基于信噪特征的遥感图像去噪方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星遥感成像是对地观测的重要手段之一,在国家安全、国民经济、科学研究和人民生活等方面有重要作用。卫星遥感利用地物目标的辐射特性以及对电磁波的反射特性,实现对地表信息的间接获取。遥感卫星图像需要真实、客观的反映地物特征,然而,由于星载成像系统处于复杂的电磁环境,卫星内部电路系统众多,CCD器件的工艺缺陷等,在获取和传输图像的过程中会引入大量噪声,严重降低对地观测信息获取的图像质量,给后期的图像处理和人眼视觉判读带来障碍。因此,对卫星成像系统获得的遥感图像进行数据预处理,降低成像系统中引入的各种噪声,提高遥感图像的质量和准确度,为后期压缩编码、数据传输、判读解译、目标识别等工作能够顺利进行并取得良好结果提供前提和保证,是获取遥感图像后需要完成的首要工作。
     在星载成像系统获取图像的过程中,实际系统受到的噪声干扰多种多样,不同的环境干扰和系统缺陷会对遥感图像引入分布和统计特性截然不同的噪声,例如成像过程中受电磁干扰产生的服从高斯分布或泊松分布的热噪声、由于线阵CCD像元响应不均引起的具有一定方向性的条带噪声和由于成像系统的故障和缺陷及电气开关、继电器改变状态引起的脉冲噪声等。这些噪声具有明显不同的特征,对数据产生的干扰在图像中的表现形式也不同,使用一种降噪算法难以对它们进行有效的抑制。例如能够有效抑制高斯噪声的小波软阈值降噪算法在条带噪声和脉冲噪声面前就显得束手无策。因此,处理不同种类的噪声,必须针对它们各自的机理和特性分别加以消除,才能真正达到抑制图像噪声,提高图像质量的效果。另一方面,遥感图像信号有其自身显著的细节丰富、边缘和纹理方向性显著等特点,图像降噪的本质就是寻找信号和噪声之间的不同特征并利用这些特征将其分开。国内外目前还没有分析遥感图像的信噪特征,并利用这些特征针对不同噪声采用不同方法进行降噪的专门文献。
     本文在分析总结星载成像系统工作机理的基础上,探讨卫星遥感图像信号和噪声的源特性,并利用各自不同的源特性,将信号和噪声分开。从实际系统角度出发,对不同类型噪声分别加以处理。主要工作内容如下:
     1.星载可见光成像系统中噪声的来源和特性分析:
     在分析噪声产生机理的基础上介绍了成像过程中光电散粒噪声、读出噪声、条带噪声和脉冲等的来源和特点。对存在于遥感图像中的噪声进行分类,总结和探讨了泊松噪声、高斯噪声、条带噪声和脉冲噪声等各类噪声的统计特性和数学模型。
     2.线阵扫描CCD条带噪声抑制方法研究:
     分析研究线阵沿轨扫描CCD传感器内部每一个像元在光谱响应区内的响应函数不一致造成的遥感图像条带噪声。在分析遥感CCD图像孤立条带噪声产生原因和噪声模型的基础上,提出基于二维方向滤波器抑制条带噪声的方法。该方法利用窄带方向滤波器良好的图像纹理方向的频率选择特性,将条带噪声与图像其它信息分离到不同的方向滤波器子带内,并在水平信息子带内采用均值补偿方法去除条带噪声。实验结果证明它不仅能有效去除CCD图像中的随机孤立条带噪声,还能保持原始图像的辐射入射幅度,保留细节信息。较传统的方法相比,性能有较大的提高。
     3.基于信噪特征的图像高斯白噪声抑制方法研究:
     分析研究了成像过程中以读出噪声为代表的高斯白噪声特征,并利用遥感图像富含边缘和纹理等具有方向信息的二维数据特征,提出基于自适应方向提升小波变换的遥感图像降噪方法。该方法构建于传统提升小波变换框架之上,分析图像的局部方向信息,并使每一个提升步骤都沿着图像局部像素相关性最强的方向进行变换,实现局部最大去相关性,将图像中边缘和纹理产生的高频信息尽可能的压缩到低频子带,从而克服了传统小波缺乏灵活的方向选择性的缺点。方向提升小波将噪声产生的无方向性的高频信息留在高频子带,从而实现将图像的纹理和噪声在小波域更好的分开。通过阈值策略对高频系数进行处理,就可以实现在降噪的过程中尽可能的保留图像边缘信息,这一特点在富含边缘、纹理和小目标的遥感图像降噪中非常重要。
     4.基于两级插值的图像脉冲噪声去除方法研究:
     分析研究星载成像系统脉冲噪声的特点,提出一种基于非均匀下采样和分段自回归插值的去除图像脉冲噪声的新方法。根据脉冲噪声的特点:由随机非连续,幅度大的不规则脉冲或噪声尖峰组成。通过检测算法可以检测出未受脉冲噪声影响的像素。将未受噪声污染的像素点从含噪图像中提取来构成一幅不含脉冲噪声,分辨率为原来1/2的低分辨率图像。再通过分段自回归插值将低分辨率图像插回原始图像大小,得到恢复信号。该方法首次将下采样和插值的概念引入脉冲噪声抑制方法,充分利用未受噪声影响的像素和二维图像结构信息,恢复清晰图像。
Remote sensing technology is a key to conduct the observation towards ground objects, which proclaim its importance in many areas, such as national security, national economy, scientific research, life of individuals, and so forth. Satellite remote sensing systems receive electromagnetic wave radiation to reflect the real feature of ground objects through indirect observation accurately. However, enormous noise exists during image acquisition and delivery due to the complicated electromagnetic environment out side space, along with the numerous circuit systems inside the satellite and the defects of CCD. It is well known that the existence of noise strongly influences the quality of observation results which surely lead great difficulties to the incoming image processing or manual interpretation. Therefore, effective remote sensing image denoising is a very important preprocessing schedule before anyother image processing can be carried out efficiently.
     During the acquisition of remote sensing images, there are many reasons which result in different kinds of noise. The characteristics of noise caused by different reasons can be quite distinct from each other. The thermal noise caused by electromagnetic interference or temperature changes obeys Gaussian or Poisson distribution. The striping noise caused by line array CCD image input system response inequality lies in certain direction in the image. The impulsive noise introduced by defection and malfunction of imaging system or state alternation of electric switches and relays is a kind of extreme disturbance, which can totally erase part of the image pixels. Different kinds of noise have distinct features and they behave differently in noised images. It is impossible to handle different kinds of noise by any individual algorithm. For example, the wavelet based shrinkage algorithms, which have been proved to be quite efficient in suppressing Gaussian noise, become invalid in front of striping noise or impulsive noise. In this case, we must research each noise characters and mechanisms individually to pursue good denoising results. Moreover, the key factor lies in any successful denoising method is to find the different characteristics between signal and noise. As for remote sensing image, the obvious characteristic is the abundant detail information and 2-D directional information. So far, there were no such specified documents to research the noise suppression method based on synthetic analysis towards the characteristics of different kinds of noise.
     In this paper, based on the exploration of working mechanism in satellite remote sensing imaging system, the distinct source characteristics between remote sensing image and noise are discussed. Then, according to diverse characteristics of different noise, respective denoising methods are proposed for each one of them. The main work of this dissertation can be summarized as follows:
     1. Satellite imaging system noise source and character analyzing. This paper introduces, summarizes and probes into the distinct source and characteristics of different kinds of noise imported in imaging acquisition and delivery, including Gaussian noise, striping noise, and impulsive noise.
     2. Destriping method researching in linear array CCD system. This chapter analyzes striping noise caused by unequal response function of each pixel in linear array CCD sensors. After discussing the characteristic of random striping noise, a 2-D directional filter based de-striping method is proposed. By utilizing the outstanding frequency selecting feature of the narrow channel directional filter, this method divides striping noise into another sub-band aside from image signal and point-wise noise, then use average compensation algorithm in horizontal sub-band to remove striping noise. Experiment results prove that not only can it remove isolated random striping noise, but also can it retain detailed information in CCD image.
     3. Zero-mean Gaussian noise suppression research. Based on Signal & Noise characteristic analysis in remote satellite images, a Gaussian noise suppression method based on adaptive directional lifting (ADL) is proposed by means of utilizing the rich directional information induced by textures and edges. The proposed method is constructed based on the scheme of traditional lifting scheme. By integrating local direction information in each lifting steps, ADL compresses most image high frequency information induced by edges and textures into low frequency sub-band. This procedure can overcome the drawbacks of traditional wavelet on lacking of direction selecting elasticity. Since ADL can compress most edge and texture information into low frequency sub-band, leaving only point-wise noise in high frequency sub-band, the thresholding processing can effectively remove noise while retain image information.
     4. Impulsive noise removal method research. Analyze impulsive noise in satellite imaging system, propose a nonlinear down sampling and subsection auto-regressive interpolation based impulsive noise removal algorithm. At the first step, this algorithm constructs a half resolution image without impulsive noise from the noised image by means of non-uniform down-sampling. After that, the piecewise auto-regressive interpolation method is used to restore low resolution image into the original size. The proposed algorithm innovates in introducing down sampling and interpolation concept into impulsive noise removal, which fully utilizes every uncontaminated pixels and two-dimensional structural information wihtin to achieve better denoising results.
引文
[1] J. S. Lee and K. Hoppel. Noise Modeling and Estimation of Remotely Sensed Images. IGARSS′89, 12th Canadian Symposium on Remote Sensing. 1989, 2: 1005–1008.
    [2] K. V. D. Heijden. Image Based Measurement Systems. Wiley, 1994.
    [3] A. Stefano, P. White and W. Collis. Training methods for image noise level estimation on wavelet components. Eurasip Journal on Applied Signal Processing. 2004, 16: 2400–2407.
    [4] M. Basseville, A. Benveniste and K. Chou. Modeling and Estimation of Multi-Resolution Stochastic Processes. IEEE Trans. Inf. Theory. 1992, 38(2): 766–784.
    [5] J. Nieke, M. Solbrig and A. Neumann. Noise Contributions for Imaging Spectrometers. Applied optics. 1999, 38(24): 5191–5194.
    [6] K. S. Chuang and H. K. Huang. Assessment of Noise in Digital Image Using the Join-Count Statistics and The Moran Test. Physics in Medicine and Biology. 1992, 37: 357–361.
    [7] R. C. Gonzalez and R. E. Woods. Digital Image Processing Second Edition. Publishing House of Electronics Industry, 2002.
    [8] R. C. Gonzalez, R. E. Woods and S. L. Eddins. Digital Image Processing Using MATLAB. Publishing House of Electronics Industry, 2005.
    [9]张闻文.“基于噪声特性的电子倍增CCD最佳工作模式研究”.南京理工大学, 2009.
    [10] A. Robert. Remote sensing models and methods for image processing. Academic Press, 1997.
    [11] C. E. Woodcocka, A. H. Strahlerb, and D. L.B. Juppc. The use of variogram in remote sensing I: Scene models and simulated images. Remote Sensing of Environment. 1988, 25(1): 323–348.
    [12] C. E. Woodcocka, A. H. Strahlerb, and D. L.B. Juppc. The use of variogram in remote sensing II:real digital images. Remote Sensing of Environment. 1988, 25(1): pp. 349–379.
    [13] R. A. Schowengerdt. Noise Models. Remote Sensing. Models and Methods for Image Processing, 1997: 127–131.
    [14] K. Watson. Processing remote sensing images using the 2-D FFT-Noise reduction and other applications. Geophysics. 1993, 58: 835-845.
    [15] C. I. Chang and Q. Du. Interference and noise-adjusted principal components analysis. IEEE Trans. on Geosci. Remote Sens. 1999, 37: 2387-2398.
    [16] S. I. Olsen. Noise variance estimation in images. Astronomical Society of the Pacific. 1993, 110(744): 193–199.
    [17] K. Rank, M. Lendl and R. Unbehauen. Estimation of image noise variance. IEE Proceedings onVision, Image and Signal Processing. 1999, 146(2): 80–84.
    [18] P. Meer, J. M Jolion and A. Rosenfeld. A fast parallel algorithm for blind estimation of noise variance. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1990, 12(2): 216–223.
    [19] J. Immerk?r. Fast Noise Variance Estimation. Computer Vision and Image Understanding. 1996, 64(2): 300–302.
    [20] B. Aiazzi, L. Alparone and S. Baronti. A Robust Method for Parameter Estimation of Signal-dependent Noise Models in Digital Images. Digital Signal Processing Proceedings. 1997, 601–604.
    [21] D. H. Shin, R. H Park and S. J.Yang. Block-based noise estimation using adaptive Gaussian filtering. Consumer Electronics, IEEE Transactions on. 2005, 51(1): 218–226.
    [22] M. Salmeri, A. Mencattini and E. Ricci. Noise estimation in digital images using fuzzy processing. International Conf. on Image Processing. 2001, 1: 517–520.
    [23] F. Russo. Image Enhancement Based on Noise Estimation. IEEE Confs. On IMTC. 2006:376-381.
    [24] F. Russo. Automatic enhancement of noisy images using objective evaluation of image quality. IEEE Trans. on Instrumentation and Measurement. 2005. 54(4): 1600–1606.
    [25] S. Jan. Signal and noise estimation from magnetic resonance images. Universitaire Instelling Antwerpen (Belgium), 1998.
    [26] R. G. Sellar and G. D. Boreman. Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer. Applied Optics. 2005. 44(9): 1614–1624.
    [27] A. Amer and E. Dubois. Fast and reliable structure-oriented video noise estimation. IEEE Trans. on Circuits and Systems for Video Technology. 2005. 15(1): 113–118.
    [28] N. Kamel and S. Kafa. Image SNR estimation using the autoregressive modeling. International Confs. on ICIAS. 2010: 1-5.
    [29] P. J. Curran and J. L. Dungan. Estimation of signal-to-noise: a new procedure applied to AVIRIS data. IEEE Trans. on Geoscience and Remote Sensing. 1989, 27(5): 620–628.
    [30] B. C. Gao. An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers. Remote Sensing of Environment. 1993, 43(1): 23–33.
    [31]刘建贵,郑兰芬,童庆禧.遥感图象信噪比的估算.应用基础与工程科学学报. 1999, 7(4): 360–366.
    [32] B. R. Corner, R. M. Narayanan and S. E. Reichenbach. Noise estimation in remote sensing imagery using data masking. International Journal ofRemote Sensing. 2003, 24(4): 689–702.
    [33] J. E. Carnes and W. F. Kosonocky. Noise sources in charge-coupled devices. SPIE milestone series. 2003, 177: 101–109.
    [34] B. Waegli. Investigations into the noise characteristics of digitized aerial images. Int. Arch.Photogrammetry and Remote Sensing. 1998: 341–348.
    [35] B. Aiazzi, A. Barducci and S. Baronti. Estimating noise and information of multispectral imagery. SPIE Optical Engineering. 2002, 41(3): 656–668.
    [36] B. Aiazzi, L. Alparone and A. Barducci. Information-theoretic assessment of sampled hyperspectral imagers. IEEE Trans. on Geosci. Remote Sens. 2001, 39(7): 1447–1458.
    [37] B. Aiazzi, L. Alparone and S. Baronti. Reliably estimating the speckle noise from SAR data. Proc. IEEE Int. Geosci. and Remote Sens. Symp. 1999: 1546–1548.
    [38] A. Barducci, D. Guzzi and P. Marcoionni. Assessing Noise Amplitude in Remotely Sensed Images Using Bit-Plane and Scatterplot Approaches. IEEE Trans. on Geoscience and Remote Sensing. 2007, 45(8): 2665–2675.
    [39] W. K. Prat. Digital Image Processing. New York: Wiley, 1978.
    [40] P. J. Curran. The semivariogram in remote sensing: An introduction. Remote Sens. Environ. 1988, 24(3): 493–507.
    [41] F. L. Gadallah, F. Csillag and E. J. M. Smith. Destriping multisensor imagery with moment matching. International Journal of Remote Sensing. 2000, 21(12): 2505–2511.
    [42]丰茂森.遥感图像数字处理.地质出版社, 1992.
    [43]骆剑承,刘庆生,刘高焕等.资源一号卫星影像预处理方法研究.地球信息科学. 2000, 2: 5–7.
    [44]赵书河,冯学智,赵锐.中巴资源一号卫星南京幅数据质量与几何纠正评价.遥感技术与应用. 2000, 15(3): 17–19.
    [45]王杰生. TM热红外图像的横纹条带噪声及消除.遥感技术与应用. 1995, 10(1): 53–56.
    [46] B. K. P. Horn and Robert J. Woodham. Destriping LANDSAT MSS images by histogram modification. Computer Graphics and Image Processing. 1979, 10(1): 69–83.
    [47] J. Kautsky, N. K. Nichols and D. L. B. Jupp. Smoothed histogram modification for image processing. Computer Vision, Graphics, and Image Processing. 1984, 26(3): 271–291.
    [48] D. J. Poros and C.J. Peterson. Methods for destriping Landsat thematic mapper images-A feasibility study for an online destriping processing the thematic mapper image processing system. Photogrammetric Engineering and Remote Sensing. 1985, 51(9): 1371–1378.
    [49] M. Wegener. Destriping multiple sensor imagery by improved histogram matching. International Journal of Remote Sensing. 1990, 11: 859–875.
    [50] M.P. Weinreb et al. Destriping GOES images by matching empirical distribution functions. Remote Sensing of Environment. 1989, 29(2): 185–195.
    [51] V. Ralph Algazi and Gary E. Ford. Radiometric equalization of nonperiodic striping in satellite data. Computer Graphics and Image Processing. 1981, 16(3): 287–295.
    [52] M. Cannon, A. Lehar and F. Preston. Background pattern removal by power spectral filtering.Applied Optics. 1983, 22(6): 777–779.
    [53] C. Roberte. A simple spatial filtering routine for the cosmetic removal of scan-line noise from Landsat TMP-tape imagery. Photogrammetric Engineering and Remote Sensing. 1989, 55: 327–331.
    [54] J. J. Pan and C.I. Chang. Destriping of Landsat MSS images by filtering techniques. Photogrammetric engineering and remote sensing. 1992, 58(10): 1417–1423.
    [55] A. A. Schwartz and J. M. Soha. Variable threshold zonal filtering. Applied Optics. 1977, 16: 1779–1781.
    [56] J.J. Simpson, J.I. Gobat and R. Frouin. Optimized destriping of GOES images using frequency domain filters. Remote Sens. Environ. 1995, 52: 15–35.
    [57] M. Zhang, K. Carder and F. E. Muller-Karger. Noise Reduction and Atmospheric Correction for Coastal Applications of Landsat Thematic Mapper Imagery. Remote Sensing of Environment. 1999, 70(2): 167–180.
    [58] J. Torres and S. O. Infante. Wavelet analysis for the elimination of striping noise in satellite images. Optical Engineering. 2001, 40(7): 1309–1314.
    [59] D. Fischel. Validation of the Thematic Mapper Radiometric And Geometric Correction Algorithms. IEEE Trans. on Geoscience and Remote Sensing. 1984, 22(3): 237–242.
    [60] J. Desachy, G. Begni and B. Boissin. Investigation of Landsat-4 Thematic Mapper line-to-line and band-to-band registration and relative detector calibration. Photogrammetric Engineering and Remote Sensing. 1985, 51: 1291–1298.
    [61] F.G. Hall, D.E. Strebel and J.E. Nickesonc. Radiometric rectification: Toward a common radiometric response among multidate, multisensor images. Remote Sensing of Environment. 1991, 35(1): 11–27.
    [62]孙凌.遥感图像数据条带消除的方法研究.青岛海洋大学, 2002.
    [63]支晶晶.高光谱图像条带噪声去除方法研究与应用.河南大学, 2010.
    [64]李柳霞. MODIS影像数据预处理技术研究.中国农业大学, 2004.
    [65]韩玲,董连凤,张敏.基于改进的矩匹配方法高光谱影像条带噪声滤波技术.光学学报. 2009, 29(12): 3333–3339.
    [66]甘信铮,孙家抦.南极卫星影像条带噪声的消除.武汉测绘科技大学学报. 1994, 19(4): 332–335.
    [67]牛铮,阮伟利,蒋耿明. MODIS影像条带噪声去除方法研究.遥感技术与应用. 2003, 18(6): 394–359.
    [68]王永刚,刘慧平.遥感分类图像条带噪声的去除.遥感技术与应用. 2007, 22(3): 450–455.
    [69]刘团结,丁赤飚,宋燕.一种CBERS 02星CCD原始条带噪声处理方法.遥感技术与应用. 2008, 23(4): 458–462.
    [70]陈劲松,邵芸,朱博勤.一种改进的矩匹配方法在CMODIS数据条带去除中的应用.遥感技术与应用. 2003, 18(5): 314–317.
    [71]陈劲松,邵芸,朱博勤.基于小波变换的多波段遥感图像条带噪声的去除.遥感信息. 2003, 2: 6–9.
    [72]朱近,夏德深,汪静.消除CBERS卫星红外遥感图像条带干扰的空域方法.遥感信息. 2003, 4: 14–16.
    [73]董广香,张继贤,刘正军. CHRIS PROBA数据条带噪声去除方法比较.遥感信息. 2006, 6: 36–40.
    [74] W. S. Dong, G.M. Shi and L. Zhang. Immune memory clonal selection algorithm for designing stack filters. Neuro computing, 2007: 777–784.
    [75] D. Gabor. Information theroy in electron microscopy. Laboratory Investigation. 1965, 141: 801–807.
    [76] A. K. Jain. Partial differential equations and finite-difference methods in image processing. Journal of Optimization Theory and Applications. 1977, 23(1): 65–91.
    [77] A. P. Witkin. Scale-space filtering. 8th International Joint Conf. on Artificial Intelligence. 1983, 2: 1019–1022.
    [78] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1990. 12(7): 629–639.
    [79] J. Weickert. Theoretical Foundations Of Anisotropic Diffusion In Image Processing. Computing, Suppl. 1996. 11: 221–236.
    [80] J. Weickert. Anisotropic Diffusion In Image Processing. 1996.
    [81] J. Weickert. Coherence-Enhancing Diffusion Filtering. 1999.
    [82] J. Weickert. Multiscale Texture Enhancement. Lecture Notes in Computer Science. Springer. 1995: 230–237.
    [83] R. T. Whitaker and S. M. Pizer. A multi-scale approach to nonuniform diffusion. CVGIP. Image understanding. 1993, 57(1): 99–110.
    [84] R.A. Carmona and Sifen Zhong. Adaptive smoothing respecting feature directions. IEEE Trans. on Image Processing. 1998, 7(3): 353–358.
    [85] Y. Chen, B.C. Vemuri and L. Wang. Image denoising and segmentation vianonlinear diffusion. Computers and Mathematics with Application. 2000, 39: 131–149.
    [86] Z.Y. Wu, G.T. Herman and J.A. Browne. Edge preserving reconstruction using adaptive smoothing in wavelet domain. IEEE Conf. on Nuclear Science Symposium and Medical Imaging. 1993, 3: 1917–1921.
    [87] F. Torkamani-Azar and K.E. Tait. Image recovery using the anisotropic diffusion equation. IEEE Trans. on Image Processing. 19965(11): 1573–1578.
    [88] J. Weickert, B.M.T.H. Romeny and M.A. Viergever. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. on Image Processing. 1998, 7(3): 398–410.
    [89]陈利霞.基于PDE的图像恢复模型和图像增强与分割算法和研究.西安电子科技大学, 2010.
    [90]张军.“基于分数阶变分PDE的图像建模与降噪算法研究”.南京理工大学, 2009.
    [91] A. Buades, B. Coll and J. M. Morel. A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation. 2005, 4(2): 490–530.
    [92] A. Buades, B. Coll and J. M. Morel. A Non-Local Algorithm for Image Denoising. International Conf. on Computer Vision and Pattern Recognition. 2005, 2: 60–65.
    [93] C. Kervrann, J. Boulanger and P. Coupe. Bayesian Non-local Means Filter, Image Redundancy and Adaptive Dictionaries for Noise Removal. Lecture Notes in Computer Science. 2007, 4485: 520–532.
    [94] A. Singer, Y. Shkolnisky and B. Nadler. Diffusion Interpretation of Nonlocal Neighborhood Filters for Signal Denoising. SIAM Journal on Imaging Sciences. 2009, 2(1): 118–139.
    [95] P. Chatterjee and P. Milanfar. A Generalization of Non-Local Means via Kernel Regression. 2008.
    [96] S. Kindermann, S. Osher and P. W. Jones. Debluring and denoising of images by nonlocal functionals. Multiscale Modeling and Simulation. 2005, 4(2): 1091–1115.
    [97] G. Gilboa and S. Osher. Nonlocal Linear Image Regularization and Supervised Segmentation. SIAM Journal on Multiscale Modeling and Simulation. 2007, 6(2): 595–630.
    [98] T. Brox and D. Cremers. Iterated nonlocal means for texture restoration. Proceedings of the 1st international Conf. on Scale space and variational methods in computer vision. SSVM’07. Ischia, Italy, 2007, pp. 13–24.
    [99] C. Kervrann and J. Boulanger. Optimal Spatial Adaptation for Patch-Based Image Denoising. IEEE Trans. on Image Processing, 2006, 15(10): 2866–2878.
    [100] Y. F. Lou et al. Nonlocal Similarity Image Filtering. Proceedings of ICIAP’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 62–71.
    [101] M. Mahmoudi and G. Sapiro. Fast image and video denoising via nonlocal means of similar neighborhoods. IEEE Signal Processing Letters. 2005, 12(12): 839–842.
    [102] Y. L. Liu, J. Wang and X. Chen. A Robust and Fast Non-Local Means Algorithm for Image Denoising. Journal of Computer Science and Technology. 2008. 23(2): 270–279.
    [103] K. Dabov, A. Foi and V. Katkovnik. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. on Image Processing. 2007, 16(8): 2080–2095.
    [104] S. Mallat. A Wavelet Tour of Signal Processing Second Edition. Academic Press, 1999.
    [105] I. Daubechies. Orthonormal bases of compactly supported wavelets. Communications on Pureand Applied Mathematics. 1988, 41(7): 909–996.
    [106] S. Mallat. A theroy for multiresolution signal decomposition: the wavelet representation. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1989, 11(7): 674–693.
    [107] I. Daubechies. Ten lectures on wavelets. Society for Industrial and Applied Mathematics (SIAM), 1992.
    [108] J. S. Geronimo, D. P. Hardin, and P. R. Massopust. Fractal Functions and Wavelet Expansions Based on Several Scaling Functions. Journal of Approximation Theory. 1994, 78(3): 373–401.
    [109] W. Sweldens. The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets. Applied and Computational Harmonic Analysis. 1996, 3(2): 186–200.
    [110] I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting steps. The Journal of Fourier Analysis and Applications. 1998, 4(3): 247–269.
    [111] W. Sweldens. The lifting scheme: A construction of second generation wavelets. SIAM Journal on Mathematical Analysis. 1998, 29(2): 511–546.
    [112] S. Mallat and S. Zhong. Characterization of signal from multiscale edges. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1992, 14(7): 710–732.
    [113] Y. S. Xu. Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Trans. On Image Processing. 1994, 3(6): 747–758.
    [114] D. L. Donoho and J. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Oxford Journals Mathematics Physical Sciences Biometrika. 1993, 81(3): 425–455.
    [115] R. R. Coifman and D. L. Donoho. Translation invariant denoising. Lecture Notes in statistics: Wavelet and Statistics, 1995: 125–140.
    [116] H. Y. Gao and A.G Bruce. Waveshrink with firm shrinkage. Statistical Sinica. 1997, 7(4): 855–874.
    [117] H.A. Chipman, E.D. Kolaczyk and R.E.McCulloch. Adptive bayesian wavelet shrinkage. Journal of American Satistical Association. 1997, 92(440):1413–1421.
    [118] P. Moulin and J. Liu. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors. IEEE Trans. on Information Theory. 1999, 45(3): 909–919.
    [119] J.K. Romberg, H. Choi and R.G. Baraniuk. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models. IEEE Trans. on Image Processing. 2001, 10(7): 1056–1068.
    [120] J. Portilla et al. Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. on Image Processing. 2003, 12(11): 1338–1351.
    [121] J.G. Colon and J. Portilla. Two-level adaptive denoising using gaussian scale mixtures in overcomplete oriented pyramids. IEEE International Conf. on Image Processing. 2005, 105–108.
    [122]贾建.基于Ridgelet与Contourtlet的复杂图像降噪与融合.西安电子科技大学, 2008.
    [123]焦李成,谭山.图像多尺度几何分析.电子学报. 2003, 31(12): 43–50.
    [124] E. J. Candes. Ridgelets: Theory and applications. PhD thesis. USA: Department of Statistics, Stanford University, 1998.
    [125] D. L. Donoho. Ridge Functions and Orthonormal Ridgelets. Journal of Approximation Theory. 2001, 111(2): 134–179.
    [126] E.J. Candes. Monoscale Ridgelet for the representation of images with edges. Tech. Report, Department of Statistics, Stanford University, 1999.
    [127] D. L. Donohon and E. J. Candes. Curvelets. PhD thesis. USA:Department of Statistics, Stanford University, 1999.
    [128] E.L.Pennec and S.Mallat. Image compression with geometrical wavelets. In: Proc. of ICIP. 2000: 661–664.
    [129] M. Vetterli and M. N. Do. Contourlets. 36th Asilomar Conf. on Signals, Systems and Computers. 2002, 1: 497–501.
    [130] S.J. Ko and Y.H. Lee. Center weighted median filters and their applications to image enhancement. IEEE Trans. on Circuits and Systems. 1991, 38(9): 984–993.
    [131] L. Yin et al. Weighted median filters: a tutorial. IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing. 1996, 43(3): 157–192.
    [132] R. Yang et al. Optimal weighted median filtering under structural constraints. IEEE Trans. on Signal Processing. 1995, 43(3): 591–604.
    [133] D. R. K. Brownrigg. The weighted median filter. Communications of the ACM. 1984, 27(8): 807–818.
    [134] T. Chen and H. R. Wu. Space variant median filters for the restoration of impulse noise corrupted images. IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing. 2001, 48(8): 784–789.
    [135] K. S. Srinivasan and D. Ebenezer. A New Fast and Efficient Decision-Based Algorithm for Removal of High-Density Impulse Noises. IEEE Signal Processing Letters. 2007,14(3): 189–192.
    [136] G. Pok, J.C. Liu, and A.S. Nair. Selective removal of impulse noise based on homogeneity level information. IEEE Trans. on Image Processing. 2003, 12(1):85–92.
    [137] S. Schulte et al. A fuzzy impulse noise detection and reduction method. IEEE Trans. on Image Processing. 2006, 15(5): 1153–1162.
    [138] W. B. Luo. Efficient removal of impulse noise from digital images. IEEE Trans. on Consumer Electronics. 2006, 52(2): 523–527.
    [139] I. Aizenberg, C. Butakoff and D. Paliy. Impulsive noise removal using threshold Boolean filtering based on the impulse detecting functions. IEEE Signal Processing Letters. 2005, 12(1):63–66.
    [140] V. Crnojevic, V. Senk and Z. Trpovski. Advanced impulse Detection Based on pixel-wise MAD. IEEE Signal Processing Letters. 2004, 11(7): 589–592.
    [141] P. Civicioglu, M. Alci and E. Besdok. Impulsive Noise Suppression from Images with the Noise Exclusive Filter. EURASIP Journal on Applied Signal Processing. 2004, 16:2434–2440.
    [142] P.E. Ng and K.K. Ma. A switching median filter with boundary discriminative noise detection for extremely corrupted images. IEEE Trans. on Image Processing. 2006, 15(6): 1506–1516.
    [143] Z. Deng, Z. Yin and Y. Xiong. High probability impulse noise-removing algorithm based on mathematical morphology. IEEE Signal Process Letter. 2007, 14(1): 31–34.
    [144] X.M. Zhang and Y.L. Xiong. Impulse Noise Removal Using Directional Difference Based Noise Detector and Adaptive Weighted Mean Filter. Signal Processing Letters, IEEE. 2009, 16(4): 295–298.
    [145] W. P. et al. A Fast and reliable switching median filter for highly corrupted images by impulse noise. EEE International Symposium on Circuits and Systems. 2007: 3427–3430.
    [146] Z. Wang and D. Zhang. Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing. 1999: 46(1): 78–80.
    [147] R. H. Chan, C.W. Ho, and M. Nikolova. Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. on Image Processing. 2005, 14(10): 1479–1485.
    [148] P. T. Yu and R. C. Chen. Fuzzy stack filters-their definitions, fundamental properties, and application in image processing. IEEE Trans. on Image Processing. 1996, 5(6): 838–854.
    [149] J. S. Yoo et al. A fast algorithm for designing stack filters. IEEE Trans. on Image Processing. 1999, 8(8): 1014–1028.
    [150] C.E. Savin, M.O. Ahmad and M.N.S. Swamy. Lp norm design of stack filters. IEEE Trans. on Image Processing. 1999, 8(12): 1730–1743.
    [151] W. L. Lee, K. C. Fan and Z. M. Chen. Design of optimal stack filters under the MAE criterion. IEEE Trans. on Signal Processing. 1999, 47(12): 3345–3355.
    [152] M.E. Yuksel. A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise. IEEE Trans. on Image Processing. 2006 15(4):928-936.
    [153] K.K.V. Toh and N.A.M. Isa. Noise Adaptive Fuzzy Switching Median Filter for Salt-and-Pepper Noise Reduction. IEEE Signal Processing Letters. 2010, 17(3): 281–284.
    [154] P. Civicioglu. Using Uncorrupted Neighborhoods of the Pixels for Impulsive Noise Suppression With ANFIS. IEEE Trans. on Image Processing. 2007, 16(3): 759–773.
    [155] J.A. Richards and X.P. Jia. Remote Sensing Digital Image Analysis. 4th ed. Germany:Springer-, 2006.
    [156] S. M. D. Jong and F.D.V.Meer. Remote Sensing Image Analysis: Including the Spatial Domain. Springer, 2006.
    [157]朱述龙,张占奎.遥感图像获取与分析.北京:科学出版社, 2000.
    [158]王庆有.图像传感器应用技术.北京:电子工业出版社, 2003.
    [159]米本和也. CCD/CMOS图像传感器基础与应用技术.北京:科学出版社, 2006.
    [160]周成龙.高分辨率卫星遥感影像地学计算.北京:科学出版社, 2009.
    [161]汤国安,杨昕,韦玉春.遥感数字图像处理教程.北京:科学出版社, 2007.
    [162]章毓晋.图像工程(上册)——图像处理和分析.北京:清华大学出版社, 1999.
    [163]承继成,郭华东,史文中.地球信息科学基础丛书–遥感数据的不确定性问题.北京:科学出版社, 2003.
    [164] M.Wegener. Destriping multiple detector imagery by improved histogram matching. Int. J. Remote Sens. 1990,11(5): 859–875.
    [165] Z.J.Liu, C.Y. Wang and C.J. Wang. Destriping Imaging Spectrometer Data by an Improved Moment Matching Method. Journal of Remote Sensing. 2002, 6(4): 280–284.
    [166]吴军,张万昌. MODIS影像条带噪声去除的自相关插值法.遥感技术与应用. 2006, 21(3): 253–258.
    [167] J.S. Chen, Y. Shao and H.D. Guo. Destriping CMODIS data by power filtering. IEEE Trans. on Geoscience and Remote Sensing,. 2003, 41(9): 2119–2124.
    [168] W.W. Chang, L.Guo and Z.Y Fu. A New Destriping Method of Imaging Spectromenter Image. Wavelet Analysis and Pattern Recogonition. 2007: 436–441.
    [169] H. F. Shen and L.P Zhang. A MAP-Based Algorithm for Destriping and Inpainting of Remotely Sensed Images. IEEE Trans. on Geoscience and Remote Sensing. 2009, 47(5): 1492–1502.
    [170] R. Srinivasan, M. Cannon and J. White. Landsat data destriping using power filtering. Opt. Eng. 1988, 27: 939–943.
    [171] G. Corsini, M.Diani and T.Walzel. Striping Removal in MOS-B Data. IEEE Trans. on Geoscience and Remote Sensing. 2000, 38: 1439–1446.
    [172] F.G. Hall, D.E. Strebel and J.E. Nickeson. Radiometric Rectification: Toward a common radiometric response among multidata, multisensor images. Remote Sens. Environ. 1991, 35: 11–27.
    [173] Spot Image CNES. SPOT User’s Handbook Volume I: Reference Manual. Toulouse: Centre National d’Etudes Spatiales and SPOT Image Corporation. 1989.
    [174] S.Fukuda and H.Hirosawa. A Wavelet-based Texture Feature Set Applied to Classification of Multi-frequency Polarimetric SAR images. IEEE Trans. on Geoscience and Remote Sensing.1999, 37(5): 2280–2286.
    [175] T.Nagai, T.Futie and M.Ikehara. Dierect Design of Nonuniform filter Banks. IEEE Conf. on ICIP. 1996, 1: 379–382.
    [176] Y.P. Wang, Q.Wu and K.Castleman. Image Enhancement Using Mulitscale Oriented Wavelets. IEEE Conf. on ICIP. 2001, 1: 610–613.
    [177] E.Simoncelli, W.Freeman and E.Adelson. Shiftable MultiScale Transform. IEEE Trans.on Information Theory. 1992, 38(2): 587–607.
    [178] A.B.Watson. The Cortex Transform:Rapid Computation of Simulated Neural Images. Computer Vision, Graphics and Image Processing. 1987, 39(3): 311–327.
    [179] A.K.Jain. Fundamentals of Digital Image Processing. Prentice-Hill, 1989.
    [180] A.L.Cunha, J.Zhou and M.N.Do. The Nonsubsampled Conturlet Transform:Theory, Design and Application. IEEE Trans. on Image Processing. 2006, 15(10): 3089–3101.
    [181] T.T.Nguyen and S. Oraintara. A Class of Multiresolution Directional Filter Banks. IEEE Trans. on Signal Processing. 2007, 55(3): 949–961.
    [182] R.H.Bamberger and M.J.T.Smith. A filter bank for the directional decomposition of images: Theory and Design. IEEE Trans. on Signal Processing. 1992, 40(4): 882–893.
    [183] R.H.Bamherger. The Directional Filter Bank: a Multirate Filter Bank for The Directional Decomposition of Images. Georgia Institute of Technology, 1990.
    [184]宋亮.二维滤波器(组)及其在图像分析中的应用.西安电子科技大学, 2007.
    [185] D.E.Dudgeon and R.M.Mersereau. Multidimensional Digital Signal Processing. Englewood Cliffs, NJ:Prentice Hall, 1984.
    [186] T.Chen and P.P. Vaidyanathan. Multidimensional multirate filters and filter banks derived from one-dimensional filters. IEEE Trans. on Signal Processing. 1993, 41: 1789–1765.
    [187] S.Mallat and W.L Hwang. Singularity detection and processing with wavelets. IEEE Trans. on Information Theory. 1992, 38(2): 617–643.
    [188] D.Donoho and I.Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrika. 1994, 81: 425–455.
    [189] D. Donoho. De-noising by soft-thresholding. IEEE Trans. on Information Theory. 1995, 41(3): 613–627.
    [190] D.Donoho and I. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association. 1995, 12(90): 1200–1224.
    [191] A.G.Bruce and H.Y.Gao. Understanding WaveShrink: Variance and bias estimation. Biometrika. 1996, 83(4): 727–745.
    [192] M.Jansen, M.Malfalt and A.Bultheel. Generalized cross validation for wavelet thresholding. Signal Processing. 1997, 56(1): 33–44.
    [193] T.R.Dowine and B.W.Silverman. The discrete multiple wavelet transform and thresholding methods. IEEE Trans. Signal Processing. 1998, 46(9): 2558–2561.
    [194] S.G.Chang, B.Yu and M.Vetterli. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. on Image Processing. 2000, 9(9): 1532–1546.
    [195] M.S.Crouse, R.D.Nowak, and R.G.Baraniuk. Wavelet-based statistical signal processing using hidden markov model. IEEE Trans. on Signal Processing. 2001, 49(1): 115–120.
    [196] L.Sendur and I.W.Selesnick. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. on Signal Processing. 2002, 50(11): 2744–2756.
    [197] L.Sendur and I.W.Selesnick. Bivariate shrinkage with local variance estimation. IEEE Signal Processing Letters. 2002, 9(12): 438–441.
    [198] J.Portilla and V.Strela. Image denoising using Gaussian scale mixtures in the wavelet domain. IEEE Trans. on Image Processing. 2003,12(11): 1338–1351.
    [199] J. L. Starck, E. J. Candes, and D. L. Donoho. The Curvelet Transform for Image Denoising. IEEE Trans. on Singal Processing. 2002, 11(6): 670–684.
    [200]汪西莉.基于复小波和分层马尔科夫随机场的图像分割.西安电子科技大学, 2004.
    [201] A.Grossman and J.Morlet. Decomposition of hardy function into square integrable wavelets of constant shape. SIAM J. Math. Anal. 1984, 15(4): 723–736.
    [202] P.Gouillaud, A. Grossman and J. Morlet. Cycle-octave and related transforms in sesmic signal analysis. Geoexploration. 1985, 23: 85–102.
    [203] A.Grossman, J.Morlet and T.Pual. Transforms associated to aquare integeable representation, I, General Results. J. Math. Phys. 1985, 26: 2473–2479.
    [204] A.Grossman, J.Morlet and T.Pual. Transforms associated to aquare integeable representation, II, Examples. Am. Inst. Henri Poincare. 1986, 45: 293–309.
    [205] W. P. Ding et al. Adaptive Directional Lifting-Based Wavelet Transform for Image Coding. IEEE Trans. on Image Processing. 2007, 16(2): 416–427.
    [206] W.S. Dong, G.M. Shi and J.Z Xu. Adaptive Nonseparable Interpolation for Image Compression With Directional Wavelet Transform. IEEE Signal Processing Letters. 2008, 15: 233–236.
    [207] Y. Liu and K. N. Ngan. Weighted adaptive lifting-basedwavelet transform. IEEE Trans. on Image Processing. 2008, 17(4): 500–511.
    [208] F. Wu, N. Zhang, Y. Lu and B.C. Yin. Directional Lifting-Based Wavelet Transform for Multiple Description Image Coding with Quincunx Segmentation. Lecture Notes in Computer Science. 2005, 3768: 629–640.
    [209] H. Xu, J.Z. Xu and F. Wu. Lifting-based directional DCT-like transform for image coding. IEEE Trans. on Circuits and Systems for Video Technology. 2007, 17(10):1325–1335.
    [210] X.J. Zhang, X.L. Wu, and F. Wu. Image coding on quincunx lattice with adaptive lifting and interpolation. Data Compression Conference. 2007:193–202.
    [211] L. Yaroslavsky. Fast signal sinc-interpolation and its applications in signal and image processing. SPIE Conf. Image Process. Algorithms and Systems. 2002.
    [212] S. G. Chang, B. Yu, and M. Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans. on Image Processing. 2000, 9(9): 1522–1531.
    [213] A. Pi Zurica and W. Philips. Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising. IEEE Trans. on Image Processing. 2006, 15(3): 645–665.
    [214] R. Eslami and H. Radha. Translation-invariant contourlet transform and its application to image denoising. IEEE Trans. on Image Processing. 2006, 15(11): 3362–3374.
    [215] A.C.Bovik, M.Clark, and W.S.Geisler. Multichannel texture analysis using localized spatial filters. IEEE Trans. on Pattern Analysis and Machine Intelligence. 1990, 12(1): 55–73.
    [216] B. B. Song, L.P. Xu, and Wenfang Sun.“Image denoising using hybrid Contourlet and bandelet transforms”. Fourth International Conference on Image and Graphics. 2007: 71–74.
    [217] Z. Wang, A. C. Bovik, H. R. Sheikh, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Processing. 2004, 13(4): 600–612.
    [218] R.H. Chan, C. Hu, and M. Nikolova. An iterative procedure for removing random-valued impulse noise. IEEE Signal Processing Letters. 2004, 11(12): 921–924.
    [219] M. Nikolova. A Variational Approach to Remove Outliers and Impulse Noise. Journal of Mathemtical Imaging and Vision. 2004, 20(1-2): 99–120.
    [220] X.J. Zhang and X.L. Wu. Image Interpolation by Adaptive 2-D Autoregressive Modeling and Soft-Decision Estimation. IEEE Trans. on Image Processing. 2008, 17(6): 887–896.
    [221] X.J. Zhang and X.L. Wu. Structure Preserving Image Interpolation via Adaptive 2D Autoregressive Modeling. IEEE Conf. on ICIP. 2007, 4: 193–196.
    [222] X.L. Wu, E.U. Barthel and W.H. Zhang. Piecewise 2D autoregression for predictive image coding. IEEE Conf. on ICIP. 1998, 3: 901–904.
    [223] H. L. Eng and K.K. Ma. Noise adaptive soft-switching median filter. IEEE Trans. on Image Processing. 2001, 10(2): 242–251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700