金属锡组装硅基介孔材料的制备和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主-客体复合介孔材料在催化、传感、吸附、光学和电致发光等领域存在潜在的应用前景。本论文,采用SnCl_2·2H_2O作为锡源,通过浸渍法和水热合成法分别制备出锡物种组装的SnO_2/MPS和Sn-PMOs介孔材料。采用XRD、TEM、N2吸附-脱附、UV-Vis、XPS、红外光谱等表征手段对材料的结构进行分析,并初步探讨了主-客体复合材料作为催化剂在苯酚羟基化方面的应用。
     XRD、EDS和FT-IR证明采用浸渍法客体SnO_2能成功组装在主体MPS孔道中;同时在合成过程中,溶剂介质的不同影响SnO_2/MPS的介观有序度:采用乙醇为溶剂介质时,主体MPS保持良好的六方有序结构,而当溶剂介质为水时,主体MPS在介观尺寸上为无序结构。由于客体SnO_2占据了主体孔道空间,造成主-客体复合材料SnO_2/MPS的孔容、孔径和比表面积减少。
     在水热合成-焙烧制备SnO_2/MPS介孔复合材料体系中,通过调节nSi/nSn(硅锡摩尔比)研究孔道内组装客体纳米SnO_2的状态以及对主体孔道结构的影响。当nSi/nSn=100时,多数锡取代骨架Si以四配位状态存在于MPS网络骨架中;当nSi/nSn减小至50时,六配位Sn发生聚集形成晶态SnO_2分布在介孔材料孔道中,此时,MPS依旧保持良好的介观有序性和孔结构;当nSi/nSn=10时,更多的纳米晶态SnO_2分布在介孔材料孔道中,但MPS的孔道结构遭到一定程度的破坏。
     在水热合成-萃取制备Sn-PMOs介孔复合材料体系中,合成过程并没有造成主体骨架中的有机基团-CH_2-CH_2-的断裂。当nSi/nSn=100和50时,多数锡取代骨架Si以四配位状态存在于PMOs的网络骨架中。随着锡含量的增加,当nSi/nSn=20时,一部分六配位Sn发生聚集形成纳米晶态SnO_2分布在主体孔道中,造成主体介孔材料的介观有序度、孔容、孔径和比表面积的降低。
     将主-客体复合材料作为催化剂应用于苯酚羟基化反应,结果表明,样品的催化性能与客体锡物种的量以及锡物种的存在状态有密切关系。其中样品Sn-PMOs-50表现出的催化活性最好,其苯酚选择率高达39.2%,邻苯二酚的选择率为46.3%,对苯二酚的选择率为24.8%。
Metal incorporated mesoporous materials have a large number of potential applications in catalysis, sensing, adsorption, photonics and electroluminescence. In the present thesis, tin was incorporated into mesoporous silica(MPS) and periodic mesoporous organosilica(PMOs) via an impregnation and direct hydrothermal systhesis method using SnCl_2·2H_2O as tin source, respectively, and the structure of the final materials denoted as SnO_2/MPS or Sn-PMOs and their catalysis in the hydroxylation of phenol were also investigated by mesns of XRD, TEM, N2 adsorption-desorption, UV-Vis, XPS and FT-IR measurements.
     The results of XRD, EDS and FT-IR show that SnO_2 has been successfully confined in the pore channels of MPS by the impregnation method. The mesoscopic ordering of SnO_2/MPS depends on the solvent used during the systhesis: samples synthesized in ethanol retain an intact hexagonal symmetry while water as solvent leads to an amorphous structure. The presence of SnO_2 within MPS causes a drecease of pore volume, pore size and surface area due to the occupation of the pore space by SnO_2 species.
     For the samples SnO_2/MPS synthesized by the hydrothermal-calcined process, the molar ratio of silica to tin species(nSi/nSn) has a considerable effect on the distribution status of tin species within MPS and the pore structure of silica hosts. At a low concentration of tin species (nSi/nSn=100), a majority of tin is highly dispersed within the framework by replacing a fraction of silicon atoms. As the content of tin species increases to nSi/nSn=50, a fraction of tin transfers into crystalline SnO_2 confined into the pore channels of MPS, and the tin-incorporated silica still preserves a highly ordered mesoscopic structure and a desirable pore structure. More SnO_2 nanoparticles are confined into the pore channels when the tin concentration further increases to nSi/nSn=10, but at the cost of the mesoscopic ordering and the pore structure of silica hosts.
     The bridged orgnic groups–CH_2-CH_2- within the framework of the samples Sn-PMOs synthesized by hydrothermal-solvent extracted method remain intact and do not cleave under the systhesis conditions. At a low tin concentration in the mixture (nSi/nSn=100 and 50), tin species are demonstrated to enter the framework as the substitutes of a fraction of silicon atoms. When the tin concentration further increases to nSi/nSn=20, additional crystalline SnO_2 nanoparticles are observed in the pore channels, leading to a significant loss of mesoscopic ordering and a decrease of pore volume, pore size and surface area.
     The catalysis of Sn-incoporated silica mesoporous materials in the hydroxylation of phenol is closely related to the amount and distribution status of tin species within the silica hosts.The samples Sn-PMOs-50 show the best catalytic activity, with a phenol conversion up to 39.2% and a CAT and HQ selectivity of 46.3% and 24.8%, respectively.
引文
1彭林.介孔材料有机官能化及其应用研究.湖南师范大学硕士论文. 2008:1~13
    2 X. J. Meng, Z. H. Sun, R. W. Wang, S. Lin, J. M. Sun., M. Yang, K. F. Lin, D. Z. Jiang, F. S. Xiao. Catalytic epoxidation of styrene by molecular oxygen over a novel catalyst of copper hydroxyphosphate Cu2(OH)PO4. Catalysis Letters. 2001, 76 (1-2):105~109
    3 G. S. Illia, E. L. Crepaldi, D. Grosso, C. Sanchez. Block copolymer-templated mesoporous oxides. Current Opinion in Colloid & Interface Science. 2003, 8(1):109~126
    4 C. X. Zhao. Modification of Mesoporous Silica and Preparation, Characterization and Properties of the Mesoporous Composites. Wuhan University of Technology. 2006:2~4
    5陈逢喜,黄茜丹,李全芝.中孔介孔材料进展.科学通报. 1999. 44(18):1905~1907
    6 F. Hoffmann, M. Cornelius, M. Fr?ba. Mesopor?se organisch-anorganische Hybridmaterialien auf Silicabasis. Angewandte Chemie International Edition. 2006, 118,3290~3328
    7 F. Hoffmann, M. Cornelius, J. Morell, M. Fr?ba, Silica-Based Mesoporous Organic-Inorganic Hybrid Materials. Angewandte Chemie International Edition. 2006, 45:3216~3251
    8 V. V. Balasubramanian, C. Anand, R. R. Pal, T. Mori, W. B?hlmann, K. Ariga, A.K. Tyagi, A, Vinu. Characterization and the catalytic applications of mesoporous AlSBA-1. Microporous and Mesoporous Materials. 2009, 121(1-3):18~25
    9 W. Tanglumlert, T. Imae, T. J. White, S. Wongkasemjit. Preparation of highly ordered Fe-SBA-1 and Ti-SBA-1 cubic mesoporous silica via sol-gel processing of silatrane. Materials Letters. 2008:4545~4548
    10 C. C. Ting, H.Y. Wu, A. Palani, A. S. Chiang, H. M. Kao. Facile synthesis and morphology control of highly ordered cubic mesoporous silica SBA-1 using short chain dodecyltrimethylammonium chloride as the structure-directing agent. Microporous and Mesoporous Materials. 2008, 116(1-3):323~329
    11 J. E. Haskouri, S. Cabrera, M. Caldés, C. Guillem, J. Latorre, A. Beltrán, D. Beltrán, M. D. Marcos, P. Amorós. Surfactant-assisted synthesis of the SBA-8 mesoporous silica by using nonrigid commercial alkyltrimethyl ammonium surfactants. Chemistry of Materials. 2002, 14(6): 2637~2643
    12 J. M. Kim, G. D .Stucky. Synthesis of highly ordered mesoporous silica materials using sodium silicate and amphiphilic block copolymers. Chemical Communications. 2000, (13):1159~1160
    13 D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, G. D. Stucky. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society. 1998, 120 (24): 6024~6036
    14 V. Zelenak, D. Halamova, L. Gaberova, E. Bloch, P. Llewellyn. Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties. Microporous and Mesoporous Materials. 2008, 116(1-3):358~364
    15 H. Jaladi, A. Katiyar, S. W. Thiel, V. V. Guliants, N.G. Pinto. Effect of pore diffusional resistance on biocatalytic activity of Burkholderia cepacia lipase immobilized on SBA-15 hosts. Chemical Engineering Science. 2009, 64:1474~1479
    16 L. F. Chen, P. J. Guo, L. J. Zhu, M. H. Qiao, W. Shen, H. L. Xu, K. N. Fan. Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol. Applied Catalysis A: General. 2009, 356:129~136
    17 A. Beck, A. Horváth, G. Stefler, R. Katona, O. Geszti, G. Tolnai, L.F. Liotta, L. Guczi. Formation and structure of Au/TiO2 and Au/CeO2 nanostructures in mesoporous SBA-15. Catalysis Today. 2008, 139:180~187
    18 H. Sun, Q. H. Tang, Y. Du, X. B. Liu, Y. Chen, Y. H. Yang. Mesostructured SBA-16 with excellent hydrothermal, thermal and mechanical stabilities: Modified synthesis and its catalytic application. Journal of Colloid and Interface Science. 2009, 333:317~323
    19 B. R. Jermy, S. Y. Kim, K. V. Bineesh, M. Selvaraj, D. W. Park . Easy route for the synthesis of Fe-SBA-16 at weak acidity and its catalytic activity in the oxidation of cyclohexene. Microporous and Mesoporous Materials. 2009, 121:103~113
    20 A. S. Bagshaw, I. J. Bruce. Rapid calcination of high quality mesostructured MCM-41, MSU-X, and SBA-15 silicate materials: A step towards continuous processing. Microporous and Mesoporous Materials. 2008, 109(1-3):199~209
    21 M. S. Kumar, D. Chen, A. Holmen, J. C. Walmsley. Dehydrogenation of propane over Pt-SBA-15 and Pt-Sn-SBA-15: Effect of Sn on the dispersion of Pt and catalytic behavior. Catalysis Today. 2009, 142(1-2):17~23
    22 Y. C. Du, S. Liu, Y. L. Zhang, F. Nawaz, Y. Y. Ji, F. S. Xiao. Urea-assisted synthesis of hydrothermally stable Zr-SBA-15 and catalytic properties over their sulfated samples. Microporous and Mesoporous Materials. 2009, 121(1-3):185~193
    23 E. S. Parvulescu, H. Friedrich, R. Palkovits, B. M. Weckhuysen, T. A. Nijhuis. Understanding the effect of postsynthesis ammonium treatment on the catalytic activity of Au/Ti-SBA-15 catalysts for the oxidation of propene. Journal of Catalysis. 2008, 259:43~53
    24 H. C. Liu, H. Wang, J. H. Shen, Y. Sun, Z. M. Liu. Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia. Applied Catalysis A: General. 2008, 337:138~147
    25 P. M. Rao, A. Wolfson, S. Kababya, S. Vega, M. V. Landau. Immobilization of molecular H3PW12O40 heteropolyacid catalyst in alumina-grafted silica-gel and mesostructured SBA-15silica matrices. Journal of Catalysis. 2005, 233:210~225
    26 S. Saravanamurugan, Sujandi, E. A. Prasetyanto, S. E. Park. Liquid-phase reaction of 2′-hydroxyacetophenone and benzaldehyde over SO3H-SBA-15 catalysts: Influence of microwave and thermal effects. Microporous and Mesoporous Materials. 2008, 112(1-3): 97~107
    27 S. S. Reddy, B. D. Raju, V. S. Kumar, A. H. Padmasri, S. Narayanan, K. S. Rama Rao. Sulfonic acid functionalized mesoporous SBA-15 for selective synthesis of 4-phenyl-1,3-dioxane. Catalysis Communications. 2007, 8:261~266
    28 B. D. E. Dumitriu , C. Guimon, A. Auroux, Acidic and adsorptive properties of SBA-15 modified by aluminum incorporation. Microporous and Mesoporous Materials. 2009, 121:7~17
    29 M. V. Phanikrishna Sharma, V. D. Kumari and M. Subrahmanyam. TiO2 supported over SBA-15: An efficient photocatalyst for the pesticide degradation using solar light. Chemosphere. 2008, 73:1562~1569
    30 L. Zhang, Y. H. Zhao, H. X. Dai, H. He, C. T. Au. A comparative investigation on the properties of Cr-SBA-15 and CrOx/SBA-15. Catalysis Today. 2008, 131:42~54
    31 T. Asefa, M. Kruk, M. J. MacLachlan, N. Coombs. Sequential hydroboration-alcoholysis and epoxidation-ring opening reactions of vinyl groups in mesoporous vinylsilica. Advanced Functional Materials. 2001, 11:447~456
    32 J. P. Corriu, A. Mehdi, C. Reye, C. Thieuleux. Direct synthesis of functionalized mesoporous silica by non-ionic assembly routes. Quantitative Chemical Transformations within the Materials Leading to Strongly Chelated Transition Metal Ions. Chemistry of Materials. 2004, 16:159~166
    33 C. M. Li, J. Liu, X. Shi, J. Yang, Q. H. Yang. Periodic mesoporous organosilicas with 1,4-diethylenebenzene in the mesoporous wall: synthesis, characterization, and bioadsorption properties. Journal of Physical Chemistry. 2007, 111:10948~10954
    34 Y. Goto, I. Shinji . Mesoporous phenylene-silica hybrid materials with 3D-cage pore structures. Microporous and Mesoporous Materials. 2006, 89(1-3):103~108
    35 Y. Luo, P. P. Yang, J. Lin. Synthesis and characterization of urea bridged hybrid periodic mesoporous organosilica materials. Microporous and Mesoporous Materials. 2008, 111: 194~199
    36 T. Asefa, M. J MacLachlan, N. Coombs, G. A. Ozin. Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature. 1999, 402:867~871
    37 S. Shylesh, A. P. Singh. Vanadium-containing ethane–silica hybrid periodic mesoporous organosilicas: Synthesis, structural characterization and catalytic applications. Microporousand Mesoporous Materials. 2006, 94:127~138
    38 G. R. Zhu, Q. H. Yang, C. Li. Synthesis of periodic mesoporous ethanesilica and its application in high performance liquid chromatography. Chin J Chromatogr. 2007, 25: 505~508
    39 R. I. Nooney, M. Kalyanaraman, G. Kennedy, E. J. Maginn. Heavy metal remediation using functionalized mesoporous silicas with controlled macrostructure. Langmuir. 2001, 17: 528~533
    40 A. Bibby, L. Mercier. Mercury(II) ion adsorption behavior in thiol-functionalized mesoporous silica microspheres. Chemistry of Materials. 2002, 14:1591~1597
    41 M. C. Burleigh, M. A. Markowitz, M. S. Spector, B. P. Gaber. Amine-functionalized periodic mesoporous organosilicas. Chemistry of Materials. 2001, 13:4760~4766
    42 E. B. Cho, D. Kim. Direct synthesis of sulfonic acid-functionalized periodic mesoporous benzene-silicas with large pores. Journal of Physics and Chemistry of Solids. 2008, 69: 1142~1146
    43 G. A. Ozin, K. A. Dag, A. Kuperman. New form of luminescent silicon. Advanced Materials. 1995, 7:72~78
    44 S. Garg, K. Soni, G. M. Kumaran, R. Bal, K. G. Marek, J. K. Gupta, L. D. Sharma, G. M. Dhar. Acidity and catalytic activities of sulfated zirconia inside SBA-15. Catalysis Today. 2009, 141(1-2):125~129
    45 K. Bachari, O. Cherifi. Study of the benzylation of benzene and other aromatics by benzyl chloride over transition metal chloride supported mesoporous SBA-15 catalysts. Journal of Molecular Catalysis A: Chemical. 2006, 260(1-2):19~23
    46魏坤.稀土纳米介孔固体的自组装形成机理研究及材料表征.湖南大学硕士论文. 2003:5~20
    47郑珊,高漆,郭景坤.纳米Au团簇在氧化钛修饰的介孔介孔材料MCM-41中的组装.无机材料学报. 2002, 2:332~335
    48 V. Hornebecq, M. Antonietti, T. Cardinal. Stable silver nanoparticles immobilized in mesoporous silica. Chemistry of Materials. 2003, 15(10):1993~1999
    49 T. Yamada, H. S. Zhou, D. Hiroishi. Platinum surface modification of SBA-15 byγ-radiation treatment. Advanced Materials. 2003, 15(6):511~513
    50 F. N. Gu, M. B. Yue, Z. Y. Wu, L. B. Sun, Y. Wang, J. H. Zhu. Enhanced blue emission from ZnS-ZnO composites confined in SBA-15. Journal of Luminescence. 2008, 128:1148~1154
    51 Y. Shan, L. Gao. Synthesis, characterization and optical properties of CdS nanoparticles confined in SBA-15. Materials Chemistry and Physics. 2005, 89(2-3):412~416
    52 J. Bao, Y. Shen, Y. Sun, J. Wu, X. Chen, N. Dai, J. C. Zhang. Controlled assembling of CdSe nanoparticles into the mesopores of SBA-15 via hot soap method. Physica E:Low-dimensional Systems and Nanostructures. 2008, 40:907~910
    53 L. G. Gai, Z. Chen, H. H. Jiang, Y. Tian, Q. L. Wang, D. L. Cui. Hydroxyl-promoted synthesis of GaN nanorods on SBA-15 surface. Journal of Crystal Growth. 2006, 291:527~532
    54 Y. Shan, L. Gao, S. Zheng. A facile approach to load CdSe nanocrystallites into mesoporous SBA-15. Materials Chemistry and Physics. 2004, 88:192~196
    55 F. E. Huggins, D. J. Kim, B. C. Dunn, E. M. Eyring, G. P. Huffman. An evaluation of least-squares fitting methods in XAFS spectroscopy: Iron-based SBA-15 catalyst formulations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2009, 72:975~983
    56 X. X. Wang , H. B. Xu, X. Z. Fua, P. Liu, F. Lefebvre, J. M. Basset. Characterization and catalytic properties of tin-containing mesoporous silicas prepared by different methods. Journal of Molecular Catalysis A: Chemical. 2005, 238:185~191
    57 J. Li, C. H. Zhou. Titanium-Containing Mesoporous Materials: Synthesis and application in selective catalytic oxidation. Journal of Natural Gas Chemistry. 2006, 15:164~177
    58 Y. J. Jiang, Q. M. Gao. Preparation of Cu2+/+-VSB-5 and their catalytic properties on hydroxylation of phenol. Materials Letters. 2007, 61:2212~2216
    59 R. Anwander, C. Palm, J. Stelzer, O. Groeger, G. Engelhardt. Silazane-silylation of mesoporous silicates: towards tailor-made support materials. Studies in Surface Science and Catalysis. 1998, 117:135~142
    60 P. Shah, N. Sridevi, A. Prabhune, V. Ramaswamy. Structural features of Penicillin acylase adsorption on APTES functionalized SBA-15. Microporous and Mesoporous Materials. 2008, 116(1-3):157~165
    61董琪,韩恩山,闫艳波.二次电池中氢氧化镍的物理和电化学性质.电池工业. 2005, 10: 174~176
    62 F. Rouquerol, J. Rouquerol, K. Sing. Adsorption by powders and porous solids. Acade-mic Press London. 1990:18~20
    63 G. Luo, S. Yan , M. H. Qiao, K. N. Fan. RuB/Sn-SBA-15 catalysts: Preparation, characterization, and catalytic performance in ethyl lactate hydrogenation. Applied Catalysis A: General. 2007, 332:79~88
    64 K. Chaudhari, T. K. Das, P. R. Rajmohanan, K. Lazar, S. Sivasanker, A. J. Chandwadkar. Synthesis, characterization, and catalytic properties of mesoporous tin-containing analogs of MCM-41. Journal of Catalysis. 1999,183:281~291
    65 L. Zhang, Y. H. Zhao, H. X. Dai, H. He, C. T. Au. A comparative investigation on the properties of Cr-SBA-15 and CrOx/SBA-15. Catalysis Today. 2008, 131:42~54
    66 H. L. Tang, Y. Ren, B. Yue, S. Yan, H. Y. He. Cu-incorporated mesoporous materials: Synthesis, characterization and catalytic activity in phenol hydroxylation. Journal of MolecularCatalysis A: Chemical. 2006, 260:121~127
    67 M. Trejda, A. Tuel, J. Kujawa, B. Kilos, M. Ziolek. Niobium rich SBA-15 materials preparation, characterisation and catalytic activity. Microporous and Mesoporous Materials. 2008,110:271~278
    68 K. Yube, M. Furuta, N. Aoki, K. Mae. Control of selectivity in phenol hydroxylation using microstructured catalytic wall reactors. Applied Catalysis A: General. 2007, 327:278~286
    69 H. Liu, G. Z. Lu, Y. L. Guo, Y. Guo, J. S. Wang. Study on the synthesis and the catalytic properties of Fe-HMS materials in the hydroxylation of phenol. Microporous and Mesoporous Materials. 2008, 108:56~64
    70 M. Trejda, A. Tuel, J. Kujawa. Niobium rich SBA-15 materials preparation, characterisation and catalytic activity. Microporous Mesoporous Mater. 2008, 110:271~278
    71 W. Y. Jung, S. H. Baek, J. S. Yang. Synthesis of Ti-containing SBA-15 materials and studies on their photocatalytic decomposition of orange II. Catalysis Today. 2008, 131:437~443
    72 Y. C. Du, S. Liu, Y. Y. Ji. Ordered mesoporous silica materials (SBA-15) with good heat-resistant magnetism. Journal of Magnetic Resonance Series A. 2008, 320:1932~1936
    73 H. L. Zhao, J. Hu, J. J. Wang. CO2 Capture by the amine-modified mesoporous materials. Acta Phys. Chim. Sin. 2007, 23: 801~806
    74 J. A. Bootsma, M. Entorf, J. Eder. Hydrolysis of oligosaccharides from distillers grains using organic-inorganic hybrid mesoporous silica catalysts. Bioresource Technology. 2008, 99:5226~5231
    75许洁.介孔材料MCM-41的组装和性能研究.长春理工大学硕士论文. 2007:1~15
    76 P. Shah, A. V. Ramaswamy, R. Pasricha, K. Lazar, V. Ramaswamy. Incorporation of tin into mesoporous silica SBA-15 molecular sieves. Studies in Surface Science and Catalysis. 2004, 154:870~877
    77 P. Shah, A. V. Ramaswamy, K. Lazar, V. Ramaswamy. Direct hydrothermal synthesis of mesoporous Sn-SBA-15 materials under weak acidic conditions. Microporous Mesoporous Mater. 2007, 100(1-3):210~226
    78娄天军,谷永庆.溶剂热法制备纳米SnO2及其气敏性能研究.电子元件与材料. 2007, 26: 27~29
    79 P. Shah, A. V. Ramaswamy, K. Lazar, V. Ramaswamy. Synthesis and characterization of tin oxide-modified mesoporous SBA-15 molecular sieves and catalytic activity in trans-esterification reaction. Applied Catalysis A:Genera. 2004, 273(1-2):239~248
    80王国栋,王庭慰,沈晓东. Sol-Gel法制备纳米SnO2掺杂PMMA透明复合材料.材料科学与工艺. 2005, 13:544~547
    81 J. Yang, K. Hidajat, S. Kawi. Synthesis of nano-SnO2/SBA-15 composite as a highly sensitive semiconductor oxide gas sensor. Materials Letters. 2008, 62(8-9):1441~1443
    82 T. R. Gaydhankar, P. N. Joshi, P. Kalita, R. Kumar. Optimal synthesis parameters and application of Sn-MCM-41 as an efficient heterogeneous catalyst in solvent-free Mukaiyama-type aldol condensation. Molecular Catalysis A: Chemical. 2007, 265(1-2): 306~315
    83 Z. C. Liu, H. R. Chen, W. M. Huang. Synthesis of a new SnO2/mesoporous silica composite with room-temperature photoluminescence. Microporous Mesoporous Mater. 2006, 89: 270~275
    84 G, Luo, S, R, Yan, M, H,Qiao. RuB/Sn-SBA-15 catalysts: Preparation, characterization, and catalytic performance in ethyl lactate hydrogenation. Applied Catalysis A. 2007, 332:79~88
    85 Y. B. Shen, T. Yamazaki, Z. F. Liu, D. Meng, T. Kikuta, N. Nakatani, M. Saito, M. Mori. Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires. Sensors and Actuators B: Chemical. 2009, 135:524~529
    86 R. S. Ningthoujam, S. K. Kulshreshtha. Nanocrystalline SnO2 from thermal decomposition of tin citrate crystal: Luminescence and Raman studies. Materials Research Bulletin. 2009, 44: 57~62
    87. L. Y. Wang, Y. P. Sun, B. S. XU. Surface chemical structure of titania-silica nanocomposite powder. Chinese Science Bulletin. 2008, 53:2964~2972
    88 S. R. Zhai, S. S. Park, M. Park, M. H. Ullah, C. S. Ha. Role of inorganic salts in the formation of ordered periodic mesoporous rganosilicas (PMOs) without extra acids. Microporous and Mesoporous Materials. 2008, 113:47~55
    89 S. Z. Qiao, C. Z. Yu, Q. H. Hu, Y. G. Jin, X. F. Zhou, X. S. Zhao, G. Q. Lu. Control of ordered structure and morphology of large-pore periodic mesoporous organosilicas by inorganic salt. Microporous and Mesoporous Materials. 2006, 91:59~69
    90 M. E. Preethi, S. R. Sivakumar, D. Manikandan, M. Palanichami. Phenol hydroxylation using Fe/Al-MCM-41 catalysts. Catalysis Letters. 2008, 120:56~64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700