普鲁兰酶在解淀粉芽孢杆菌中表达方法的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普鲁兰酶水解支链淀粉中α-1,6-糖苷键,在淀粉糖生产中具有重要用途。目前已发现的来源于芽孢杆菌及其近缘种属的普鲁兰酶分子量都在100 kDa左右,由于分子量大其分泌表达有很大的困难。本文探索以解淀粉芽孢杆菌为宿主表达普鲁兰酶的方法。
     解淀粉芽孢杆菌BF7658菌株(Bacillus amyloliquefaciens BF7658)是我国自主开发的中温α-淀粉酶工业生产菌。由于解淀粉芽孢杆菌BF7658具有高产淀粉酶的特点,因此其淀粉酶基因启动子是构建表达载体的理想材料。本文以解淀粉芽孢杆菌BF7658染色体DNA为模板扩增获得其启动子和信号肽编码区基因片段Pamy,与大肠杆菌质粒pBR322的复制原件pMB1 ori、穿梭质粒pHY300PLK的芽孢杆菌复制元件ori-pama以及四环素抗性基因tet进行DNA重组,构建了适用于解淀粉芽孢杆菌的分泌表达载体pCHA03。
     解淀粉芽孢杆菌BF7658菌株在发酵后期有芽孢形成并停止产酶的特点,破坏其芽孢形成能力有可能延长发酵产酶时间。以红霉素抗性为标记构建了针对解淀粉芽孢杆菌BF7658菌株芽孢形成关键基因spoIIAC(psp)的基因敲除载体pHY-psp-pem。利用载体pHY-psp-pem转化解淀粉芽孢杆菌BF7658,通过传代筛选最终获得一株spoIIAC基因缺失的菌株,命名为解淀粉芽孢杆菌sj08。解淀粉芽孢杆菌sj08与表达载体pCHA03共同组成一套新型芽孢杆菌分泌表达系统。
     将普鲁兰酶编码基因BdP插入pCHA03以及枯草芽孢杆菌表达载体pUC980多克隆位点,构建重组质粒pUC980-BdP和pCHA03-BdP。将上述重组质粒分别转化枯草芽孢杆菌1A717和解淀粉芽孢杆菌BF7658。摇瓶发酵实验显示两种质粒转化枯草芽孢杆菌得到的转化子发酵液中均只有微弱的普鲁兰酶酶活。pUC980-BdP和pCHA03-BdP转化解淀粉芽孢杆菌BF7658得到的重组菌摇瓶发酵最高酶活分别达到1.1 ASPU/mL和3.1 ASPU/mL。以解淀粉芽孢杆菌BF7658为宿主的重组菌发酵水平明显高于以枯草芽孢杆菌为宿主的重组菌。以解淀粉芽孢杆菌BF7658为宿主时,利用其自身淀粉酶基因启动子和信号肽能更有效的实现普鲁兰酶的分泌表达。将pCHA03-BdP转入解淀粉芽孢杆菌sj08,获得重组菌解淀粉芽孢杆菌sj08/pCHA03-BdP。15 L发酵罐发酵试验表明解淀粉芽孢杆菌sj08/pCHA03-BdP的发酵产酶时间比解淀粉芽孢杆菌BF7658/pCHA03-BdP延长8 h,发酵液酶活提高23%以上。对解淀粉芽孢杆菌sj08/pCHA03-BdP发酵条件进行优化,在优化条件下重组菌普鲁兰酶发酵水平达到6.9 ASPU/mL。纯化了解淀粉芽孢杆菌sj08/pCHA03-BdP表达的普鲁兰酶,研究了纯酶的酶学性质。通过纯化,从发酵液中获得了电泳纯的普鲁兰酶。酶回收率为20.1%,纯化倍数为49.9。该酶分子量大约为100 kDa。重组普鲁兰酶最适作用温度为60℃,最适pH为5.0,60℃保温3 h后酶活仍保存50%左右。
Pullulanase is a debranching enzyme for the hydrolysis ofα-1,6-linkages in starch. It is wildly used in the starch processing industry. The molecular weight of the pullulanases produced by Bacillus sp. or its relatives is always approximately 100 kDa; hence, its secretory expression is difficult. In the current study, the secretory expression of pullulanase is investigated using Bacillus amyloliquefaciens as expression host.
     Bacillus amyloliquefaciens BF7658 was used for the commercial production of mesophilicα-amylase in China. Considering that B. amyloliquefaciens BF7658 secretes a large amount ofα-amylase, the promoter ofα-amylase could be used to drive the gene expression in an expression vector. The DNA fragment Pamy, which contains the promoter and the signal peptide-encoding region ofα-amylase was amplified using PCR, with the genomic DNA of B. amyloliquefaciens 7658 used as a template. A B. amyloliquefaciens espression vector was constructed with Pamy as promoter, the pMB1 ori from pBR322 as the original replication region in E. coli, with the ori-pama and the tetracycline-resistance (tet) gene from pHY300PLK as the replication original region in Bacillus and the selection marker, respectively. The constructed vector was designated as pCHA03.
     In B. amyloliquefaciens BF7658, the production ofα-amylase always ends because of spore germination; therefore, disruption of the gene responsible for sporulation may delay spore germination,which would increase the time for enzyme production. In B. amyloliquefaciens, spoIIAC is the key gene responsible for initiation of sporulation. A vector used for the deletion of spoIIAC, designated as pHY-psp-pem, was constructed with erythromycin resistance as the selection marker. B. amyloliquefaciens BF7658 was transformed with pHY-psp-pem, a mutant strain with spoIIAC, which was disrupted, selected, and designated as B. amyloliquefaciens sj08. Together with pCHA03, a new expression system was formed.
     The BdP gene that encodes pullulanase was inserted into the MCS of secretary expression vector pUC980 and pCHA03, resulting in recombinant plasmids pUC980-BdP and pCHA03-BdP. The two recombinant plasmids were transformed into B. subtilis 1A717 and B. amyloliquefaciens BF7658, respectively. The pullulanase activities produced by B. subtilis 1A717/pUC980-BdP and B. subtilis 1A717/pCHA03-BdP were rather low. The pullulanase activities produced by B. amyloliquefaciens BF7658/pUC980-BdP and B. amyloliquefaciens BF7658/pCHA03-BdP were at 1.1 ASPU/mL, and 3.1 ASPU/mL, respectively. The results indicate that the pullulanase activity expressed in B. amyloliquefaciens were higher than that in B. subtilis. The gene expression, driven by Pamy is more efficient than that by the P43 promoter of pUC980. Plasmid pCHA03-BdP was transformed into B. amyloliquefaciens sj08. The fermentation experiment in a 15 L fermentor showed that compared with B. amyloliquefaciens BF7658/pCHA03-BdP, pullulanase production with B. amyloliquefaciens sj08/pCHA03-BdP was prolonged to 8 h, and the pullulanase activity increased by 23%. Culture condition of B. amyloliquefaciens sj08/pCHA03-BdP in flask scale was optimized for pullulanase production. The maximum enzyme activity under the optimized conditions reached 6.9 ASPU/mL. The recombinant pullulanase produced by B. amyloliquefaciens sj08/pCHA03-BdP was purified to homogeneity and the enzyme properties were investigated. The recover rate of the enzyme was 20.1% and fold of purification was 49.9. The molecular weight of the enzyme was about 100 kDa. It showed optimum enzymatic activity at pH5.0 and has an optimal temperature of about 60℃; more than 50% of its initial enzyme activity was still detectable after incubation at 60℃for 3 h.
引文
1.彭清忠,张惟材,朱厚础.枯草杆菌表达系统的研究进展[J].生物技术通讯. 2001, 12(3): 220-225.
    2.李育阳.基因表达技术[M].北京:科学出版社, 2001.
    3. Tjalsma H, Bolhuis A, Jongbloed J D H, et al. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the Secretome. Microbiology and Molecular Biology Reviews. 2000, 64(3): 515–547.
    4. Spizizen J. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate[J]. Proceedings of the National Academy of Sciences of the USA, 1958, 44(10): 1072-1078.
    5. Ishikawa H, Shibahara-Sone H. New shuttle vectors for Escherichia coli and Bacillus subtilis. IV. The nucleotide sequence of pHY300PLK and some properties in relation to transformation[J]. Japan Journal of Genetics. 1986, 61: 515-528.
    6. Zhou Z, Zhou L P, Chen M J, et al. Purification and characterization of Alcaligenes faecalis penicillin G acylase expressed in Bacillus subtilis[J]. ACTA Biochimica et Biophysica Sinica, 2003, 35(5): 416-422.
    7.胡杨,周海燕,董蕾等.甘露聚糖酶基因Man23在芽孢杆菌WB600中的表达[J].湖南农业大学学(报自然科学版), 2007, 33(5): 539-541.
    8. Wu X C, Lee W, Tran L, et al. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases[J]. Journal of Bacteriology, 1991, 173(16): 4952-4958.
    9. Simonen M , Palva I. Protein secretion in Bacillus species[J]. Microbiological Reviews, 1993, 57(1): 109-137.
    10. Wong S L. Advances in the use of Bacillus subtilis for the expression and secretion of heterologous proteins[J]. Current Opinion in Biotechnology, 1995, 6(5): 517-522.
    11.金明飞,朱欣华,金丽等.利用DegQ基因提高枯草芽孢杆菌纤溶酶表达[J].微生物学通报, 2005, 32(2): 69-72.
    12. Imanaka T, Tanaka T, Tsunekawa H, et al. Cloning of the genes for penicillinase, penP and penI, of Bacillus licheniformis in some vector plasmids and their expression in Escherichia coli, Bacillus subtilis, and Bacillus licheniformis[J]. Journal of Bacteriology, 1981, 147(3): 776-786.
    13.牛丹丹,石贵阳,王正祥.分泌高效蛋白的地衣芽孢杆菌及其工业应用[J].生物技术通报, 2009, (6): 45-50.
    14.牛丹丹,徐敏,马俊双等.地衣芽孢杆菌α-淀粉酶基因的克隆和及其启动子功能鉴定[J].微生物学报, 2006, 46(4): 576-580.
    15. Niu D D, Wang Z X. Development of a pair of bifunctional expression vectors for Escherichia and Bacillus licheniformis[J]. Journal of Industrial Microbiology and Biotechnology, 2007, 34: 357-362.
    16. Niu D D, Zuo Z R, Shi G Y , et al. High yield recombinant thermostableα-amylase production using an improved Bacillus licheniformis system[J]. Microbial Cell Factories, 2009, 8(1): 58.
    17. Kashima Y, Udaka S. High-level production of hyperthermophilic cellulase in the Bacillus brevis expression an secretion system[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(1): 235-237.
    18. Welker N E, Campbell L L. Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis[J]. Journal of Bacteriology, 1967, 94(4): 1124-1130.
    19.刘洋,沈微,石贵阳等.解淀粉芽孢杆菌BamHI甲基转移酶基因克隆、功能鉴定与序列分析[J].生物技术通报, 2009, (11): 65-68.
    20. Connaughton J F, Vanek P G, Lee-Lin S-Q, et al. Cloning of the BamHI methyl transferase gene from Bacillus amyloliquefaciens[J]. Genetic Analysis Techniques, 1988, 5(6): 116-124.
    21. Bender H, Wallenfels K. Untersuchungen an pullulan II spezifischer abbau durch ein bakterielles enzym[J]. Biochemische Zeitschrift. 1961, 334: 79-95.
    22.陆建,金冲,顾国贤.普鲁兰酶及其生产菌种[J].酿酒. 1998(5): 1-6.
    23.李红,孙红军等.国内外普鲁兰酶市场分析及预测报告(2003/2004年度)[R].北京:理德斯普企业管理咨询有限公司. 2004.
    24.程池.普鲁兰酶Promozyme 200L及其生产菌种[J].食品与发酵工业. 1992, 6: 72-76.
    25. Takasaki Y. Productions and utilizations ofβ-amylase and pullulanase from Bacillus cereusvar. Mycoides[J] . Agricultural Biology and Chemistry. 1976, 40(8): 1515-1522.
    26. Matuschek M, Burchhardt G, Sahm K, et al. Pullulanase of thermoanaerobacterium thermosulfurigenes EMI (clostridium thermosulfurogenes): molecular analysis of the gene, composite structure of the enzyme, and a common model for its attachment to the cell surface[J]. Journal of Bacteriology, 1994, 176(11): 3295-3302.
    27.唐宝英,朱晓慧,刘佳.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报. 2001, 28(1): 39-43.
    28. Kim C H, Choi H I, Lee D S. Pullulanases of alkaline and broad pH range from a newly isolated alkalophilic Bacillus sp.S-1 and a Micrococcus sp.Y-1[J]. Journal of Industrial Microbiology & Biotechnology. 1993, 12(1): 48-57.
    29. Ara K, Igarashi K, Saeki K, et al. Purification and some properties of an alkaline pullulanase from alkalophilic Bacillus sp.KSM-1876[J]. Bioscience, Biotechnology, and Biochemistry. 1992, 56(1): 62-65.
    30. Kusano S, Nagahata N, Takahashi S, et al. Purification and properties of Bacillus acidopullulyticus pullulanase[J]. Agricultural Biology and Chemistry. 1988, 52(9): 2293-2298.
    31. Adams K R, Priest F G. Extracellular pullulanase synthesis in Bacillus macerans[J]. FEMS Microbiology Letters. 1997, 1(5): 269-273.
    32. Norman B E. A novel Bacillus pullulanase-its properties and application in the glucose syrups industry[J]. J. Jpn. Soc. Starch Sci.. 1983, 30: 200-211.
    33.张树政.酶制剂工业[M].北京:科学出版社, 1989.
    34.邬显章.酶的生产技术[M].吉林:吉林科学技术出版社, 1988.
    35. Doman-Pytka M, Bardowski J. Pullulan degrading enzymes of bacterial origin[J]. Critical Reviews in Microbiology, 2004, 30(2): 107-121.
    36. Deweer P, Amory A. Pullulanase producing microorganisms. United States Patent, 5817498. 1998-10-06.
    37. Henrik B F, Svendsen A. Genetic engineering of starch-debranching enzymes for improved thermostability and specificity. United States Patent, 6265197B1. 2001-7-24.
    38. Okada, Shigitaka. Thennostable pullulanase gene sequencing. Japanese Kokai Tokkyo Koho, JP0499489, 1992.
    39. Katsutoshi A, Kazuaki I, Katsuhisa S, et al. DNA fragment containing gene for alkaline pullulanase. WO/1994/019468, 1994-2-24.
    40. Palva I. Molecular cloning of alpha-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis[J]. Gene, 1982, 19(1): 81-87.
    41.姜锡瑞,锻钢.酶制剂实用技术手册[M].北京:中国轻工业出版社, 2003.
    42.刘洋.中温α-淀粉酶生产菌株的遗传改良.博士学位论文,江南大学, 2009.
    43. Michael J, Weickert, Glenn H, et al. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis[J]. Proceedings of the Academy of Sclences of the USA, 1990, 87(16): 6238-6242.
    44. Fleming A B, Tangney M, Priest F G, et al. Extracellular enzyme synthesis in a sporulation-deficient strain of Bacillus licheniformis[J]. Applied and Environmental Microbiology, 1995, 61(11): 3775-3780.
    45. Yudkin M D. Structure and function in a Bacillus subtilis sporulation-specific sigma factor: molecular nature of mutations in spoIIAC[J]. Journal of General Microbiology, 1987, 133: 475-481.
    46.刘燕,秦玉昌,潘宝海.芽孢形成中的sigma因子[J].生命科学, 2005, 17(4): 356-359.
    47. Wang P Z, Doi R H. Overlapping promoter transcribed by Bacillus subtilis and RNA polymerase holoenzymes during growth and stationary phases[J].Journal of Biological Chemistry, 1984, 259(13): 8619-8625.
    48.何纪春,赫春华,王凤云等.α-淀粉酶中型和生产性试验[J].微生物学通报, 1986, 13(5): 203-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700