分枝杆菌ESX-1分泌系统调节蛋白MycP1的结构生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结核病是目前世界范围内流行范围最广、致死率最高的的传染性疾病之一。全球每年新增近千万感染者,并造成近百万人死亡。结核分枝杆菌是结核病的致病菌,它能够产生多种致病因子,具有强致病性;同时具有多重耐药性和免疫逃逸能力,对寄生环境有极强的适应能力。因此,结核分枝杆菌一直都是对人类健康威胁最大的致病菌之一。近年来,对结核分枝杆菌致病性和耐药性的研究取得了较大的进展,越来越多与之相关的蛋白被发现。在本论文中,我们对分枝杆菌致病因子分泌系统ESX-1的调节蛋白MycP1以及结核分枝杆菌外膜蛋白RV1698开展结构生物学研究,用X-射线晶体衍射方法解析了它们的三维结构,并探究了结构与功能之间的关系,初步阐释了这两个蛋白质在分枝杆菌致病过程中的作用机制。
     本论文的第一部分是分枝杆菌ESX-1分泌系统调节蛋白MycP1的结构生物学研究。结核分枝杆菌中存在一种新型分泌系统T7SS (Type Ⅶ secretion system,), ESX-1系统就是一种典型的T7SS,也是分枝杆菌中研究最广泛的分泌系统。ESX-1分泌系统是分枝杆菌致病性的决定因素之一,致病性分枝杆菌在感染宿主细胞的过程中会通过ESX-1系统分泌致病性蛋白ESAT-6和CFP-10,通过抑制巨噬细胞内吞噬小体的成熟和细胞因子信号、抑制Toll样受体信号通路、在吞噬小体表面形成通道以促进细菌扩散等作用机制促进病菌侵染过程。MycP1是ESX-1系统的组成蛋白之一,对ESX-1系统有双重调控作用:一方面MycPl是维持ESX-1系统完整性所必须的,它的缺失会导致ESX-1系统丧失对ESAT-6/CFP-10的分泌功能;另一方面,MycP1对ESX-1系统的活性具有负调控作用,MycP1活性的缺失可以促进ESX-1系统对ESAT-6/CFP-10的分泌。MycP1的双重调节作用的意义可能在于维持分枝杆菌致病性与免疫原性之间的平衡,避免细菌在侵染宿主细胞的过程中激发宿主过强免疫反应。实际上,MycP1是一种subtilisin-like的丝氨酸蛋白酶,具有跨膜结构,研究证实MycP1对ESX-1系统的负调控是通过降解其天然底物EspB实现的。我们所感兴趣的是,MycP1蛋白作为一个具有双重调控作用的丝氨酸蛋白酶,它在结构上有没有特殊性,在功能上与EspB蛋白相互作用的机制是什么,它又是如何行使双重调控功能的。我们成功地解析了耻垢分枝杆菌中MycP1蛋白(MycP124-422)的晶体结构,分辨率为2.15A。结构表明MycP1具有典型的类似subtilisin的丝氨酸蛋白酶的折叠模式,包含标志性的催化三联体Asp-His-Ser。但与subtilisin家族的丝氨酸蛋白酶不同,MycP1蛋白氨基端被定义为propeptide的序列是无序结构,并且不能被蛋白自身切除。为了进一步研究propeptide在MycP1蛋白结构与功能中的作用,我们表达并纯化了切除这一序列的MycP1蛋白(MycP163-422),并解析了它的晶体结构,分辨率为2.25A。MycP124-422和MycP163-422在三维结构上并没有显著差别,蛋白核心结构域的构象也不受propeptide切除的影响。相关生化实验结果表明,propeptide不会抑制核心结构域的活性,相反的,该序列的缺失反而导致MycP1的蛋白酶活性略微下降。上述研究结果表明,MycP1蛋白的‘"propeptide"序列并不具有经典的propeptide的结构与功能,并不符合经典的propepide的定义。分子动力学模拟的结果表明,MycP1蛋白的"propeptide"在功能上具有维持MycP1蛋白核心结构域构象稳定,从而维持其蛋白酶活性的作用。
     本文的第二部分是结核分枝杆菌外膜蛋白Rv1698的结构研究。结核分枝杆菌具有复杂的包膜结构,通透性极弱,是保护细菌的一道天然屏障,也是致病性所必须的。在同样具有包膜结构的革兰氏阴性菌中,外膜蛋白行使着细菌跨越包膜与外界物质交换的功能。在结核分枝杆菌中,已鉴定了三个外膜蛋白——OmpATb、Rv1698和Rv1973;而在整个分枝杆菌家族中,目前只有结核分枝杆菌的外膜蛋白OmpATb和耻垢分枝杆菌的外膜蛋白MspA的结构被解析出来。对于Rv1698蛋白,研究表明它与结核分枝杆菌的致病性有密切关系,参与细菌对外界营养物质的摄取,是抗生素进入细菌胞内的重要通道。也有研究认为Rv1698蛋白可能参与结核分枝杆菌体内铜离子的外排。我们运用X-射线晶体衍射方法解析了Rv1698蛋白截短体(Rv169827-314)分别在含有和不含去垢剂C12E8的条件下的晶体结构,分辨率分别为2.3A和3.15A。晶体结构显示,Rv169827-314蛋白并不具有经典β-barrel通道结构,而是α/β结构模式,包含一个羧基端的球形结构域和一个氨基端长约70A、向外延伸的α-螺旋。相关生物化学和生理学实验表明,预测为信号肽的氨基端跨膜序列在生理状态下的成熟蛋白中并未被切除,而且对于Rv1698蛋白的膜定位和多聚化有重要作用,在多聚化的Rv1698蛋白中可以检测到通道活性。我们认为Rvl698蛋白可能通过自身的多聚化来形成通道结构,氨基端跨膜螺旋是影响蛋白多聚化的一个关键因素,并且参与通道的形成。Rv1698具有特殊的结构模式,可能代表着结核分枝杆菌外膜上一类新的通道蛋白结构,但这类蛋白的通透性特点和机制仍有待进一步研究。
Tuberculosis (TB) is one of the most common causes of death globally. Mycobacterium tuberculosis, the etiological agent of TB, still remains to emerge as a major public health threat because of the high pathogenicity, a significant increase in multiple-drug-resistance and the ability of immune evasion. As a progress of studies in pathogenicity and multiple-drug-resistance of M. tuberculosis, a number of related proteins have been identified and characterized. This dissereation focuses on the regulatory protein MycPl of mycobacterial virulence factor secretion system ESX-1and the outer-membrane prion Rv1698in M. tuberculosis. The structures of these proteins are determined using X-ray diffraction method, and the releationship between structure and function is investigated. These work could be helpful to explain the molecular etiology of M. tuberculosis, which can provide the the theoretical foundation to the prevention and treatment of TB.
     In Chapter2, we report structural and functional studies of mycobacterial MycP1. In mycobacterium, a secretion system different from the known Type Ⅰ to Type Ⅵ secretion systems in Gram-negative bacteria was found and defined as Type Ⅶ secretion system (T7SS). The ESX-1system, a typical T7SS in M. tuberculosis, is the most extensively studied secretion system so far. M. tuberculosis use the ESX-1secretion system to deliver virulence proteins during infection. The ESX-1secretion system, therefor, was identified as a key virulence determinant in M. tuberculosis. The identity of all ESX-1substrates and the mechanism by which they affect host cells are not well understood. Various activities have been ascribed to the ESX-1substrates ESAT-6and CFP-10, including inhibition of phagosome maturation and cytokine signaling by infected macrophages, interaction with the macrophage immune receptor TLR2and inhibition of TLR signaling, and formation of pores in mycobacterial phagosomes, perhaps allowing bacterial spread. The regulation mechanism of ESX-1secretion system is an increasing concern. Ohol, Y. M. et al reported a mechanism of posttranscriptional control of ESX-1mediated by MycPl, a putative subtilisin-like serine protease with a C-terminal transmembrane helix. MycPl plays a dual role in regulating secretion activity of the ESX-1system. MycPl protein is required for the integrity and secretion activity of the ESX-1system. A mycPl deletion mutant in M. tuberculosis leads to the loss of the secretion activity for ESAT-6/CFP-10. Whereas the MycP1protein is required for secretion, abolition of MycP1protease activity by mutagenesis of the active site leads to increased secretion. Further more, EspB protein was identified as a substrate of MycPl. It was concluded that the MycP1protein is required for ESX-1secretion but that its protease activity negatively regulates secretion via EspB. As a subtilisin-like serine protease, MycP1contains a putative N-terminal inhibitory propeptide and a catalytic triad of Asp-His-Ser, classic hallmarks of a subtilase family serine protease. The MycP1propeptide was previously reported to be initially inactive and activated after prolonged incubation. In this study, we determined crystal structures of MycP1with (MycP124-422) and without (MycP163-422) the propeptide, and conducted EspB cleavage assays using the two proteins. Very high structural similarity was observed in the two crystal structures. Interestingly, protease assays demonstrated positive EspB cleavage for both proteins, indicating that the putative propeptide does not inhibit protease activity. Molecular dynamic simulations showed higher rigidity in regions guarding the entrance to the catalytic site in MycP124-422than in MycP163-422, suggesting that the putative propeptide might contribute to the conformational stability of the active site cleft and surrounding regions.
     Chapter3presents our work on the outer-membrane protein Rv1698from M. tuberculosis. It has been reported that mycobacteria has a complex cell wall, which forms an exceptionally strong permeability barrier because of its extremely low permeability. The protective function of cell wall is an essential virulence factor of M. tuberculosis and contributes to its intrinsic drug resistance. Cryo-electron microscopy showed that mycobacterial cell walls include an unusual outer membrane, which composes of long-chain mycolic acids and a large variety of other extractable lipids. Meanwhile, a numer of proteins were provided to locate in the outer-membrane. In Gram-negative bacteria, the outer-membrane proteins contributes to the transport processes across the outer membrane. Escherichia coli use more than60proteins to functionalize its outer membrane. While only three mycobacterial outer membrane proteins (OMPs)(OmpATb, Rv1973and Rv1698) are known in M. tuberculosis so far. Bioinformatics analysis by Song, H. et al revealed that Rv1698is an outer-membrane protein that is likely involved in transport processes across the outer membrane of M. tuberculosis. Expression of rv1698restored the sensitivity to ampicillin and chloramphenicol of a Mycobacterium smegmatis mutant lacking the main porin MspA. Uptake experiments showed that Rv1698partially complemented the permeability defect of the M. smegmatis porin mutant for glucose. Lipid bilayer experiments demonstrated that purified Rv1698is an integral membrane protein that indeed produces channels. Taken together, these experiments demonstrated that Rv1698is a channel protein that is likely involved in transport processes across the outer membrane of M. tuberculosis. In our work, crystals of Rv169827-314(with truncation of the N-terminal signal peptide) in detergent-containing buffer and aqueous solution were collected and diffracted at the resolutions of2.30and3.25A, respectively. The two crystal structures were in high similarity, indicating no pronounced conformational differences were induced by the presence of detergent. A mixed α/β-globular structure with a long helix extending away from the globular domain was observed for Rv169827-314, rather than a previously proposed integral membrane proteins, neither a beta-barrel porin like structure nor multi-span helical structure. It was also found that the predicted N-terminal signal sequence is not removed in the mature protein, and plays an improtant role in the oliogmerzation and membrane location of Rvl698. The cryo-EM showed that the purified full-length Rv1698protein forms hexamer in the presence of LDAO. An overall architecture model of Rv1698hexamer was built. The reported structures of Rv169827-314and the overall architecture model of the protein suggest alternative modes of membrane association, demanding further investigations combining structural biology and bacterial physiology.
引文
1. Koul A, Herget T, Klebl B, Ullrich A. Interplay between mycobacteria and host signalling pathways. Nat Rev Microbiol 2004;2(3):189-202.
    2. Devulder G, Perouse de Montclos M, Flandrois JP. A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 2005;55(Pt 1):293-302.
    3. Meena LS, Rajni. Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. FEBS J 2010;277(11):2416-2427.
    4. Saunders BM, Frank AA, Orme IM. Granuloma formation is required to contain bacillus growth and delay mortality in mice chronically infected with Mycobacterium tuberculosis. Immunology 1999;98(3):324-328.
    5. Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 2003;16(3):463-496.
    6. Forrellad MA, Klepp LI, Gioffre A, Sabio y Garcia J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence 2013;4(1):3-66.
    7. Li XZ, Zhang L, Nikaido H. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 2004;48(7):2415-2423.
    8. Hogan D, Kolter R. Why are bacteria refractory to antimicrobials? Curr Opin Microbiol 2002;5(5):472-477.
    9. Normark BH, Normark S. Evolution and spread of antibiotic resistance. J Intern Med 2002;252(2):91-106.
    10. Niederweis M. Mycobacterial porins--new channel proteins in unique outer membranes. Mol Microbiol 2003;49(5):1167-1177.
    11. Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2003;83(1-3):91-97.
    12. Viveiros M, Leandro C, Amaral L. Mycobacterial efflux pumps and chemotherapeutic implications. Int J Antimicrob Agents 2003;22(3):274-278.
    13. Cole ST, Brosch R, Parkhill J, Gamier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE,3rd, Tekaia F, Badcock K, Basham D, Brown D, Chilling-worth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393(6685):537-544.
    14. Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem 1995;64:29-63.
    15. Rastogi N, Legrand E, Sola C. The mycobacteria:an introduction to nomenclature and pathogenesis. Rev Sci Tech 2001;20(1):21-54.
    16. Barry CE,3rd. Interpreting cell wall 'virulence factors' of Mycobacterium tuberculosis. Trends Microbiol 2001;9(5):237-241.
    17. Bhamidi S, Scherman MS, Rithner CD, Prenni JE, Chatterjee D, Khoo KH, McNeil MR. The identification and location of succinyl residues and the characterization of the interior arabinan region allow for a model of the complete primary structure of Mycobacterium tuberculosis mycolyl arabinogalactan. J Biol Chem 2008;283(19):12992-13000.
    18. Nikaido H, Kim SH, Rosenberg EY. Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol Microbiol 1993;8(6):1025-1030.
    19. Minnikin DE, Kremer L, Dover LG, Besra GS. The methyl-branched fortifications of Mycobacterium tuberculosis. Chem Biol 2002;9(5):545-553.
    20. Trias J, Jarlier V, Benz R. Porins in the cell wall of mycobacteria. Science 1992;258(5087):1479-1481.
    21. Niederweis M, Ehrt S, Heinz C, Klocker U, Karosi S, Swiderek KM, Riley LW, Benz R. Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol Microbiol 1999;33(5):933-945.
    22. Faller M, Niederweis M, Schulz GE. The structure of a mycobacterial outer-membrane channel. Science 2004;303(5661):1189-1192.
    23. Dover LG, Cerdeno-Tarraga AM, Pallen MJ, Parkhill J, Besra GS. Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae. FEMS Microbiol Rev 2004;28(2):225-250.
    24. Puech V, Chami M, Lemassu A, Laneelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffe M. Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 2001;147(Pt 5):1365-1382.
    25. Etienne G, Laval F, Villeneuve C, Dinadayala P, Abouwarda A, Zerbib D, Galamba A, Daffe M. The cell envelope structure and properties of Mycobacterium smegmatis mc(2)155:is there a clue for the unique transformability of the strain? Microbiology 2005;151(Pt 6):2075-2086.
    26. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H. Disclosure of the mycobacterial outer membrane:cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 2008;105(10):3963-3967.
    27. Barry CE,3rd, Lee RE, Mdluli K, Sampson AE, Schroeder BG, Slayden RA, Yuan Y Mycolic acids:structure, biosynthesis and physiological functions. Prog Lipid Res 1998;37(2-3):143-179.
    28. Villeneuve M, Kawai M, Kanashima H, Watanabe M, Minnikin DE, Nakahara H. Temperature dependence of the Langmuir monolayer packing of mycolic acids from Mycobacterium tuberculosis. Biochim Biophys Acta 2005;1715(2):71-80.
    29. Villeneuve M, Kawai M, Watanabe M, Aoyagi Y, Hitotsuyanagi Y, Takeya K, Gouda H, Hirono S, Minnikin DE, Nakahara H. Conformational behavior of oxygenated mycobacterial mycolic acids from Mycobacterium bovis BCG. Biochim Biophys Acta 2007;1768(7):1717-1726.
    30. Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffe M. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 2008;190(16):5672-5680.
    31. Liu J, Nikaido H. A mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids accumulates meromycolates. Proc Natl Acad Sci U S A 1999;96(7):4011-4016.
    32. Glickman MS, Cox JS, Jacobs WR, Jr. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 2000;5(4):717-727.
    33. Wang L, Slayden RA, Barry CE,3rd, Liu J. Cell wall structure of a mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids. J Biol Chem 2000;275(10):7224-7229.
    34. Rao V, Gao F, Chen B, Jacobs WR, Jr., Glickman MS. Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J Clin Invest 2006;116(6):1660-1667.
    35. Bhatt A, Brown AK, Singh A, Minnikin DE, Besra GS. Loss of a mycobacterial gene encoding a reductase leads to an altered cell wall containing beta-oxo-mycolic acid analogs and accumulation of ketones. Chem Biol 2008;15(9):930-939.
    36. Portevin D, De Sousa-D'Auria C, Houssin C, Grimaldi C, Chami M, Daffe M, Guilhot C. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci U S A 2004;101(1):314-319.
    37. Niederweis M, Danilchanka O, Huff J, Hoffmann C, Engelhardt H. Mycobacterial outer membranes:in search of proteins. Trends Microbiol 2010;18(3):109-116.
    38. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 2003;67(4):593-656.
    39. Molloy MP, Herbert BR, Slade MB, Rabilloud T, Nouwens AS, Williams KL, Gooley AA. Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem 2000;267(10):2871-2881.
    40. Song H, Sandie R, Wang Y, Andrade-Navarro MA, Niederweis M. Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2008;88(6):526-544.
    41. Ojha A, Hatfull GF. The role of iron in Mycobacterium smegmatis biofilm formation:the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Mol Microbiol 2007;66(2):468-483.
    42. Wolschendorf F, Mahfoud M, Niederweis M. Porins are required for uptake of phosphates by Mycobacterium smegmatis. J Bacteriol 2007;189(6):2435-2442.
    43. Stephan J, Bender J, Wolschendorf F, Hoffmann C, Roth E, Mailander C, Engelhardt H, Niederweis M. The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol Microbiol 2005;58(3):714-730.
    44. Stahl C, Kubetzko S, Kaps I, Seeber S, Engelhardt H, Niederweis M. MspA provides the main hydrophilic pathway through the cell wall of Mycobacterium smegmatis. Mol Microbiol 2001;40(2):451-464.
    45. Mailaender C, Reiling N, Engelhardt H, Bossmann S, Ehlers S, Niederweis M. The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology 2004;150(Pt 4):853-864.
    46. Sharbati-Tehrani S, Meister B, Appel B, Lewin A. The porin MspA from Mycobacterium smegmatis improves growth of Mycobacterium bovis BCG. Int J Med Microbiol 2004;294(4):235-245.
    47. Alahari A, Saint N, Campagna S, Molle V, Molle G, Kremer L. The N-terminal domain of OmpATb is required for membrane translocation and pore-forming activity in mycobacteria. J Bacteriol 2007;189(17):6351-6358.
    48. Senaratne RH, Mobasheri H, Papavinasasundaram KG, Jenner P, Lea EJ, Draper P. Expression of a gene for a porin-like protein of the OmpA family from Mycobacterium tuberculosis H37Rv. J Bacteriol 1998;180(14):3541-3547.
    49. Raynaud C, Papavinasasundaram KG, Speight RA, Springer B, Sander P, Bottger EC, Colston MJ, Draper P. The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis. Mol Microbiol 2002;46(1):191-201.
    50. Siroy A, Mailaender C, Harder D, Koerber S, Wolschendorf F, Danilchanka O, Wang Y, Heinz C, Niederweis M. Rv1698 of Mycobacterium tuberculosis represents a new class of channel-forming outer membrane proteins. J Biol Chem 2008;283(26):17827-17837.
    51. Wolschendorf F, Ackart D, Shrestha TB, Hascall-Dove L, Nolan S, Lamichhane G, Wang Y, Bossmann SH, Basaraba RJ, Niederweis M. Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2011;108(4):1621-1626.
    52. Postle K, Larsen RA. TonB-dependent energy transduction between outer and cytoplasmic membranes. Biometals 2007;20(3-4):453-465.
    53. Braun V. Iron uptake by Escherichia coli. Front Biosci 2003;8:s1409-1421.
    54. Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 2007;71(3):413-451.
    55. Li J, Shi C, Gao Y, Wu K, Shi P, Lai C, Chen L, Wu F, Tian C. Structural studies of Mycobacterium tuberculosis Rv0899 reveal a monomeric membrane-anchoring protein with two separate domains. J Mol Biol 2012;415(2):382-392.
    56. Teriete P, Yao Y, Kolodzik A, Yu J, Song H, Niederweis M, Marassi FM. Mycobacterium tuberculosis Rv0899 Adopts a Mixed alpha/beta-Structure and Does Not Form a Transmembrane beta-Barrel. Biochemistry 2010.
    57. Schulz GE. Transmembrane beta-barrel proteins. Adv Protein Chem 2003;63:47-70.
    58. Yang Y, Auguin D, Delbecq S, Dumas E, Molle G, Molle V, Roumestand C, Saint N. Structure of the Mycobacterium tuberculosis OmpATb protein:a model of an oligomeric channel in the mycobacterial cell wall. Proteins 2011;79(2):645-661.
    59. Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 1997;61(2):136-169.
    60. Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, Vandenbroucke-Grauls CM, Appelmelk BJ, Bitter W. Type VII secretion--mycobacteria show the way. Nat Rev Microbiol 2007;5(11):883-891.
    61. Holland IB, Schmitt L, Young J. Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Mol Membr Biol 2005;22(1-2):29-39.
    62. Johnson TL, Abendroth J, Hol WG, Sandkvist M. Type Ⅱ secretion:from structure to function. FEMS Microbiol Lett 2006;255(2):175-186.
    63. Cornelis GR. The type Ⅲ secretion injectisome. Nat Rev Microbiol 2006;4(11):811-825.
    64. Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 2005;59:451-485.
    65. Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala'Aldeen D. Type V protein secretion pathway:the autotransporter story. Microbiol Mol Biol Rev 2004;68(4):692-744.
    66. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordonez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 2006;312(5779):1526-1530.
    67. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 2006;103(5):1528-1533.
    68. Pallen MJ. The ESAT-6/WXG100 superfamily-and a new Gram-positive secretion system? Trends Microbiol 2002;10(5):209-212.
    69. Sorensen AL, Nagai S, Houen G, Andersen P, Andersen AB. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun 1995;63(5):1710-1717.
    70. Brodin P, Rosenkrands I, Andersen P, Cole ST, Brosch R. ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol 2004; 12(11):500-508.
    71. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 1996;178(5):1274-1282.
    72. Gordon SV, Brosch R, Billault A, Gamier T, Eiglmeier K, Cole ST. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 1999;32(3):643-655.
    73. Majlessi L, Brodin P, Brosch R, Rojas MJ, Khun H, Huerre M, Cole ST, Leclerc C. Influence of ESAT-6 secretion system 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system. J Immunol 2005;174(6):3570-3579.
    74. Lewis KN, Liao R, Guinn KM, Hickey MJ, Smith S, Behr MA, Sherman DR. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guerin attenuation. J Infect Dis 2003;187(1):117-123.
    75. Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 2002;46(3):709-717.
    76. Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Griffiths KE, Marchal G, Leclerc C, Cole ST. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 2003;9(5):533-539.
    77. Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, Smith S, Sherman DR. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol 2004;51(2):359-370.
    78. Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, Marks CB, Padiyar J, Goulding C, Gingery M, Eisenberg D, Russell RG, Derrick SC, Collins FM, Morris SL, King CH, Jacobs WR, Jr. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A 2003;100(21):12420-12425.
    79. Stanley SA, Raghavan S, Hwang WW, Cox JS. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A 2003;100(22):13001-13006.
    80. Renshaw PS, Lightbody KL, Veverka V, Muskett FW, Kelly Q Frenkiel TA, Gordon SV, Hewinson RG, Burke B, Norman J, Williamson RA, Carr MD. Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J 2005;24(14):2491-2498.
    81. Brodin P, de Jonge MI, Majlessi L, Leclerc C, Nilges M, Cole ST, Brosch R. Functional analysis of early secreted antigenic target-6, the dominant T-cell antigen of Mycobacterium tuberculosis, reveals key residues involved in secretion, complex formation, virulence, and immunogenicity. J Biol Chem 2005;280(40):33953-33959.
    82. Gey Van Pittius NC, Gamieldien J, Hide W, Brown GD, Siezen RJ, Beyers AD. The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol 2001;2(10):RESEARCH0044.
    83. Tekaia F, Gordon SV, Gamier T, Brosch R, Barrell BG, Cole ST. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber Lung Dis 1999;79(6):329-342.
    84. Champion PA, Stanley SA, Champion MM, Brown EJ, Cox JS. C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 2006;313(5793):1632-1636.
    85. Fortune SM, Jaeger A, Sarracino DA, Chase MR, Sassetti CM, Sherman DR, Bloom BR, Rubin EJ. Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci U S A 2005; 102(30):10676-10681.
    86. MacGurn JA, Raghavan S, Stanley SA, Cox JS. A non-RD1 gene cluster is required for Snm secretion in Mycobacterium tuberculosis. Mol Microbiol 2005;57(6):1653-1663.
    87. Vergunst AC, van Lier MC, den Dulk-Ras A, Stuve TA, Ouwehand A, Hooykaas PJ. Positive charge is an important feature-of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci U S A 2005;102(3):832-837.
    88. Nagai H, Cambronne ED, Kagan JC, Amor JC, Kahn RA, Roy CR. A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci U S A 2005;102(3):826-831.
    89. Abdallah AM, Verboom T, Hannes F, Safi M, Strong M, Eisenberg D, Musters RJ, Vandenbroucke-Grauls CM, Appelmelk BJ, Luirink J, Bitter W. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol Microbiol 2006;62(3):667-679.
    90. Burts ML, Williams WA, DeBord K, Missiakas DM. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 2005;102(4):1169-1174.
    91. Geluk A, van Meijgaarden KE, Franken KL, Subronto YW, Wieles B, Arend SM, Sampaio EP, de Boer T, Faber WR, Naafs B, Ottenhoff TH. Identification and characterization of the ESAT-6 homologue of Mycobacterium leprae and T-cell cross-reactivity with Mycobacterium tuberculosis. Infect Immun 2002;70(5):2544-2548.
    92. Pathak SK, Basu S, Basu KK, Banerjee A, Pathak S, Bhattacharyya A, Kaisho T, Kundu M, Basu J. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol 2007;8(6):610-618.
    93. de Jonge MI, Pehau-Arnaudet G, Fretz MM, Romain F, Bottai D, Brodin P, Honore N, Marchal G, Jiskoot W, England P, Cole ST, Brosch R. ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J Bacteriol 2007;189(16):6028-6034.
    94. Basu SK, Kumar D, Singh DK, Ganguly N, Siddiqui Z, Rao KV, Sharma P. Mycobacterium tuberculosis secreted antigen (MTSA-10) modulates macrophage function by redox regulation of phosphatases. FEBS J 2006;273(24):5517-5534.
    95. Ganguly N, Giang PH, Basu SK, Mir FA, Siddiqui I, Sharma P. Mycobacterium tuberculosis 6-kDa early secreted antigenic target (ESAT-6) protein downregulates lipopolysaccharide induced c-myc expression by modulating the extracellular signal regulated kinases 1/2. BMC Immunol 2007;8:24.
    96. Ganguly N, Giang PH, Gupta C, Basu SK, Siddiqui I, Salunke DM, Sharma P. Mycobacterium tuberculosis secretory proteins CFP-10, ESAT-6 and the CFP10:ESAT6 complex inhibit lipopolysaccharide-induced NF-kappaB transactivation by downregulation of reactive oxidative species (ROS) production. Immunol Cell Biol 2008;86(1):98-106.
    97. Natarajan K, Latchumanan VK, Singh B, Singh S, Sharma P. Down-regulation of T helper 1 responses to mycobacterial antigens due to maturation of dendritic cells by 10-kDa mycobacterium tuberculosis secretory antigen. J Infect Dis 2003;187(6):914-928.
    98. Stanley SA, Johndrow JE, Manzanillo P, Cox JS. The Type Ⅰ IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 2007;178(5):3143-3152.
    99. Dietrich J, Andersen C, Rappuoli R, Doherty TM, Jensen CG, Andersen P. Mucosal administration of Ag85B-ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette-Guerin immunity. J Immunol 2006;177(9):6353-6360.
    100. Coler RN, Campos-Neto A, Ovendale P, Day FH, Fling SP, Zhu L, Serbina N, Flynn JL, Reed SG, Alderson MR. Vaccination with the T cell antigen Mtb 8.4 protects against challenge with Mycobacterium tuberculosis. J Immunol 2001;166(10):6227-6235.
    101. Colangeli R, Spencer JS, Bifani P, Williams A, Lyashchenko K, Keen MA, Hill PJ, Belisle J, Gennaro ML. MTSA-10, the product of the Rv3874 gene of Mycobacterium tuberculosis, elicits tuberculosis-specific, delayed-type hypersensitivity in guinea pigs. Infect Immun 2000;68(2):990-993.
    102. Brandt L, Elhay M, Rosenkrands I, Lindblad EB, Andersen P. ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infect Immun 2000;68(2):791-795.
    103. Raghavan S, Manzanillo P, Chan K, Dovey C, Cox JS. Secreted transcription factor controls Mycobacterium tuberculosis virulence. Nature 2008;454(7205):717-721.
    104. Frigui W, Bottai D, Majlessi L, Monot M, Josselin E, Brodin P, Gamier T, Gicquel B, Martin C, Leclerc C, Cole ST, Brosch R. Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 2008;4(2):e33.
    105. McLaughlin B, Chon JS, MacGurn JA, Carlsson F, Cheng TL, Cox JS, Brown EJ. A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog 2007;3(8):e105.
    106. Xu J, Laine O, Masciocchi M, Manoranjan J, Smith J, Du SJ, Edwards N, Zhu X, Fenselau C, Gao LY. A unique Mycobacterium ESX-1 protein co-secretes with CFP-10/ESAT-6 and is necessary for inhibiting phagosome maturation. Mol Microbiol 2007;66(3):787-800.
    107. Ohol YM, Goetz DH, Chan K, Shiloh MU, Craik CS, Cox JS. Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe 2010;7(3):210-220.
    108. Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 1997;276:307-326.
    109. Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 2002;58(Pt 11):1948-1954.
    110. Emsley P, Cowtan K. Coot:model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004;60(Pt 12 Pt 1):2126-2132.
    111. Vagin AA, Steiner RA, Lebedev AA, Potterton L, McNicholas S, Long F, Murshudov GN. REFMAC5 dictionary:organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr 2004;60:2184-2195.
    112. Chen VB, Arendall WB,3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity:all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010;66(Pt 1):12-21.
    113. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS:fast, flexible, and free. Journal of computational chemistry 2005;26(16):1701-1718.
    114. Dave JA, Gey van Pittius NC, Beyers AD, Ehlers MR, Brown GD. Mycosin-1, a subtilisin-like serine protease of Mycobacterium tuberculosis, is cell wall-associated and expressed during infection of macrophages. BMC Microbiol 2002;2:30.
    115. Brown GD, Dave JA, Gey van Pittius NC, Stevens L, Ehlers MR, Beyers AD. The mycosins of Mycobacterium tuberculosis H37Rv:a family of subtilisin-like serine proteases. Gene 2000;254(1-2):147-155.
    116. Volkamer A, Kuhn D, Rippmann F, Rarey M. DoGSiteScorer:a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics 2012;28(15):2074-2075.
    117. Wagner JM, Evans TJ, Chen J, Zhu H, Houben EN, Bitter W, Korotkov KV. Understanding specificity of the mycosin proteases in ESX/type Ⅶ secretion by structural and functional analysis. J Struct Biol 2013.
    118. Gallagher T, Gilliland G, Wang L, Bryan P. The prosegment-subtilisin BPN' complex:crystal structure of a specific'foldase'. Structure 1995;3(9):907-914.
    119. Jain SC, Shinde U, Li Y, Inouye M, Berman HM. The crystal structure of an autoprocessed Ser221 Cys-subtilisin E-propeptide complex at 2.0 A resolution. J Mol Biol 1998;284(1):137-144.
    120. Tanaka S, Saito K, Chon H, Matsumura H, Koga Y, Takano K, Kanaya S. Crystal structure of unautoprocessed precursor of subtilisin from a hyperthermophilic archaeon:evidence for Ca2+-induced folding. J Biol Chem 2007;282(11):8246-8255.
    121. Zhu XL, Ohta Y, Jordan F, Inouye M. Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 1989;339(6224):483-484.
    122. Shinde U, Inouye M. Intramolecular chaperones and protein folding. Trends Biochem Sci 1993;18(11):442-446.
    123. Shinde U, Inouye M. Folding pathway mediated by an intramolecular chaperone:characterization of the structural changes in pro-subtilisin E coincident with autoprocessing. J Mol Biol 1995;252(1):25-30.
    124. Shinde U, Inouye M. Folding mediated by an intramolecular chaperone: autoprocessing pathway of the precursor resolved via a substrate assisted catalysis mechanism. J Mol Biol 1995;247(3):390-395.
    125. Shinde U, Inouye M. Propeptide-mediated folding in subtilisin:the intramolecular chaperone concept. Adv Exp Med Biol 1996;379:147-154.
    126. Shinde U, Li Y, Chatterjee S, Inouye M. Folding pathway mediated by an intramolecular chaperone. Proc Natl Acad Sci U S A 1993;90(15):6924-6928.
    127. Shinde U, Thomas G. Insights from bacterial subtilases into the mechanisms of intramolecular chaperone-mediated activation of furin. Methods Mol Biol 2011;768:59-106.
    128. Siezen RJ, Leunissen JA. Subtilases:the superfamily of subtilisin-like serine proteases. Protein Sci 1997;6(3):501-523.
    129. Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins:barrels in a nutshell. Mol Microbiol 2000;37(2):239-253.
    130. Wimley WC. The versatile beta-barrel membrane protein. Curr Opin Struct Biol 2003;13(4):404-411.
    131. Stephan J, Mailaender C, Etienne G, Daffe M, Niederweis M. Multidrug resistance of a porin deletion mutant of Mycobacterium smegmatis. Antimicrob Agents Chemother 2004;48(11):4163-4170.
    132. Lunin VV, Dobrovetsky E, Khutoreskaya G, Zhang R, Joachimiak A, Doyle DA, Bochkarev A, Maguire ME, Edwards AM, Koth CM. Crystal structure of the CorA Mg2+ transporter. Nature 2006;440(7085):833-837.
    133. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock:servers for rigid and symmetric docking. Nucleic Acids Res 2005;33(Web Server issue):W363-367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700