mai, W.; Gao, Y.; Yang, R.; Bao, G.; Wang, Z. L. Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires. Nano Lett.2008,8 (11),3973-3977.
    115. Zhou, J.; Gu, Y.; Fei, P.; Mai, W.; Gao, Y.; Yang, R.; Bao, G.; Wang, Z. L., Flexible Piezotronic Strain Sensor. Nano Lett.2008,8 (9).3035-3040.
    116. Zhao, M. H.; Wang, Z. L.; Mao, S. X., Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope. Nano Lett.2004,4 (4). 587-590.
    117. Wang, Z. L., Towards Self-Powered Nanosystems:From Nanogenerators to Nanopiezotronics. Adv. Funct. Mater. 2008,18 (22).3553-3567.
    118. Zhang, Y.; Xu. J.; Xiang, Q.; Li, H.; Pan, Q.; Xu, P., Brush-Like Hierarchical ZnO Nanostructures:Synthesis, Photoluminescence and Gas Sensor Properties. J. Phys. Chem. C. 2009,113(9).3430-3435.
    119. Huang. J.; Wu. Y.; Gu. C.; Zhai. M.; Sun, Y.:Liu, J., Fabrication and gas-sensing properties of hierarchically porous ZnO architectures. Sensor Actual B-Chem.2011,155 (1).126-133.
    120. Reynolds. D. C.; Look, D. C.; Jogai. B., Optically pumped ultraviolet lasing from ZnO. Solid State Commun.1996,99 (12).873-875.
    121. Zu. P.; Tang, Z. K.; Wong, G. K. L.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y., Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun.1997,103 (8),459-463.
    122. Bagnall, D. M.; Chen, Y. F.; Zhu, Z.; Yao, T.; Koyama. S.; Shen, M. Y.; Goto, T.. Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett.1997,70 (17).2230.
    123. Service. R. F.. Materials Science:Will UV Lasers Beat the Blues?. Science 1997,276 (5314). 895-895.
    124. Huang. M. H., Room-Temperature Ultraviolet Nanowire Nanolasers. Science 2001,292 (5523).1897-1899.
    125. Aoki, T.; Hatanaka, Y.; Look, D. C., ZnO diode fabricated by excimer-laser doping. Appl. Phys. Lett.2000,76 (22),3257.
    126. Guo, X.I.; Choi, J. H.; Tabata, H.; Kawai. T.. Fabrication and Optoelectronic Properties of a Transparent ZnO Homostructural Light-Emitting Diode. Express Letter 2001,40.177-180.
    127. Tsukazaki, A.; Ohtomo, A.; Onuma. T.; Ohtani, M.; Makino, T.; Sumiya, M.; Ohtani. K.; Chichibu, S. F.; Fuke, S.; Segawa, Y.; Ohno. H.; Koinuma, H.; Kawasaki, M., Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater.2004,4(1).42-46.
    128. Ryu. Y.; Lee. T.-S.; Lubguban, J. A.; White, H. W.; Kim. B.-J.; Park, Y.S.; Youn, C.J., Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett.2006,88(24).241108.
    129. Jiao, S. J.; Zhang, Z. Z.; Lu. Y. M.; Shen, D. Z.; Yao. B.; Zhang. J. Y.; Li. B. H.; Zhao, D. X.; Fan, X. W.; Tang, Z. K., ZnO p-n junction light-emitting diodes fabricated on sapphire substrates. Appl. Phys. Lett.2006,88 (3).031911.
    130. Liu, W.; Gu, S. L.; Ye, J. D.; Zhu, S. M.; Liu, S. M.; Zhou, X.; Zhang, R.; Shi, Y.; Zheng, Y. D.; Hang, Y.; Zhang, C. L., Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique. Appl. Phys. Lett.2006,88 (9),092101.
    131. Lim. J. H.; Kang, C. K.;Kim. K. K.; Park, I. K.; Hwang, D. K.; Park. S. J., UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering. Adv. Mater 2006,18 (20),2720-2724.
    132. Xu, W. Z.; Ye. Z. Z.; Zeng, Y. J.; Zhu. L. P.; Zhao, B. H.; Jiang, L.; Lu, J. G.; He, H. P.; Zhang, S. B., ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Appl. Phys. Lett.2006,88 (17),173506.
    133. Du, G. T.; Liu, W. F.; Bian, J. M.; Hu. L. Z.; Liang, H. W.; Wang, X. S.; Liu, A. M.; Yang, T. P., Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis. Appl. Phys. Lett.2006,89 (5),052113.
    134. Wei, Z. P.; Lu. Y M.; Shen. D. Z.; Zhang. Z. Z.; Yao. B.; Li, B. H.; Zhang, J. Y.; Zhao, D. X.; Fan, X. W.; Tang, Z. K., Room temperature p-n ZnO blue-violet light-emitting diodes. Appl. Phys. Lett.2007,90 (4),042113.
    135. Yu, Q. X.; Xu, B.; Wu, Q. H.; Liao, Y.; Wang, G. Z.; Fang, R. C.; Lee, H. Y.; Lee, C. T., Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode. Appl. Phys. Lett.2003,83 (23),4713.
    136. Alivov, Y.I.; Kalinina, E. V.; Cherenkov, A. E.; Look, D. C.; Ataev, B. M.; Omaev. A. K.; Chukichev, M. V.; Bagnall, D. M., Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett.2003,83 (23), 4719.
    137. Park, W. I.; Yi, G. C., Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN. Adv. Mater.2004,16 (1),87-90.
    138. Alivov, Y. I.; Ozgur,U.; Dogan, S.; Liu, C.; Moon, Y.; Gu, X.; Avrutin, V.; Fu, Y.; Morkoc, H., Forward-current electroluminescence from GaN/ZnO double heterostructure diode. Solid-State Electron.2005,49 (10).1693-1696.
    139. Zhu, H.; Shan. C. X.; Yao, B.; Li, B. H.; Zhang, J. Y.; Zhang, Z. Z.; Zhao, D. X.; Shen, D. Z.; Fan, X. W.; Lu, Y. M.; Tang, Z. K., Ultralow-Threshold Laser Realized in Zinc Oxide. Adv. Mater.2009,21 (16).1613-1617.
    140. Guo, Z.; Zhao, D.; Liu, Y.; Shen, D.; Yao, B.; Zhang, Z.; Li, B., Electrically Pumped Single-Mode Lasing Emission of Self-Assembled n-ZnO Microcrystalline Film/p-GaN Heterojunction Diode. J. Phys. Chem. C.2010,114 (36),15499-15503.
    141. Chu, S.; Olmedo, M.; Yang, Z.; Kong, J.; Liu, J., Electrically pumped ultraviolet ZnO diode lasers on Si. Appl. Phys. Lett.2008,93 (18).181106.
    142. Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A. M., Biological applications of quantum dots. Biomater.2007,28 (31),4717-4732.
    143. Bruchez Jr. M., Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998, 281 (5385).2013-2016.
    144. Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N., Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Lett.2003,4(1),11-18.
    145. Tang. X.; Choo, E. S. G.; Li. L.; Ding, J.; Xue. J., One-Pot Synthesis of Water-Stable ZnO Nanoparticles via a Polyol Hydrolysis Route and Their Cell Labeling Applications. Langmuir 2009,25(9),5271-5275.
    146. Zhang, P.; Liu, W., ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging. Biomater.2010,31 (11).3087-3094.
    147. Xiong, H. M.; Xu, Y.; Ren, Q. G.; Xia, Y. Y., Stable Aqueous ZnO@Polymer Core-Shell Nanoparticles with Tunable Photoluminescence and Their Application in Cell Imaging. J. Amer. Chem. Soc.2008,130 (24),7522-7523.
    148. Tang, X.; Choo, E. S. G.; Li, L.; Ding, J.; Xue, J., Synthesis of ZnO Nanoparticles with Tunable Emission Colors and Their Cell Labeling Applications. Chem. Mater 2010,22 (11), 3383-3388.
    149. Daneshvar, N.; Salari. D.; Khataee, A. R., Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol., A 2004, 162(2-3)317-322.
    150. Hoffmann. M. R.; Martin, Scot. T.; Choi, W.; Bahnemannt, Detlef. W., Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    151. Yatmaz, H. C.; Akyol. A.; Bayramoglu, M., Kinetics of the Photocatalytic Decolorization of an Azo ReactiveDye in Aqueous ZnO Suspensions. Ind. Eng. Chem. Res.2004,43(19), 6035-6039.
    152. Hoffman, A. J.; Carraway. E. R.; Hoffmann, M. R., Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids. Envlron. Sci. Technol.1994, 28(5),776-785.
    153. Scott Bohle. D.; Spina, C. J., Cationic and Anionic Surface Binding Sites on Nanocrystalline Zinc Oxide:Surface Influence on Photoluminescence and Photocatalysis. J. Am. Chem. Soc.2009,131(12),4397-4404.
    154. Behnajady, M.A.; Modirshahla. N.; Hamzavi. R., Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater.2006.133(1-3).226-232.
    155. Lin, H. F.; Liao, S. C.; Hung, S. W., The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J. Photochem. Pholobiol., A 2005,174(1),82-87.
    156. Jang, E. S.; Won, J. H.; Hwang, S. J.; Choy, J. H., Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity. Adv. Mater.2006,18(24), 3309-3312.
    157. Mclaren, A.; Valdes-Solis, T.; Li. G.; Tsang. S. C., Shape and Size Effects of ZnO Nanocrystals on Photocatalytic Activity. J. Am. Chem. Soc.2009,131(35),12540-12541.
    158. Kislov, N.; Lahiri, J.; Verma, H.; Goswami. D. Y.; Stefanakos. E.; Batzil, M. Photocatalytic Degradation of Methyl Orange over Single Crystalline ZnO:Orientation Dependence of Photoactivity and Photostability of ZnO. Langmuir 2009,25(5).3310-3315.
    159. Wu, J. J.; Tseng, C. H., Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl. Catal.,B 2006,66,51-57.
    160. Wang, Q.; G eng, B.Y.; Wang, S. Z., ZnO/Au Hybrid Nanoarchitectures:Wet-Chemical Synthesis and Structurally Enhanced Photocatalytic Performance. Environ. Sci. Technol. 2009,43(23),8968-8973.
    161. Sun, L. L.; Zhao. D. X.; Song, Z. M.; Shan. C. G.; Zhang, Z. Z.; Li, B. H.; Shen. D. Z., Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity. J. Colloid Interface Sci.2011,363(1),175-181.
    162. Donkova, B.; Vasileva, P.; Nihtianova, D.; Velichkova, N.; Stefanov, P.; Mehandjiev, D., Synthesis, characterization, and catalytic application of Au/ZnO nanocomposites prepared by coprecipitation. J Mater Sci 2011,46(22),7134-7143.
    163. Wang, R. H.; Xin, J. H.; Yang, Y.; Liu, H. F.; Xu, L. M.; Hu, J. H., The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites. Appl. Surf. Sci.2004,227(1-4), 312-317.
    164. Height, M. J.; Pratsinis, S. E.; Mekasuwandumrong, O.; Praserthdam, P., Ag-ZnO catalysts for UV-photodegradation of methylene blue. Appl. Catal., B 2006,63 (3-4),305-312.
    165. Zhang, Y.; Mu, J., One-pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites. J. Colloid Interface Sci.2007,309 (2),478-484.
    166. Zheng, Y.; Zheng, L.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K., Ag/ZnO Heterostructure Nanocrystals:Synthesis, Characterization, and Photocatalysis. Inorg. Chem.2007,46 (17). 6980-6986.
    167. Zhou, G.; Deng, J., Preparation and photocatalytic performance of Ag/ZnO nano-composites. Mai Sci Semicon Proc 2007,10 (2-3),90-96.
    168. Peng, F.; Zhu, H.; Wang, H.; Yu, H., Preparation of Ag-sensitized ZnO and its photocatalytic performance under simulated solar light. Korean J. Chem. Eng.2007,24 (6),1022-1026.
    169. Lu. W.; Gao, S.; Wang, J., One-Pot Synthesis of Ag/ZnO Self-Assembled 3D Hollow Microspheres with Enhanced Photocatalytic Performance. J. Phys. Chem. C 2008,112 (43), 16792-16800.
    170. Zheng. Y.; Chen, C.; Zhan. Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J., Photocatalytic Activity of Ag/ZnO Heterostructure Nanocatalyst:Correlation between Structure and Property. J. Phys. Chem. C 2008,112 (29),10773-10777.
    171. Xu, J.; Chang, Y.; Zhang. Y.; Ma. S.; Qu, Y.; Xu, C., Effect of silver ions on the structure of ZnO and photocatalytic performance of Ag/ZnO composites. Appl. Surf. Sei.2008,255 (5), 1996-1999.
    172. Lin. D.; Wu, H.; Zhang. R.; Pan, W., Enhanced Photocatalysis of Electrospun Ag-ZnO Heterostructured Nanofibers. Chem. Mater.2009,21 (15),3479-3484.
    173. Gu, C.;Cheng, C.; Huang, H.; Wong. T.; Wang. N.; Zhang, T. Y., Growth and Photocatalytic Activity of Dendrite-Iike ZnO@Ag Heterostructure Nanocrystals. Ciyst. Growth Des.2009,9 (7),3278-3285.
    174. Yang, Z.; Zhang, P.; Ding, Y.; Jiang, Y.; Long, Z.; Dai, W., Facile synthesis of Ag/ZnO heterostructures assisted by UV irradiation:Highly photocatalytic property and enhanced photostability. Mater. Res. Bull.2011,46 (10),1625-1631.
    175. Zeng, H.; Cai, W.; Liu, P.; Xu, X.; Zhou, H.; Klingshirn, C.; Kalt, H., ZnO-Based Hollow Nanoparticles by Selective Etching:Elimination and Reconstruction of Metal-Semiconductor Interface. Improvement of Blue Emission and Photocatalysis. ACS Nano 2008,2 (8), 1661-1670.
    176. Pawinrat, P.; Mekasuwandumrong. O.; Panpranot, J., Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catal. Commun.2009,10(10),1380-1385.
    177. Chang, Y.; Xu, J.; Zhang, Y.; Ma. S.; Xin. L.; Zhu, L.; Xu. C, Optical Properties and Photocatalytic Performances of Pd Modified ZnO Samples. J. Phys. Chem. C 2009,113 (43). 18761-18767.
    178. Wang, C.; Wang, X.; Xu, B. Q.; Zhao, J.; Mai. B.; Peng. P. a.; Sheng, G.; Fu, J., Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. J. Photochem. Photobiol., A 2004,168 (1-2).47-52.
    179. Wang. W. W.; Zhu, Y. J.; Yang, L. X., ZnO-SnO2 Hollow Spheres and Hierarchical Nanosheets:Hydrothermal Preparation, Formation Mechanism, and Photocatalytic Properties. Adv. Funct. Mater.2007,17(1),59-64.
    180. Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J., Network Structured SnO2/ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity. Inorg. Chem.2009,48 (5).1819-1825.
    181. Hasnat. M.; Uddin, M.; Samed. A.; Alam. S.; Hossain, S., Adsorption and photocatalytic decolorization of a synthetic dye erythrosine on anatase TiO2 and ZnO surfaces. J. Hazard. Mater.2007,147 (1-2).471-477.
    182. Zhang, Z.; Yuan. Y.; Fang. Y.; Liang. L.; Ding. H.; Jin, L., Preparation of photocatalytic nano-ZnO/TiO2 film and application for determination of chemical oxygen demand. Talanta 2007,73 (3).523-528.
    183. Liao, D. L.; Badour, C. A.; Liao, B. Q., Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. J. Photochem. Photobiol, A 2008,194 (1),11-19.
    184. Li, B.; Wang, Y., Facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite. Super-lattices Microstruct.2010,47 (5),615-623.
    185. Wang, C.; Yin, L.; Zhang, L.; Kang, L.;Wang. X.; Gao, R., Magnetic (γ-Fe2O3@SiO2)n@TiO2 Functional Hybrid Nanoparticles with Actived Photocatalytic Ability. J. Phys. Chem. C 2009,113(10),4008-4011.
    186. Pearton, S. J.; Abernathy, C. R.; Norton, D. P.; Hebard. A. F.; Park, Y. D.; Boatner. L. A.; Budai, J. D., Advances in wide bandgap materials for semiconductor spintronics. Mater. Sci. Eng.,R 2003,40(4),137-168.
    187. Cheng, Z., Solar Nanocomposite Materials. Advances in Nanocomposite Technology 2011.1.
    188. Hagfeldt, A.; Boschloo, G.; Sun. L.; Kloo, L.; Pettersson. H., Dye-Sensitized Solar Cells. Chem. Rev.2010,110,6595-6663.
    189. O'Regan, B.; Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991,353 (6346).737-740.
    190. Kushwaha, S.; Bahadur, L, Characterization of some metal-free organic dyes as photosensitizer for nanocrystalline ZnO-based dye sensitized solar cells. Int. J. Hydrogen Energy 2011,36 (18),11620-11627.
    191. Zhu, G.; Pan, L.; Xu, T.; Sun, Z., One-Step Synthesis of CdS Sensitized TiO2 Photoanodes for Quantum Dot-Sensitized Solar Cells by Microwave Assisted Chemical Bath Deposition Method. ACS Appl. Mater. Interfaces 2011,3 (5),1472-1478.
    192. Mora-Sero. I. N.; Gimenez, S.; Fabregat-Santiago, F.; Gomez, R.; Shen, Q.;Toyoda, T.; Bisquert. J., Recombination in Quantum Dot Sensitized Solar Cells. Acc. Chem. Res.2009, 42(11),1848-1857.
    193. Bang, J. H.; Kamat. P. V., Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals:CdSe and CdTe. ACS Nano 2009,3 (6),1467-1476.
    194. Kamat. P. V., Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters. J. Phys. Chem. C 2008,112 (48),18737-18753.
    195. Luther, J. M.; Gao. J.; Lloyd, M. T.; Semonin, O. E.; Beard, M. C.; Nozik, A. J., Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell. Adv. Mater. 2010,22 (33),3704-3707.
    196. Leschkies, K. S.; Beatty, T. J.; Kang. M. S.; Norris, D. J.; Aydil, E. S., Solar Cells Based on Junctions between Colloidal PbSe Nanocrystals and Thin ZnO Films. ACS Nano 2009,3 (11). 3638-3648.
    197. Yang, Z.; Chen, C. Y.; Roy, P.; Chang, H. T., Quantum dot-sensitized solar cells incorporating nanomaterials. ChemComm 2011,47 (34),9561-9571.
    198. Choi. J. J.; Lim, Y. F.; Santiago-Berrios, M. E. B.; Oh. M.; Hyun, B. R.; Sun, L.; Bartnik. A. C.; Goedhart. A.; Malliaras, G. G.; Abruna, H. c. D.; Wise, F. W.; Hanrath, T.. PbSe Nanocrystal Excitonic Solar Cells. Nano Letters 2009,9(11).3749-3755.
    199. Jing, Z.; Zhan. J., Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates. Adv. Mater.2008,20 (23).4547-4551.
    200. Peng. S. M.; Su, Y.-K.; Ji, L. W.; Wu, C. Z.; Cheng, W. B.; Chao, W. C. ZnO Nanobridge Array UV Photodetectors. J. Phys. Chem. C 2010,114 (7),3204-3208.
    201. Ahmad, M.; Pan, C.; Luo, Z.; Zhu, J., A Single ZnO Nanofiber-Based Highly Sensitive Amperometric Glucose Biosensor. J. Phys. Chem. C 2010,114 (20),9308-9313.
    202. Goldberger, J.; Sirbuly, D. J.; Law, M.; Yang, P., ZnO Nanowire Transistors. J. Phys. Chem. B 2004,109(1),9-14.
    203. Wang, J. X.; Sun, X. W.; Huang, H.; Lee, Y. C.; Tan, O. K.; Yu, M. B.; Lo, G. Q.; Kwong, D. L., A two-step hydrothermally grown ZnO microtube array for CO gas sensing. Appl. Phys. A 2007,88(4),611-615.
    204. Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang. J. X., Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett.2007,90 (26).263501.
    205. Maeda, K.; Teramura, K.; Saito, N.; Inoue, Y.; Domen, K., Improvement of photocatalytic activity of (Gal-xZnx)(N1-xOx) solid solution for overall water splitting by co-loading Cr and another transition metal.J. Catal.2006,243 (2),303-308.
    206. Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J.; Zhu, Y., Luminescence and Photocatalytic Activity of ZnO Nanocrystals:Correlation between Structure and Property. Inorg. Chem.2007,46 (16),6675-6682.
    207. Xiang, B.:Wang, P.; Zhang, X.; Dayeh, S. A.; Aplin, D. P. R.; Soci, C.; Yu. D.; Wang, D., Rational Synthesis of p-Type Zinc Oxide Nanowire Arrays Using Simple Chemical Vapor Deposition. Nano Lett.2006,7 (2),323-328.
    208. Geng, C.; Jiang, Y.; Yao, Y.; Meng, X.; Zapien, J. A.; Lee, C. S.; Lifshitz, Y.; Lee. S. T. Well-Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates. Adv. Fund. Mater. 2004,14(6),589-594.
    209. Lao, C. S.; Gao, P. X.; Yang, R. S.; Zhang, Y.; Dai, Y.; Wang. Z. L., Formation of double-side teethed nanocombs of ZnO and self-catalysis of Zn-terminated polar surface. Chem. Phys. Lett.2006,417 (4-6),358-362.
    210. Pan. Z. W., Nanobelts of Semiconducting Oxides. Science 2001,291 (5510),1947-1949.
    211. Kong, X. Y., Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts. Science 2004,303 (5662),1348-1351.
    212. He, J.; Huang, Y.; Zhang, Y.; Gu, Y.; Ji. Z.; Zhou. C., Large-scale synthesis, microstructure and growth mechanism of self-assembled core-shell ZnO/SiOx nanowires. Mater. Lett.2006, 60(2).150-153.
    213. Ko, S. H.; Lee, D.; Kang. H. W.; Nam, K. H.; Yeo. J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J., Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell. Nano Lett.2011,11 (2),666-671.
    214.Manna, L.; Scher, E. C.; Alivisatos. A. P.. Synthesis of Soluble and Processable Rod-. Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. J. Am. Chem. Soc.2000,122 (51), 12700-12706.
    215.Peen, R. L.; Jillian, F. B., Oriented attachment and growth, twinning, polytypism, and formation of metastable phases:Insights from nanocrystalline TiO2. Am. Mineral.1998,83, 1077-1082.
    216. Spanhel, L., Colloidal ZnO nanostructures and functional coatings:A survey. J. Sol-Gel Sci. Technol.2006,39(1),7-24.
    217. Fernandes, D. M.; Silva. R.; Hechenleitner, A. A. W.; Radovanovic. E.; Melo. M. A. C.; Pineda. E. A. G.. Synthesis and characterization of ZnO, CuO and a mixed Zn and Cu oxide. Mater. Chem. Phys.2009,115 (1),110-115.
    218. Spanhel, L.; Anderson, M. A., Semiconductor clusters in the sol-gel process:quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J. Am. Chem. Soc.1991,113(8).2826-2833.
    219. Xiong, H.-M.; Shchukin, D. G.; Mohwald, H.; Xu. Y.; Xia, Y.-Y., Sonochemical Synthesis of Highly Luminescent Zinc Oxide Nanoparticles Doped with Magnesium(Ⅱ). Angew. Chem. Int. Ed.2009,48 (15),2727-2731.
    220. Fishelovitch. D.; Hazan, C.; Shaik, S.; Wolfson, H. J.; Nussinov, R., Structural Dynamics of the Cooperative Binding of Organic Molecules in the Human Cytochrome P450 3A4. J. Am. Chem. Soc.2007,129 (6).1602-1611.
    221. Lin, X.; Huang, T.; Huang, F.; Wang. W.; Shi. J., Photocatalytic Activity of a Bi-Based Oxychloride Bi3O4Cl. J. Phys. Chem. B 2006,110 (48),24629-24634.
    222. Bahnemann. D. W.; Konnann, C.; Hoffmann, M. R., Preparation and characterization of quantum size zinc oxide:a detailed spectroscopic study. J. Phys. Chem.1987,91.3789-3798.
    223. Spanhel, L., Colloidal ZnO nanostructures and functional coatings:A survey. J. Sol-Gel Sci. Technol.2006,39,7-24.
    224. Xiong. H. M.; Xu, Y.; Ren, Q. G.; Xia, Y. Y., Stable Aqueous ZnO@Polymer Core-Shell Nanoparticles with Tunable Photoluminescence and Their Application in Cell Imaging. J. Am. Chem. Soc.,2008,130,7522-7523.
    225. Peng, X.; Wickham, J.; Alivisatos, A. P., Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth:"Focusing" of Size Distributions. J. Am. Chem. Soc. 1998.120.5343-5344.
    226. Qu, L.; Peng. X., Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. J. Am. Chem. Soc.2002,124,2049-2055.
    227. Kahn. M. L.; Cardinal, T.; Bousquet. B.; Monge, M.; Jubera, V.; Chaudret, B., Optical Properties of Zinc Oxide Nanoparticles and Nanorods Synthesized Using an Organometallic Method. Chem. Phys. Chem.2006,7,2392-2397.
    228. Vanheusden. K.; Warren. W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A.; Gnade, B. E., Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys.1996, 79,7983-7990.
    229. van Dijken, A.; Meulenkamp. E. A.; Vanmaekelbergh, D.; Meijerink, A., Identification of the transition responsible for the visible emission in ZnO using quantum size effects. J. Lumin. 2000,90.123-128.
    230. van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A., The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation. J. Phys. Chem.B 2000,104,1715-1723.
    231. van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A., Influence of Adsorbed Oxygen on the Emission Properties of Nanocrystalline ZnO Particles. J. Phys. Chem.B 2000,104,4355-4360.
    232. van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A., The luminescence of nanocrystalline ZnO particles:the mechanism of the ultraviolet and visible emission. J. Lumin.2000,87-89,454-456.
    233. van Dijken, A.; Makkinje, J.; Meijerink, A., The influence of particle size on the luminescence quantum efficiencyof nanocrystalline ZnO particles. J. Lumin.2001,92, 323-328.
    234. Vanheusden. K.; Seager, C. H.; Warren, W. L.; Tallant, D. R.; Voigt, J. A., Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett.1996, 68,403-405.
    235. Xue, Z. Y.; Zhang, D. H.; Wang. Q. P.; Wang, J. H., The blue photoluminescence emitted from ZnO films deposited on glass substrate by rf magnetron sputtering. Appl. Surf. Sci.2002, 195,126-129.
    236. Koudelka, L.; Horak, J., Morphology of polycrystalline ZnO and its physical properties. J. Mater. Sci.1994,29,1497-1500.
    237. Heo, Y. W.; Norton, D. P.; Pearton, S. J., Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy. J. Appl. Phys.2005,98.073502 (1-6).
    238. Zhao, Q. X.; Klason. P.; Willander. M.; Zhong, H. M.; Lu, W.; Yang, J. H., Deep-level emissions influenced by O and Zn implantations in ZnO. Appl. Phys. Lett.2005,87,211912 (1-3).
    239. Liu, X.; Wu, X. H.; Cao, H.; Chang. R. P. H., Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys.2004, 95,3141-3147.
    240. Li, D.; Leung. Y. H.; Djurisic, A. B.; Liu, Z. T.; Xie, M. H.; Shi, S. L.; Xu, S. J.; Chan, W. K.. Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Appl. Phys. Lett.2004,85.1601-1603.
    241. Yang, Q.; Tang. K.; Zuo. J.; Qian, Y., Synthesis and luminescent property of single-crystal ZnO nanobelts by a simple low temperature evaporation route. Appl. Phys. A 2004,79, 1847-1851.
    242. Lin, B.; Fu. Z.; Jia, Y., Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett.2001,79.943-945.
    243. Garces, N. Y.:Wang. L.; Bai. L.; Giles. N. C.; Halliburton, L. E.; Cantwell, G., Role of copper in the green luminescence from ZnO crystals. Appl. Phys. Lett.2002.81,622-624.
    244. Norberg, N. S.; Gamelin, D. R., Influence of Surface Modification on the Luminescence of Colloidal ZnO Nanocrystals. J. Phys. Chem. B.2005,109,20810-20816.
    245. Reynolds, D. C.; Look, D. C.; Jogai. B., Fine structure on the green band in ZnO. J. Appl. Phys.2001,89,6189-6191.
    246. Studenikin. S. A.; Cocivera, M., Time-resolved luminescence and photoconductivity of polycrystalline ZnO films. J. Appl. Phys.2002,91,5060-5065.
    247. Abdullah, M.; Morimoto, T.; Okuyama, K., Generating Blue and Red Luminescence from ZnO/Poly(ethylene glycol)Nancomposites Prepared Using an In-Situ Method. Adv. Funct. Mater.2003,13,800-804.
    248. Xiong, H. M.; Liu, D. P.; Xia Y. Y.; Chen, J. S., Polyether-Grafted ZnO Nanoparticles with Tunable and Stable Photoluminescence at Room Temperature. Chem. Mater.2005,17, 3062-3064.
    249. Xiong, H. M.; Wang, Z. D.; Liu. D. P.; Chen, J. S.; Wang, Y. G.; Xia, Y. Y., Bonding Polyether onto ZnO Nanoparticles:An Effective Method for Preparing Polymer Nanocompsoites with Tunable Luminescece and Stable Conductivity. Adv. Funct. Mater. 2005,15.1751-1756.
    250. Xiong, H. M.; Shchukin. D. G.; Mohwald. H.; Xu. Y.; Xia. Y.Y., Sonochemical Synthesis of Highly Luminescent Zinc Oxide Nanoparticles Doped with Magnesium(Ⅱ). Angew. Chem. Int.Ed.2009,48,1-6.
    251. Fu. Y. S.; Du. X. W. Kulinich. S. A.; Qiu, J. S.; Qin, W. J.; Li, R.; Sun. J.; Liu. J., Stable Aqueous Dispersion of ZnO Quantum Dots with Strong Blue Emission via Simple Solution Route. J. Am. Chem. Soc.2007,129,16029-16033.
    252. Bohle, D. S.; Spina. C. J., Cationic and Anionic Surface Binding Sites on Nanocrystalline Zinc Oxide:Surface Influence on Photoluminescence and Photocatalysis. J. Am. Chem. Soc. 2009,131,4397-4404.
    253. Walters, A. B.; Na. B. K.;Liu. C. C.; Vannice,M.A., Distinguishing surface and bulk electron charge carriers for ZnO powders. J. Mol. Catal. A:Chem.2000,162,287-295.
    254. Vanheusden, K.; Seager, C. H.; Warren. W. L.; Tallant, D. R.; Voigt. J. A., Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett.1996, 68.403-405.
    255. Choi. S. H.; Kim, E. G.; Park, J.:An, K.; Lee, N.; Kim, S. C.; Hyeon, T., Large-Scale Synthesis of Hexagonal Pyramid-Shaped ZnO Nanocrystals from Thermolysis of Zn-Oleate Complex. J. Phys. Chem. B 2005,109,14792-14794.
    256. Shi, W. S.; Cheng, B.; Zhang. L.; Samulski, E. T., Influence of excitation density on photoluminescence of zinc oxide with different morphologies and dimensions. J. Appl. Phys. 2005,98,083502 (1-5).
    257. Sun, T. J.; Qiu, J. S.; Liang, C. H., Controllable Fabrication and Photocatalytic Activity of ZnO Nanobelt Arrays. J. Phys. Chem. C 2008,112,715-721.
    258. Chen, Y. Q.; Jiang, J.; He. Z. Y.; Su. Y.; Cai, D.; Chen, L., Growth mechanism and characterization of ZnO microbelts and self-assembled microcombs. Mater. Lett.2005,59, 3280-3283.
    259.Pesika, N. S.; Stebe. K. J.; Searson. P. C. Determination of the Particle Size Distribution of Quantum Nanocrystals from Absorbance Spectra. Adv. Mater.2003,15,1289-1291.
    260.Chen. Z. G.; Zou, J.:Liu. G.; Li, F.; Wang. Y.; Wang. L. Z.; Yuan, X. L.; Sekiguchi, T.; Cheng, H. M.; Lu, G. Q., Novel Boron Nitride Hollow Nanoribbons. Acs. Nano.2008,2,2183-2191.
    261. Eva M. Wong and Peter C. Searson, ZnO quantum particle thin films fabricated by electrophoretic deposition. Appl. Phys. Lett.1999,74,2939-2941.
    262. Ischenko, V.; Polarz. S.; Grote, D.; Stavarache, V.; Fink. K.; Driess, M., Zinc Oxide Nanoparticles with Defects. Adv. Funct. Mater.2005,15,1945-1954.
    263. Galland, D.; Herve, A., Zinc Oxide Nanoparticles with Defects. Phys.Lett.1970,33A,1-2.
    264. Galland, D.; Herve, A., Temperature dependance of the Ser Spectrum of the Zinc Vacacy in ZnO. Solid State Common.1974,14,953-956.
    265. Zhang, S. B.; Wei, S. H.; Alex, Zunger., Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 2001,63,075205(1-7).
    266. Dietl, T.; Ohno, H.; Matsukura, F.; Cibert. J.; Ferrand, D., Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science 2000,287,1019-1022.
    267. Saeki, H.; Tabata, H.; Kawai,T., Magnetic and Electric Properties of Vanadium Doped ZnO Films. Solid State Communication 2001,120,439-443.
    268. Park, J. H.; Kim, M.G.; Jang, H. M.; Ryu. S.; Kim,Y. M., Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett.2004,84,1338-1340.
    269. Ramachandran,S.; Tiwari,A.; Narayan, J., Zn0.9Co0.1O-based Diluted Magnetic Semiconducting Thin Films. Appl. Phys. Lett.2004,84,5255-5257.
    270. Kim. J.H.; Kim, H.; Kim.D.; Ihmb,Y.E.; Choo,W.K.. The Origin of Room Temperature Ferromagnetism in Cobalt-doped Zinc Oxide Thin Films Fabricated by PLD. Journal of the European Ceramic Society 2004,24,1847-1851.
    271. Sharma, P.; Gupta, A.; Rao, K.V.; Owens, F.J.; Sharma, R.; Ahuja. R.; Guillen, J. M.; Johansson. B.; Gehring, G. A., Ferromagnetism above Room Temperature in Bulk and Transparent Thin Films of Mn-doped ZnO. nature materials 2003.2,673-677.
    272. Hsu, H. S.; Huang, J. C.; Huang, Y. H.; Liao, Y. F.; Lin, M. Z. Co-metal Clustering as the Origin of Ferromagnetism in Co-doped ZnO Thin Films. Appl. Phys. Lett.2006.88,242507.
    273. Liu. E. Z.; He, Y.; J, J. Z., Ferromagnetism Induced by Defect Complex in Co-doped ZnO. Appl. Phys. Lett.2008,93,132506.
    274. Belghazi, Y.; Schmerber, G.; Colis, S.; Rehspringer, J. L.; Dinia. A., Extrinsic Origin of Ferromagnetism in ZnO and Zn0.9Co0.1O Magnetic Semiconductor Films Prepared by Sol-Gel Technique. Appl. Phys. Lett.2006,89,122504.
    275. Yan, Z. J.; Ma, Y. W.; Wang, D.1.; Wang, J. H.; Gao, Z. S.; Song, T., Surfactant-Free Fabrication of ZnO Spheres and Pseudospherical Structures. J. Phys. Chem. C 2008,112, 9219.
    276. Liu, W. J.; Li, W. W.; Hu, Z. G.; Tang, Z.; Tang, X. D., Effect of Oxygen Defects on Ferromagnetic of Undoped ZnO. J. Appl. Phys 2011,110,013901.
    277. Yan, Z. J.; Ma, Y. W.; Wang. D. I.; Wang. J. H.; Gao. Z. S.; Wang. L.; Yu. P.; Song. T., Impact of Annealing on Morphology and Ferromagnetism of ZnO Nanorods. Appl. Phys. Lett.2008, 92,081911.
    278. Khare, B.N.; Kappers, M.J.; Wei,M.; Blamire, M.G.; MacManus-Driscoll, J.L. Defect-induced Ferromagnetism in Co-doped ZnO. Adv. Mater.2006,18,1449-1452.
    279. Herng, T.S.; Lau, S.P.; Yu, S.F.; Chen, J.S.; Teng, K.S., Zn-interstitial-enhanced Ferromagnetism in Cu-doped ZnO Films. Journal of Magnetism and Magnetic Materials 2007,315,107-110.
    280. Yan, W.S.; Sun, Z.H.; Liu. Q.H.; Li, Z.R.; Pan,Z.Y., Zn Vacancy Induced Room-temperature Ferromagnetism in Mn-doped ZnO. Appl. Phys. Lett.2007,91,062113.
    281. Nguyen, H. H.; Joe, S.;Nathalie, P.;Virginie, B., Room-temperature Ferromagnetism Observed in Undoped Semiconducting and Insulating Oxide Thin Films. Phys. Rev. B 2006, 73,132404(1-4)
    282. Nguyen, H. H.; Joe, S.; Francois, G., Magnetism due to Oxygen Vacancies and/or Defects in Undoped Semiconducting and Insulating Oxide Thin Films. J. Magn. Magn Mater. 2007,316,214-217
    283. Yu, J. G.; Xiong, J. F.; Cheng, B.;Liu, S. W., Fabrication and Characterization of Ag-TiO2 Multiphase Nanocomposite Thin Films with Enhanced Photocatalytic Activity. Appl. Catal. B: Environ.2005,60,211-221
    284. Rosa, E. D. L.; Sepulveda, G.; Reeja-Jayan, B.;Torres, A.; Salas, P.; Elizondo. N.; Jose-Yacaman, M., Controlling the Growth and Luminescence Properties of Well-faceted ZnO Nanorods. J. Phys. Chem. C 2007,111,8489-8495
    285. Aleksandra, B. D.; Wallace, C. H.; Choy, V. A. L. R.; Yu, H. L.; Chung. Y. K.; Kok. W. C.; Tumkur, K. G. R.; Wai, K. C.; Hsian, F. L.; Charles, S., Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures. Adv. Funct. Mater.2004,14,9.
    286. Zhang, S. B.; Wei, S. H.; Alex, Z., Intrinsic n-type Versus p-type Doping Asymmetry and the Defect Physics of ZnO. Physical.Review. B.2001,63,075205.
    287. Hoffmann, M. R.; Martin, S. T.; Choi. W.; Bahnemann. D. W., Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    288. Yang, J. L.; An, S. J.; Park. W. I.; Yi, G. C.; Choi, W., Photocatalysis Using ZnO Thin Films and Nanoneedles Grown by Metal-Organic Chemical Vapor Deposition Adv. Mater.2004, 16(18).1661-1664.
    289. Pal. B.; Sharon. M., Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process. Mater. Chem. Phys.2002,76(1),82-87.
    290. Fu. H. B.; Xu. T. G.:Zhu, S. B.; Zhu. Y. F.. Photocorrosion Inhibition and Enhancement of Photocatalytic Activity for ZnO via Hybridization with C60. Environ Sci Technol.2008,42,8064-8069.
    291. Li, B. X.; Wang, Y. F., Facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite. Superlattice. Microst.2010,47,615-623.
    292. Wang, Z. Y.; Huang. B. B.; Dai, Y.; Qin, X. Y.; Zhang, X. Y.; Wang, P.; Liu, H. X.; Yu. J. X., Highly Photocatalytic ZnO/In2O3 Heteronanostructures Synthesized by a Coprecipitation Method. J. Phys. Chem. C.2009,113.4612-4617.
    293. Sernelius, B. E.; Berggren, K. F.; Jin, Z. C.; Hamberg, I.; Granqvist, C. G., Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B.1988,37,10244-.
    294. Pawinrat. P.; Mekasuwandumrong, O.; Panpranot, J., Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catalysis Communications.2009,10,1380-1385.
    295. Wang, Y. X.; Li. X. Y.; Lu. G.; Quan, X.; and Chen, G. H., Highly Oriented 1-D ZnO Nanorod Arrays on Zinc Foil:Direct Growth from Substrate, Optical Properties and Photocatalytic Activities. J. Phys. Chem. C.2008,112,7332-7336.
    296. Beydoun, D.; Amal, R.; Low, G.; McEvoy. S., Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. Journal of Molecular Catalysis A: Chemical.2002.180.193-200.
    297. Beydoun, D.; Amal, R., Implications of heat treatment on the properties of a magnetic iron oxide/titanium dioxide photocatalyst. Materials Science and Engineering B.2002,94,71-81.
    298. Beydoun, D.; Amal, R.; Low, C.; McEvoy, S., Novel Photocatalyst:Titania-Coated Magnetite. Activity and photodissolution. J. Phys. Chem. B.2000,104,4387-4396
    299. Bekermann, D.; Gasparotto, A.; Barreca, D.; Bovo, L.; Devi, A.; Fischer, R. A.; Lebedev, O. I.; Maccato, C.; Tondello, E.; Van Tendeloo, G., Highly Oriented ZnO Nanorod Arrays by a Novel Plasma Chemical Vapor Deposition Process. Crystal Crowth & Design.2010,10,4, 2011-2018.
    300. Wu, J.; Liu. S., Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition. Adv. Mater.2002,14.215-218.
    301. Li, P. W.; Chen. W. M.; Liu. W.; Li, Z. A.; Cui, Y. M.; Huang. A. P.; Wang, R. M.; and Chen, C. P., Thermodynamic Phase Formation of Morphology and Size Controlled Ni Nanochains by Temperature and Magnetic Field. J. Phys. Chem. C.2010,114,7721-7726.
    302. Park, K. W.; Choi. J. H.; Kwon, B. K.; Lee, S. A.; Sung, Y. E.; Ha, H. Y.; Hong, S. A.; Kin. H.; Wieckowski. A., Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation. J. Phys. Chem. B 2002,106,1869-1877.
    303. Spanhel, L.; Anderson, M. A., Semiconductor Clusters in the Sol-Gel Process:Quantized Aggregation. Gelation, and Crystal Growth in Concentrated ZnO Colloids J. Am. Chem. Soc.1991,113,2826-2833.
    304. Yang, Y. H.; Chen, X. Y.; Feng, Y.; Yang, G. W., Physical Mechanism of Blue-Shift of UV Luminescence of a Single Pencil-Like ZnO Nanowire. Nano Lett.2007,7,3879-3883.
    305. Chang. Y. G.; Xu, J.; Zhang. Y. Y.; Ma, S. Y.; Xin, L. H.; Zhu, L. N.; Xu, C. T., Optical Properties and Photocatalytic Performances of Pd Modified ZnO Samples. J. Phys. Chem. C. 2009.113,18761-18767.
    306. Liu, X.; Fang, Z.; Zhang, X.; Zhang, W.; Wei, X.; Geng, B., Preparation and Characterization of Fe3O4/CdS Nanocomposites and Their Use as Recyclable photocatalysts. Crystal Growth & Design.2009,9(1),197-202.
    307. Service, R. F., Photovoltaics:New Solar Cells Seem to Have Power at the Right Price. Science 1996,272 (5269),1744-1745.
    308. Chiba, Y.; Islam, A.; Watanabe,Y.; Komiya, R.; Koide, N.; Han, L., Dye-sensitized solar cells with conversion eciency of 11.1%. Jpn.J.Appl.Phys.2006,45,638-640.
    309. Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V., Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films. Journal of the American Chemical Society 2006,128 (7),2385-2393.
    310. Kamat. P. V., Meeting the Clean Energy Demand:Nanostructure Architectures for Solar Energy Conversion. The Journal of Physical Chemistry C 2007,111 (7),2834-2860.
    311. Yu, W. W.:Qu, L.; Guo, W.; Peng, X., Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chemistry of Materials 2003,15 (14), 2854-2860.
    312. Johnston. K. W.; Pattantyus-Abraham. A. G.; Clifford, J. P.; Myrskog, S. H.; MacNeil, D. D.; Levina, L.; Sargent, E. H., Schottky-quantum dot photovoltaics for efficient infrared power conversion. Applied Physics Letters 2008,92 (15),151115-3.
    313. Koleilat. G. I.; Levina, L.; Shukla, H.; Myrskog. S. H.; Hinds. S.; Pattantyus-Abraham. A. G.; Sargent, E. H., Efficient, Stable Infrared Photovoltaics Based on Solution-Cast Colloidal Quantum Dots. ACS Nano 2008,2 (5),833-840.
    314. Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse. A. R.; Wang, X.; Konstantatos, G.; Debnath, R.; Levina. L.; Raabe,I.; Nazeeruddin, M. K.; Gra tzel, M.; Sargent, E. H., Depleted-Heterojunction Colloidal Quantum Dot Solar Cells. ACS Nano 2010,4 (6). 3374-3380.
    315. Gunes, S.; Neugebauer. H.; Sariciftci, N. S., Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews 2007,107 (4),1324-1338.
    316. Yun, D.; Feng. W.; Wu, H.; Yoshino, K., Efficient conjugated polymer-ZnSe and -PbSe nanocrystals hybrid photovoltaic cells through full solar spectrum utilization. Solar Energy Materials and Solar Cells 2009,93 (8),1208-1213.
    317. Chang. J. A.; Rhee, J. H.; Im, S. H.; Lee, Y. H.; Kim, H.-j.; Seok, S. I.; Nazeeruddin, M. K.; Gratzel, M., High-Performance Nanostructured Inorganic-Organic Heterojunction Solar Cells. Nano Letters 2010,10 (7).2609-2612.
    318. Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter. C. B.; Kortshagen. U. R.; Norris, D. J.; Aydil. E. S., Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices. Nano Letters 2007,7 (6),1793-1798.
    319. Lee, Y.-L.; Huang, B.-M.; Chien, H.-T., Highly Efficient CdSe-Sensitized TiO2 Photoelectrode for Quantum-Dot-Sensitized Solar Cell Applications. Chem. Mat.2008,20 (22),6903-6905.
    320. Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V., Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture. J Am Chem Soc 2008,130 (12).4007-4015.
    321. Wise. F. W., Lead Salt Quantum Dots:the Limit of Strong Quantum Confinement. Accounts of Chemical Research 2000,33 (11),773-780.
    322. Hines, M. A.; Scholes. G. D., Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission:Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution. Advanced Materials 2003,15 (21).1844-1849.
    323. Evans, C. M.; Guo, L.; Peterson. J. J.; Maccagnano-Zacher, S.; Krauss, T. D., Ultrabright PbSe Magic-sized Clusters. Nano Letters 2008,8 (9),2896-2899.
    324. Pietryga. J. M.; Schaller, R. D.; Werder, D.; Stewart. M. H.; Klimov. V.I.; Hollingsworth. J. A., Pushing the Band Gap Envelope:Mid-Infrared Emitting Colloidal PbSe Quantum Dots. J Am Chem Soc 2004,126(38).11752-11753.
    325. Kovalenko, M. V.; Talapin, D. V.; Loi, M. A.; Cordella, F.; Hesser, G.; Bodnarchuk. M. I.; Heiss, W., Quasi-Seeded Growth of Ligand-Tailored PbSe Nanocrystals through Cation-Exchange-Mediated Nucleation. Angewandte Chemie International Edition 2008,47 (16),3029-3033.
    326. Talapin, D. V; Murray, C. B., PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors. Science 2005,310 (5745),86-89.
    327. Wang, R. Y.; Feser. J. P.; Lee. J.-S.; Talapin, D. V; Segalman, R.; Majumdar, A., Enhanced Thermopower in PbSe Nanocrystal Quantum Dot Superlattices. Nano Letters 2008,8 (8), 2283-2288.
    328. Konstantatos. G.; Howard. I.; Fischer, A.:Hoogland, S.; Clifford, J.; Klem, E.; Levina. L. Sargent. E. H., Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006,442 (7099).180-183.
    329. Luther, J. M.; Law, M.; Beard. M.; Song, Q.; Reese. M.; Ellingson, M.; Nozik, A. Schottky Solar Cells Based on Colloidal Nanocrystal Films. Nano Letters 2008,8(10),3488-3492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700