miR-21在喉鳞癌中的表达及其与PDCD4的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】:探讨miR-21及PDCD4在喉鳞癌中的表达情况,及分析miR-21与其靶基因PDCD4在喉鳞癌中的相关研究。
     【方法】:(1)应用半定量RT-PCR检测PDCD4在喉鳞癌组织(38例)及癌旁正常组织(38例)中的表达,并结合临床资料分析PDCD4与肿瘤临床病理学特性的相关性。
     (2)运用TaqMan? real-time RT-PCR方法检测miR-21在喉鳞癌组织(38例)及癌旁正常组织(38例)中的表达情况。
     【结果】:(1)半定量RT-PCR检测结果显示,PDCD4 mRNA在喉鳞癌组织中下调率达86.8%,同癌旁正常组织相比,喉鳞癌组织中PDCD4 mRNA表达明显下调(P<0.05);PDCD4 mRNA表达与肿瘤的分化程度、TNM分期及淋巴转移密切相关(P<0.05),在肿瘤的不同解剖分区中表达无显著差异(P>0.05);在不同分化程度喉鳞癌组织之间PDCD4 mRNA表达存在明显差异,随着分化程度下降,表达明显下调;有淋巴结转移者的PDCD4 mRNA表达显著低于无淋巴结转移者。
     (2)配对样本Wilcoxon符号秩检验,发现miR-21的数据有统计学意义(P<0.05), miR-21在喉鳞癌病例样本中明显高表达。
     【结论】: miR-21与PDCD4的表达呈负相关性,miR-21与PDCD4在喉鳞癌中的异常表达可能与喉鳞癌的发生、发展有关,miR-21可能抑制PDCD4的表达,减弱PDCD4抑制肿瘤细胞生长的能力,从而促进肿瘤的发生和发展。
【Objective】:To undersand the expression of miR-21 and PDCD4 and discuss their relationships in the laryngeal squamous carcinoma.
     【Method】:(1) RT-PCR was used to detect the expression of PDCD4 in the laryngeal squamous carcinoma and adjacent non-cancerous tissues and discussed their associations between PDCD4 and tumor biological characters.
     (2) TaqMan? miRNA assays was employed to detect the expression of miR-21 in the laryngeal squamous carcinoma;
     【Result】:(1) By RT-PCR test , the down-regulated rate of PDCD4 mRNA in the laryngeal squamous carcinoma were 86.8%(P<0.05). Our study indicated that the expression of PDCD4 has a close relationship with proceeding of the laryngeal squamous carcinoma. Expression of PDCD4 mRNA was highly correlated with tumor differentiation、the TNM stage and lymph node metastasis(P<0.05). On the other hand, its expression was no significant different in the clinical type(P>0.05). In addition, experimental results had convincingly demonstrated that low expression of PDCD4 mRNA was highly associated with decreased tumor differentiation、the TNM stage and lymph node metastasis. while the lower expressions of PDCD4 mRNA in tumor tissues with lymphatica metastasis is higher than these with out lymphatica.
     (2) By matched samples Wilcoxon signed-rank test,finding datas of miR-21 had statistic meaning(P<0.05),and the expression of miR-21 was up-regulated which had significantly different in the laryngeal squamous carcinoma.
     【Conclusion】:The expressions of miR-21 and PDCD4 mRNA was a significantly Negative correlation in the laryngeal squamous carcinoma. The Abnormal expression of the miR-21 and PDCD4 mRNA might have relationships with the formation of the laryngeal squamous carcinoma. miR-21 might inhibit the expression of PDCD4,to reduce the ability of PDCD4 to inhibit tumor cell growth, thus, contributed to tumorigenesis and development.
引文
[1] Ambms V. MicmRNA pathways in flies and wornls growth,death,fat,stress, and timing, Cell,2003,113:673-676.
    [2] George A,Calin and Carlo M. MicroRNA signatures in human cancers. Nature. 2006. 857-866.
    [3] Michele Avissar,Brock C. Christensen,Karl T, et al. Marsit MicroRNA Expression Ratio Is Predictive of Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2009;15(8)
    [4] Sevignani C, Calin GA, Nnadi SC, et al. MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci USA 2007:104: 8017-8022
    [5] Haasch D,Chen YW,et al. T-cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the protooncogene, BIC [J]. Cell Immunol. 2002.217(1):78-86.
    [6] Esquela-Kerseher A,Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer .2006, 6:259-269.
    [7] He L, Thomson JM, Hemann MT, Hernando-Monge E, et al. A microRNA polycistron as a potential human oncogene, Nature 2005,434:828-833.
    [8] Lu J, Getz G, Miska EA, Alvarez-Saavedra E, et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435:834-838.
    [9] Meltzer PS. Cancer genomics: small RNAs with big impacts. Nature 2005,435:745-746.
    [10] Takamizawa J, Konishi H, Yanagisawa K, Tomida S, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004,64:3753-3756.
    [11] Johnson SM, Grosshans H, Shingara J, Byrom M, et al. RAS is regulated by the let-7 microRNA family. Cell 2005,120:635-647.
    [12] Iorio MV, Ferracin M, Liu CG, Veronese A, et al. Micro RNA gene expression deregulation in human breast cancer. Cancer Res 2005,65:7065-7070.
    [13] Shibahara K, Asano M, Ishida Y, et al. Isolation of a novel mouse gene MA-3 that is induced upon programmed cell death. Gene, 1995,166:297.
    [14] Soejima H, Miyoshi O, Yoshinaga H, et al. Assignment of the programmed cell death 4 (PDCD4) to human chromosome band 10q24 by in situ hybridization. Cytogent Cell Gent,1999,87:113.
    [15] Yoshinaga H, Matsuhashi S, Ahanek J, et al. Expression and identification of H731 gene product in HeLa cells. Cell Mol Bio,1997,1:121.
    [16]孙玮,高飞,张利宁.新的抑癌基因PDCD4最新研究进展.药物分析杂志Chin J Pham Anal 2007,27.
    [17] Jansen AP, Camalier CE, et al. Characterization of programmed cell death 4 in multiple human cancers a novel enhancer of drug sensitivity. Mol Cancer Ther, 2004,103.
    [18] Hilliard A, Hilliard B, Zheng SJ, et al. Translational regulation of autoimmune inflammation and lymphoma genesis. J Immunol, 2006,177:8095.
    [19] Hu H, Li Y, Gu J,et al. Antisense oligonucleotide against miR-21 inhibits migration and induces apoptosis in leukemic K562 cells. Leuk Lymphoma.2010 .2. 8.
    [20] Shibahara K, Asano M, Ishida Y, Aoki T, Koike T, et al. Isolation of a novel mouse gene MA-3 that is induced upon programmed cell death,Gene.,1995.,166,297-301.
    [21] Goke A, Goke R, Kolle A, et al. DUG is a novel homologue of translation initiation factor 4G that binds e1F4A, Bioehem Biophys Res Commun ,2002,297,78-82.
    [22] Onishi Y, Hashimoto S, and Kizaki H. Cloning of the TIS gene suppressed by to poisomerase inhibitors. Gene,1998,215,453-459.
    [23] Cmarik JL, Min H, Hegamyer G, et al. Differentially expressed protein PDCD4 inhibits tumor promoter-induced neoplastic transformation. Proc Natl Acad Sci U S, 1999,96:14037.
    [24] Yang HS, Jansen AP, Nair R, et al. A novel transformation suppressor, PDCD4, inhibits AP-1 transactivation but not NF-kappaB or ODC transactivation [J].Oneogene, 2001, 20(6):669-676.
    [25] Yang HS, Knies JL, Stark C, Colbum NH. PDCD4 suppresses tumor phenotype in JB6 cells by inhibiting AP-1 transactivation. Oneogene. 2003, 22(24) :3712-3720.
    [26] Palamarchuk A, Efanov A, Maximov V, et al. Akt phosphorylates and regulate pdcd4 tumor suppressor protein [J].Cancer Res, 2005, 65(24):11282-11286.
    [27] Rogers GW Jr, Komar AA, Merrick C. eIF4A: the godfather of the DEAD box helieases. Prog Nucleic Acids Res Mol Biol. 2002, 72:307-331.
    [28] Aavind L, Koonin EV. Eukaryote-specific domains in translation intiation factors: implications for translation regulation and evolution of the translation system. Genome Res.2000, 10:1172-1184.
    [29] Ponting CP. Novel eIF4G domain homologues linking mRNA translation with nonsense-mediated mRNA decay. Trends Biochem Sci. 2000, 25:423-426.
    [30] Zakowicz H, Yang HS, Stark C, Wlodawer A, et al. Mutational analysis of the DEAD-box RNA helicase eIF4AⅡcharacterizes its interaction with transformation suppressor PDCD4 and eIF4AⅡcharacterizesits interaction with transformation suppressor PDCD4 and eIF4GI. RNA.2005 Mar: 11(3):261-274.
    [31] Yang HS, Jansen AP, Komar AA, Zheng X, et al. The transformation suppressor PDCD4 is a novel eukaryotic translation initiation factor 4A binding protein thant inhinbts translation. Mol Cell Biol, 2003 Jan;23(l):26-37.
    [32] Goke R, Barth P, Schlnidt A, et al. Programmed cell death protein 4 suppresses CDKI/CDC2 via induction of p21(Wafl/Cipl). Am J Physiol Cell Physiol. 2004 Dec: 287(6): C1541-1546.
    [33] Chen Y, Knosel T, Kristiansen G, et al. Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. J Pathol. 2003, 200(5):640-646.
    [34] Ma G, Guo KJ, Zhang H, et al. Expression of Programmed cell death 4 and it clinicopathological significance in human pancreatic cancer. Zhongguo Yi Xue Ke Xue Yuan Xue Bao.2005, Oet:27(5):597-600.
    [35] Gao F, Zhang P, Zhou C, et al. Frequent loss of PDCD4 expression in human glioma: possible role in the tumorigenesis of glioma. Oncol ReP. 2007, 17(l):123-128.
    [36]马刚,刘江,张浩,等.程序性细胞死亡因子4在胃癌组织中的表达及临床病理学意义[J].中华肿瘤防治杂志,2006,7(13):481-483.
    [37]马刚,张浩,董明,等.程序性细胞死亡因子4在大肠癌组织中表达的临床病理学意义及其与预后的关系中华普通外科杂志,2007,1(22)6-68.
    [38] Zheng X, Lundberg M, Karlsson A, et al. Lipid-mediated protein delivery of suicide nucleoside kinases. Cancer Res. 2003 Oct 15; 63(20):6909-6913.
    [39] Volinia S, Calin GA, Liu CG,et al. A microRNA expression signature of human solid tumors defines cancergene targets. PNAS, 2006, 103: 2257-2261.
    [40] Chan SH,Wu CW,Li AF,et al. microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res,2008, 28(2A) :907-911.
    [41] Ciafre SA, Galardi S, Mangiola A, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem BioPhys Res Commun. 2005. 334(4):1351-1358.
    [42] Tran N, McLean T, Zhang X,et al. MicroRNA expression profiles in head and neck cancer cell lines. Biochem Biophys Res Commun.2007, 6;358(1):12-17.
    [43] Steven S. Chang , Wei Wen Jiang,et al. MicroRNA alterations in head and neck squamous cell carcinoma. International Jounal of Cancer. 2008,9:2791-2797.
    [44] Chan JA,Krichevsky AM,Kosik KS. 2005. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029-33.
    [45] Meng F,Henson R,Lang M,Wehbe H, et al. Involvement of human microRNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroen-terology 2006.130(7): 2113-29.
    [46] Lund E,Guttinger S,Calado A,Dahlberg JE,Kutay U. 2004. Nuclear export of microRNA precursors. Science 303(5654):95-98.
    [47] Asangani IA,Rasheed SA,Nikolova DA,Leupold JH,et al. MicroRNA-21(miR-21) Postranscriptionally downregulates tumor suppressor PDCD4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogen 2008,27(15):2128-2136.
    [48] Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer.Cancer Res,2005,65(16):7065-7070.
    [49] Frankel LB, Christoffersen NR, Jacobsen A, et al. Programmed Cell Death 4 (PDCD4) is an Important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells. J Biol Chem 2008.283(2):1026-33.
    [50] Chen C, Ridzon DA, BroomerAJ,ZhouZ, Lee DH, Nguyen JT, Barbisin M, Xu NL, MahuvakarVR, Andersen MR andothers . Real- time quantifieation of microRNA system- loop RT-PCR. Nucleic Acids Res 2005.33 (20):el79
    [51] Shyu AB,Wilkinson MF,van Hoof A. Messenger RNA regulation:to translate or to degrade. Embo J.2008. 27(3):471-481.
    [52] Lee DY,Deng Z,Wang CH,et al. MicroRNA-378 promotes cell survival,tumor growth,and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA. 2007 Dec18;104(51):20350-20355..
    [53] Zhu S, Wu H, Wu F, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis.Cell Res, 2008,18(3):350-359.
    [54]黄秋实,史成章,王红建,等. Maspin蛋白及uPA在结肠癌组织中的表达及其临床意义.实用肿瘤学杂志,2008,22(3):220-223.
    [55] Lu Z,Liu M,Stribinskis V,et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene, 2008, 27(31):4373-4379.
    [56] Yang HS, Jansen AP, Komar A, et al. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation.Mol Cell Biol,2003,23(1):26-37.
    [1]CHO W C. OncomiRs: the discovery and progress of microRNAs in cancers. Oncogene,2006,25:6197-6201.
    [2]MANIKANDAN J, AARTHI JJ, KUMAR S D, et al. Oncomirs: The potential role of non-coding microRNAs in understanding canser. Bioinformation, 2008,2:330-334.
    [3]Ambms V.MicmRNA pathways in flies and wornls growth ,death,fat ,stress, and timing.Cell,2003,113:673-676.
    [4]George A. Calin and Carlo M. Croce. MicroRNA signatures in human cancers. Nature,2006,857-866.
    [5]Michele Avissar,Brock C. Christensen,Karl T. Kelsey,and Carmen J. Marsit MicroRNA Expression Ratio Is Predictive of Head and Neck Squamous Cell Carcinoma. Clin Cancer Res,2009,15(8).
    [6]Sevignani C, Calin GA, Nnadi SC, Shimizu M, Davuluri RV, Hyslop T, Demant P, Croce CM, Siracusa LD. MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci USA,2007,104:8017-8022.
    [7]Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM, Harris CC. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA,2008,299:425-436.
    [8]Calin GA,Dumitru CD,Shimizu M,et al. Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia [J]. Proc Natl Acad Sci USA,2002,99(24):15524-15529.
    [9]Haasch D, Chen YW ,et al. T-cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the protooncogene, BIC. Cell Immunol,2002,217(1):78-86.
    [10]Lu Z, Liu M, Stribinskis V, Klinge CM, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene, 2008,7.17;27(31):4373-4379.
    [11]Steven S. Chang, Wei Wen Jiang,et al. MicroRNA alterations in head and neck squamous cell carcinoma. International Jounal of Cancer,2008,9:2791-2797.
    [12]Tran N, McLean T, Zhang X,et al. MicroRNA expression profiles in head and neck cancer cell lines. Biochem Biophys Res Commun,2007,6;358(1):12-17.
    [13]Hebert C,Norris K,Scheper MA,et a1.High, nobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mo l Cancer, 2007,6:5.
    [14]H-C Chen, G-H Chen, Y-H Chen, W-L Liao, C-Y Liu, K-P Chang, Y-S Changand S-J Chen MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. British Journal of Cancer,2009,:100, 1002-1011.
    [15]Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ,Chen CJ, Hildesheim A, Sugden B, Ahlquist P. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA,2008,105:5874-5878.
    [16]Lo AK, To KF, Lo KW et al. Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA,2007,104(41):16164-16169.
    [17]Choy EY, Siu KL, Kok KH, Lung RW et al. An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J Exp Med. 2008.10.6.
    [18]Tao Yu, Xiao-yi Wang, Ren-guo Gong, An Li, Sen Yang, Yu-tang Cao,Yu-ming Wen, Chang-mei Wang , Xin-zhu Yi.The expression profile of microRNAs in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster. Journal of Experimental & Clinical Cancer Research 2009, 28:64 doi:10.1186/1756-9966-28-64.
    [19]Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, McClean MD, Marsit CJ, Kelsey KT. let-7 microRNA-binding site polymorphism in the KRAS 3' UTR is associated with reduced survival in oral cancers. Carcinogenesis,2009, 30:1003-1007.
    [20]Chang KW, Liu CJ, Chu TH, Cheng HW, Hung PS, Hu WY, Lin SC. Association betweenhigh miR-211 microRNA expression and the poor prognosis of oral carcinoma. Dent Res, 2008,87(11):1063-1068.
    [21]Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI. Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res,2008,14(9):2588-2592.
    [22]Kim HJ, Kim YH,et al. In vivo imaging of functional targeting of miR-221 in papillary thyroid carcinoma. J Nucl Med,2008,10:1686-1693.
    [23]Chen YT, Kitabayashi N, Zhou XK, et al. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol, 2008,21:1139-1146.
    [24]Visone R, Russo L, Pallante P, et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer. 2007.9;14(3):791-798.
    [25]Jazdzewski K, Murray EL, Franssila K, et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA.2008.5.20;105(20):7269-7274. Jazdzewski K, Murray EL, Franssila K, et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA.2008.5.20;105(20):7269-7274.
    [26]Takakura S, Mitsutake N, Nakashima M, et al. Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci.2008.6;99(6):1147-1154.
    [27]Meiri E, Gilad S, Tabibian-Keissar H,et al. MiR-92b and miR-9/9* Are Specifically Expressed in Brain Primary Tumors and Can Be Used to Differentiate Primary from Metastatic Brain. Brain Pathol. 2008.7.2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700