用户名: 密码: 验证码:
结核杆菌ESAT-6抗原多表位DNA疫苗的制备及其免疫效果的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分结核杆菌ESAT-6抗原多表位DNA疫苗的构建与体外表达的鉴定
     目的:构建含3个结核杆菌ESAT-6抗原T细胞表位及Flt3配体基因的重组质粒,并使其在大鼠肾小球系膜细胞(GMCs)中表达。方法:用计算机软件预测结核杆菌ESAT-6抗原的T细胞表位谱,选取3个T细胞表位,并以Ala-Ala-Tyr(AAY)序列作为接头,合成全基因序列,定向克隆入真核双表达载体pIRES及质粒pIRES-FL。在酶切分析与序列测定后,用PEI转染至GMCs细胞,并行Western blot鉴定其体外表达。结果:核酸序列测定证实重组质粒构建正确,Westernblot证实该重组质粒能在体外GMCs细胞中表达融合蛋白。结论:成功构建了结核杆菌ESAT-6抗原多表位基因重组质粒。
     第二部分结核杆菌ESAT-6抗原多表位DNA疫苗诱导C57BL/6小鼠免疫应答的初步研究
     目的:研究结核杆菌ESAT-6抗原多表位基因及FL胞外段共表达质粒对小鼠的免疫功能的影响。方法:将pIRES-TH、pIRES-TH-FL重组质粒免疫小鼠,检测小鼠体内特异性淋巴细胞增殖、Th1与Th2型细胞因子(IFN-γ、IL-2、IL-4、IL-10)分泌以及小鼠血清ESAT-6特异性IgG2a、IgG1型抗体的水平。结果:经pIRES-TH质粒免疫的小鼠Th1型应答水平上调,Th2型应答水平下降。联合FL基因的pIRES-TH-FL重组DNA疫苗免疫效果高于单纯ESAT-6表位的DNA疫苗。结论:结核杆菌ESAT-6表位及FL胞外段共表达质粒能够提高小鼠体内的细胞免疫功能。
PARTⅠConstruction and expression of multiepitope DNA vaccine on ESAT-6 antigen of Mycobacterium tuberculosis in vitro
     Objective: To construct recombinant plasmids containing 3 T cell epitopes on ESAT-6 antigen of Mycobacterium tuberculosis and extra-cellular fragment of Flt3 ligand (FL) genes, and to express them in rat glomerular mesangial cells (GMCs). Methods: The amino acid sequence of ESAT-6 antigen was analysed using predictive algorithms and 3 T cell epitopes were predicted. The oligonucleotide encoding and the linker Ala-Ala-Tyr (AAY) were synthesized and inserted into the bicistronic vector pIRES and pIRES-FL. The recombinant plasmids were transfected into GMCs, the recombinant proteins expressing in GMCs was examined by Western blot. Results: The recombinant plasmids were verified by sequencing and the recombinant fusion proteins were identified by Western blot. Conclusion: The multiepitope DNA vaccine from ESAT-6 antigen of Mycobacterium tuberculosis was constructed and expressed successfully.
     PARTⅡImmunol effects of gene vaccine constituted with epitopes of tuberculosis ESAT-6 antigen and Flt-3 ligand in mice
     Objective: To study the immunol effects of gene vaccine constituted with epitopes of tuberculosis ESAT-6 antigen and Flt-3 ligand in mice. Methods: C57BL/6 mice were inoculated with 100μg of pIRES-TH and pIRES-TH-FL each time and a total of 3 times as a whole. The spleen cell proliferation responses to antigen, the Th1/Th2 responses and the titer of ESAT-6 specific IgG2a/IgGl antibody were examined. Results: The spleen cell proliferation responses, the Th1 responses and the antibody level of ESAT-6 specific IgG2a/IgG1 of the pIRES-TH-FL group are higher than those of control groups. Conclusion: pIRES-TH-FL can effectively elevate the cellular immunity of C57BL/6 mice.
引文
1. Stoicescu IP, Husar I, Ibraim E, et al. National Program for TB Control (NPTC): report of 2005 activities, evolution of endemic disease, challenges, priorities [J]. Pneumologia, 2006; 55(3): 96-104.
    2. Brewer, TF. Preventing tuberculosis with bacillus Calmette-Guerin vaccine: a meta-analysis of the literature [J]. Clin Infect Dis, 2000; 31 (suppl 3): S64-S67.
    3. Andersen P, Doherty TM. The success and failure of BCG implications for a novel tuberculosis vaccine [J]. Nat Rev Microbiol, 2005; 3 (8): 656-662.
    4. Sorensen AL, Nagai S, Hoven G, et al. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis [J]. Infect Immun, 1995; 63 (5): 1710-1717.
    5. Wang QM, Sun SH, Hu ZL, et al. Improved immunogenicity of a tuberculosis DNA vaccine encoding ESAT6 by DNA priming and protein boosting [J]. Vaccine, 2004; 22 (27-28): 3622- 3627.
    6. Disis ML, Rinn K, Knutson KL, Davis D, Caron D, Dela Rosa C, Schiffman K. Flt3 ligand as a vaccine adjuvant in association with HER-2/neu peptide-based vaccines in patients with HER-2/neu-overexpressing cancers [J]. Blood, 2002; 99 (8): 2845-2850.
    7. Chen W, Chan AS, Dawson AJ, et al. FLT3 ligand administration after hematopoietic cell transplantation increases circulating dendritic cell precursors that can be activated by CpG oligodeoxy- nucleotides to enhance T-cell and natural killer cell function [J]. Biol Blood Marrow Transplant, 2005; 11(1): 23-34.
    8. Sang H, Pisarev VM, Munger C, et al. Regional, but not systemic recruitment/ expansion of dendritic cells by a pluronic-formulated Flt3-ligand plasmid with vaccine adjuvant activity [J]. Vaccine, 2003; 21 (21-22): 3019-3029.
    9. Wang A, Braun SE, Soupavde G, Cornetta K. Antileukemic activity of Flt3 ligand in murine leukemia [J]. Cancer Res, 2000; 60 (7): 1895-1900.
    10. Sailaja G, Husain S, Nayak BP, Jabbar AM. Long-term maintenance of gpl20-specific immune responses by genetic vaccination with the HIV-1 envelope genes linked to the gene encoding Flt-3 ligand [J]. J Immunol, 2003; 170 (5): 2496-2507.
    11. Ling L, Sette A. The multivalent minigene approach to vaccine development [J]. Expert Opin Investig Drugs, 1999; 8 (9): 1351-1357.
    12. Wilson CC, McKinney D, Anders M, et al. Development of a DNA vaccine designed to induce cytotoxic T lymphocyte responses to multiple conserved epitopes in HIV-1 [J]. J Immunol, 2003; 171 (10): 5611-5623.
    1.Corbett EL,Watt CJ,Walker N,et al.The growing burden of tuberculosis:global trends and interactions with the HIV epidemic [J].Arch Intern Med,2003;163(9):1009-1021.
    2.Hesseling,AC,Marais,BJ,Gie,RP,et al.The risk of disseminated Bacille Calmette-Guerin(BCG)disease in HIV-infected children[J].Vaccine,2007;25(1):14-18.
    3.Brewer,TF.Preventing tuberculosis with bacillus Calmette-Guerin vaccine:a meta-analysis of the literature[J].Clin Infect Dis,2000;31(suppl 3):S64-S67.
    4.Andersen P,Doherty TM.The success and failure of BCG implications for a novel tuberculosis vaccine[J].Nat Rev Microbiol,2005;3(8):656-662.
    5.Sorensen AL,Nagai S,Hoven G,et al.Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis[J].Infect Immun,1995;63(5):1710-1717.
    6.Harboe M,Oettinger T,Wiker HG,et al.Evidence of occurrence of the ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG[J].Infect Immun,1996;64(1):16-22.
    7.Wang QM,Sun SH,Hu ZL,et al.Improved immunogenicity of a tuberculosis DNA vaccine encoding ESAT6 by DNA priming and protein boosting[J].Vaccine,2004;22(27-28):3622-3627.
    8.Antonysamy MA,Thomson AW.Flt3 ligand(FL)and its influence on immune reactivity[J].Cytokine,2000;12(2):87-100.
    9.Disis ML,Rinn K,Knutson KL,Davis D,Caron D,Dela Rosa C,Schiffman K.Flt3 ligand as a vaccine adjuvant in association with HER-2/neu peptide-based vaccines in patients with HER-2/neuoverexpressing cancers[J].Blood,2002;99(8):2845-2850.
    10.Chen W,Chan AS,Dawson AJ,et al.FLT3 ligand administration after hematopoietic cell transplantation increases circulating dendritic cell precursors that can be activated by CpG oligodeoxynucleotides to enhance T-cell and natural killer cell function[J].Biol Blood Marrow Transplant,2005;11(1):23-34.
    11.Sang H,Pisarev VM,Munger C,et al.Regional,but not systemic recruitment/ expansion of dendritic cells by a pluronic-formulated Flt3-1igand plasmid with vaccine adjuvant activity[J].Vaccine,2003;21(21-22):3019-3029.
    12.杨永林,张学光,黄祖瑚。乙型肝炎病毒核心抗原及Flt3配体双表达核酸疫苗的构建与体外表达[J]。南京医科大学学报,2005;25:324-327。
    13.徐闻欢,徐娟,王迎伟等。结核杆菌EsAT-6抗原及Flt3配体双表达核酸疫苗的构建与体外表达[J]。南京医科大学学报,2007;27(1):23-26
    14.Rammensee HG,Bachmann J,Emmerich NP,et al.SYFPEITHI:database for MHC ligands and peptide motifs[J].Immunogenetics,1999;50(3-4):213-219.
    15.Wang A,Braun SE,Soupavde G;Cometta K.Antileukemic activity of Flt3 ligand in murine leukemia[J].Cancer Res,2000;60(7):1895-1900.
    16.Sailaja G;Husain S,Nayak BP,Jabbar AM.Long-term maintenance of gp 120-specific immune responses by genetic vaccination with the HIV-1 envelope genes linked to the gene encoding Flt-3 ligand[J].J Immunol,2003;170(5):2496-2507.
    17.De Groot AS,McMurry J,Marcon L,et al.Developing an epitopedriven tuberculosis(TB)vaccine[J].Vaccine,2005;23(17-18):2121-2131.
    18.Yano A,Onozuka A,Asahi-Ozaki Y,et al.An ingenious design for peptide vaccines[J].Vaccine,2005;23(17-18):2322-2326.
    19.Livingston B,Crimi C,Newman M,et al.A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes[J].J Immunol,2002;168(11):5499-5506.
    20.Velders MP,Weijzen S,Eiben GL,et al.Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine[J].J Immunol,2001;166(9):5366-5373.
    1. Brewer TF. Preventing tuberculosis with bacillus Calmette-Guerin vaccine: a meta-analysis of the literature [J]. Clin Infect Dis, 2000; 31 (suppl 3): S64-S67.
    2. Fine PE. Variation in protection by BCG: implications of and for heterologous immunity [J]. Lancet, 1995; 346 (8986): 1339-1345.
    3. Ling L, Sette A. The multivalent minigene approach to vaccine development [J]. Expert Opin Investig Drugs, 1999; 8 (9): 1351-1357.
    4. Wilson CC, McKinney D, Anders M, et al. Development of a DNA vaccine designed to induce cytotoxic T lymphocyte responses to multiple conserved epitopes in HIV-1 [J]. J Immunol, 2003; 171 (10): 5611-5623.
    5. Babiuk S, Maria E, Estrada B, et al. Electroporation improves the efficacy of DNA vaccines in large animals [J]. Vaccine, 2002; 20 (27-28): 3399-3408.
    6. Somiari S, Malone RW, et al. Efficient non-viral cutaneous transfection [J]. Mol Ther, 2000; 2: 140-46.
    7. Widera G, Austin M, Rabussay D, et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol [J].2000; 164 (9): 4635-4640.
    8. Scheerlinck JP, Karlis J, Tjelle TE, et al. In vivo electroporation improves immune responses to DNA vaccination in sheep [J]. Vaccine, 2004; 22 (13-14): 1820-1825.
    9. An LL, Whitton JL. A multivalent minigene vaccine, containing B-cell, cytotoxic T-lymphocyte, and Th epitopes from several microbes, induces appropriate responses in vivo and confers protection against more than one pathogen [J]. J Virol, 1997; 71 (3): 2292-2302.
    10. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes [J]. Nature, 1996; 383 (6603): 787-793.
    11. Lalvani A, Brookes R, Wilkinson RJ, Malin AS, Pathan AA, Andersen P, Dockrell H, Pasvol G, Hill AV. Human cytolytic and interferon gamma-secreting CD8~+ T lymphocytes specific for Mycobacterium tuberculosis [J]. Proc Natl Acad Sci USA, 1998; 95: 270-275.
    12. Scarpellini P, Tasca S, Galli L, Beretta A, Lazzarin A, Fortis C. Selected pool of peptides from ESAT-6 and CFP-10 proteins for detection of Mycobacterium tuberculosis infection [J]. J Clin Microbiol, 2004; 42: 3469-3474.
    13. Arend, S. M., P. Andersen, K. E. van Meijgaarden, R. L. Skjot, Y. W. Subronto, J. T. van Dissel, and T. H. Ottenhoff. Detection of active tuberculosis infection by T-cell responses to early-secreted antigenic target 6-kDa protein and culture filtrate protein 10 [J]. J. Infect. Dis, 2000; 181: 1850-1854.
    14. Fonseca DP, Benaissa-Trouw B, van Engelen M, Kraaijeveld CA, Snippe H, Verheul AF. Induction of cell-mediated immunity against Mycobacterium tuberculosis using DNA vaccines encoding cytotoxic and helper T-cell epitopes of the 38-kilodalton protein [J]. Infect Immun, 2001; 69(8):4839-4845.
    15. D'Souza S, Rosseels V, Romano M, Tanghe A, Denis O, Jurion F, Castiglione N, Vanonckelen A, Palfliet K, Huygen K. Mapping of murine Th1 helper T-Cell epitopes of mycolyl transferases Ag85A, Ag85B, and Ag85C from Mycobacterium tuberculosis [J]. Infect Immun, 2003; 71(1):483-493.
    16. Velders MP,Weijzen S, Eiben GL, et al. Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine [J]. J Immunol, 2001; 166 (9): 5366-5373.
    17. Antonysamy MA, Thomson AW. Flt3 ligand (FL) and its influence on immune reactivity [J]. Cytokine, 2000; 12: 87-100.
    18. Disis ML, Rinn K, Knutson KL, Davis D, Caron D, dela Rosa C, Schiffman K. Flt3 ligand as a vaccine adjuvant in association with HER-2/neu peptide-based vaccines in patients with HER-2/neu-overexpressing cancers [J]. Blood, 2002; 99: 2845-2850.
    19. Mckenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovskv E, Maliszewski CR, Lynch DH, Smith J, Pulendran B, Roux ER, Teepe M, Lyman SD, Peschon JJ. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells [J]. Blood, 2000; 95: 3489-3497.
    20. Triccas JA, Shklovskaya E, Spratt J, Ryan AA, Palendira U, Fazekas de St Groth B, Britton WJ. Effects of DNA- and Mycobacterium bovis BCG-based delivery of the Flt3 ligand on protective immunity to Mycobacterium tuberculosis [J]. Infect Immun, 2007; 75 (11): 5368-5375.
    21. Gregory SH, Sagnimeni AJ, Zurowski NB, Thomson AW. Flt3 ligand pretreatment promotes protective immunity to Listeria monocytogenes [J]. Cytokine, 2001; 13 (4):202-208.
    22. Hung CF, Hsu KF, Cheng WF, Chai CY, He L, Ling M, Wu TC. Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand [J]. Cancer Res, 2001; 61 (3): 1080-1088.
    23. Stevens TL, Bossie A, Sanders VM, Fernandez-Botran R, Coffman RL, Mosmann TR, Vitetta ES. Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells[J].Nature,1988;334(6179):255-258.
    1. Stoicescu IP, Husar I, Ibraim E, et al. National Program for TB Control (NPTC): report of 2005 activities, evolution of endemic disease, challenges, priorities [J]. Pneumologia, 2006; 55(3): 96-104.
    2. Corbett EL, Watt CJ, Walker N, et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic [J]. Arch Intern Med, 2003; 163(9): 1009-1021.
    3. Brewer TF. Preventing tuberculosis with bacillus Calmette-Guerin vaccine: a meta-analysis of the literature [J]. Clin Infect Dis, 2000; 31(suppl 3):S64-S67.
    4. Stefan HE, Kaufmann, Rubin E, et al. Mycobacterium tuberculosisand the host response [J]. J Eiron Monit, 2005; 201: 1693-1697.
    5. Colditz GA, Berkey CS, Mosteller F, et al. The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: metaanalyses of the published literature [J]. Pediatrics, 1995; 96: 293-298.
    6. Ge Y, El-NaggarM, Sze SK, et al. Top down characterization of secreted proteins from Mycobacterium tuberculosis by electron capture dissociation mass spectrumetry [J]. J Am Soc Mass Spectrom, 2003; 14(3): 253-261.
    7. Sorensen AL, Nagai S, Hoven G, et al. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis [J]. Infect Immun, 1995; 63(5): 1710-1716.
    8. Harboe M, Oettinger T, Gwiker H, et al. Evidence for occurrence of the ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG [J]. Infect Immun, 1996; 64: 16-22.
    9. Brondt L, Oettinger T, Holm A, et al. Key epitopes on the ESAT-6 antigen recognized in mice during the recall of protective immunity to Mycobacterium tuerculosis [J]. J Immunol, 1996; 157: 3527-3533.
    
    10.Ravn P, Demissie A, Eguale T, et al. Human T cell responses to the ESAT-6 antigen From Mycobacterium tuberculosis [J]. J Infect Dis, 1999; 179 (3): 637-642.
    11.Colangeli R, Spencer JS, Bifani P, et al. MTSA-10, the product of the Rv3874 gene of Mycobacterium tuberculosis, elicits tuberculosis specific, delayedtye hypersensitivity in guinea pigs [J]. Infect Immun, 2000; 68(2): 990-993.
    12.Renshaw PS, Panagio P, Whelan A, et al. Mycobacterium tuberculosis complex ESAT-6 and CFP-10 from a tight 1: 1 complex [J]. J Biol Chem, 2002; 277: 2159-2163.
    13.Renshaw PS, Lightbody KL, Veverka V, et al. Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6 [J]. EMBO J, 2005; 24(14): 2491-2498.
    14.Skjot RL, Brock I, Arend SM, et al. Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10. 3 and TB12. 9 ,which constitute a subfamily of the esat-6 gene family [J]. Infect Immun, 2002; 70(10): 5446-5453.
    15.Content JA, Cuvellerie L, De Wit V. The genes coding for the antigen 85 complexes of Mycobacterium tuberculosis and Mycobacterium bovis BCG are members of a gene family: cloning, sequence determination, and genomic organization of the gene coding for antigen 85-C of M. tuberculosis [J]. Infect Immunol, 1991; 59(9): 3205-3212.
    16.Harth G, Lee B, Wang J, et al. Novel insights into the genetics, biochemistry, and Immunocytochemistry of the 30-kilodalton major extracellular protein of Mycobacterium tuberculosis [J]. Infect Immunol, 1996; 64: 3038-3047.
    17.Kremer L, Maughan W, Wilson R, et al. The Mycobacterium tuberculosis antigen 85 Complex and mycolyltransferase activity [J]. Lett Appl Microbiol, 2002; 34(4): 233-237.
    18.Hamasur B, Haile M, Pawlowski A, et al. Mycobacterium tuberculosis arabinomannan-protein conjugates protect against tuberculosis [J]. Vaccine, 2003; 21(25-26): 4081-4093.
    19.Nakamura RM, Einck L, Velmonte MA, et al. Detection of active tuberculosis by an MPB-64 transdermal patch: a field study [J]. Scand J Infect Dis, 2001; 33(6): 405-407.
    20.Tollefsen S, Pollock JM, Lea T, et al. T- and B-cell epitopes in the secreted Mycobacterium bovis antigen MPB70 in mice [J]. Scand J Immunol, 2003; 57(2): 151-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700