过渡金属掺杂混晶TiO_2的制备及光催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化进程的发展,人们的生活水平得到较大幅度的提高,但与此同时我们也面临着巨大的能源短缺和环境污染问题,给人类的生存带来了负面的影响。大量的含有机污染物的工业废水未被处理直接排入江河湖海,给我们人类的健康和其他生物的生存带来了极大的威胁。如何有效地去除残存在工业废水中的有毒污染物如表面活性剂、染料、贵金属离子等已成为人们研究的重点。为了解决这一问题,人们做了大量的研究工作,采用了各种不同的方法如物理吸附、生物降解、半导体催化、气提法等来去除水中的有毒物质。但由于工业废水中的有毒化合物大多含有苯环分子结构,目前所使用的物理和生物等处理方法效果均不佳,而近年来兴起的可以将有毒污染物完全破坏掉的高级氧化技术则愈来愈受到人们的重视。
     在高级氧化技术中TiO_2作为光催化剂,具有化学性质稳定、价廉易得、无毒、催化效率高等优点,因而得到广泛的研究和应用。但是,由于TiO_2的带隙较宽(Eg = 3.2 eV),可利用的激发光仅限于紫外光(λ< 387 nm),而太阳光中仅含3 %~5 %左右的紫外光,使用紫外光降解各种废水需耗费大量能源,而且还需要昂贵的设备。所以近年来,人们就如何提高TiO2的光催化活性做了大量的研究工作。通过改性TiO2,如:表面敏化、表面有机改性、过渡金属离子掺杂、非金属元素掺杂、半导体复合、酸碱改性等一些修饰技术以提高TiO_2对可见光的利用率。
     通常,作为光催化剂来说,混晶TiO_2比锐钛型TiO_2和金红石型TiO_2的光催化活性都要高,通过热处理使部分TiO_2从亚稳态的锐钛型向稳态的金红石型转化,从而得到具有高光催化活性的混晶TiO_2。同时,研究人员发现,某些过渡金属离子掺杂同样可以提高TiO_2的光催化活性。我们通过溶胶-凝胶和热处理的方法实现了以上两种方法的结合,合成了Fe、Co、Cr离子掺杂的混晶TiO2粉末,并利用XRD、TEM、TG-DTA、FT-IR等表征手段对制备的过渡金属掺杂混晶TiO2粉末进行了表征。以制备的过渡金属掺杂混晶TiO_2粉末为光催化剂,在太阳光/可见光照射下降解染料废水,并考察了过渡金属离子掺杂量、热处理温度、热处理时间、催化剂加入量、染料浓度、溶液pH值、照射时间对降解率的影响。结果表明:合成的过渡金属掺杂混晶TiO_2具有很高的光催化活性,在太阳光/可见光照射下降解染料废水溶液,取得了很好的效果,达到了在太阳光照射下降解工业废水的目的,为大规模利用太阳光降解工业废水开辟了新的道路,具有很好的应用前景。
With the development of industrial course, people’s life has been improved dramatically. Meantime, people face the problem of energy sources lacking and environmental pollution that cause negative influence on our survival. Lots of industrial wastewaters containing high concentration organic pollutants are discharged into river and sea without treatment, which seriously damage the health of human being. How efficiently to eliminate the toxic and hazardous substances such as organic surfactant, dyestuff, noble metal ion from industrial waste effluents has become a major concern. In order to solve this problem, people do a lot of researches and adopt kinds of methods such as physical adsorption, biological degradation, semi-conductor catalysis and gas extraction to eliminate the hazardous chemical compounds from wastewater. However, these organic pollutants can not be decomposed easily and completely by physical and biological methods, because these organic dyestuff compounds in wastewater usually contain one or several benzene molecule rings. In recent years, the advanced oxidation processes which can completely decompose these hazardous organic pollutants have drawn more and more attentions.
     Among the advanced oxidation processes, the TiO2 as photocatalyst is studied and applied extensively by researchers because it is chemical stable, cheap, non-toxic and catalytic activity high. However, the band-gap of TiO2 (Eg =3.2 eV) is broad, so only under ultraviolet light (λ< 387 nm) irradiation TiO2 catalyst can effectively decompose the organic pollutants in wastewaters. In general, the sunlight only contains 3 %~5 % ultraviolet light, so it will consume large numbers of energy source and need costly equipments to treat wastewaters. Recently, people perform a lot of researches to improve the photocatalytic activity of TiO2. The visible light utilization efficiency of TiO2 is enhanced by modification methods such as surface sensitization, surface organic modification, transition metal ion doping, nonmetal doping, narrow semiconductor coupling and acid or base pretreatment.
     In general, the photocatalytic activity of the mixed crystal TiO2 is better than that of anatase and rutile TiO2. By heat-treatment, the anatase TiO2 will transform to rutile TiO2 and then the mixed crystal TiO2 is obtained. Meanwhile, researchers found that some transition metal ion doping can also improve the photocatalytic activity of TiO2. The preparation of Fe, Co, Cr ions doped mixed crystal TiO2 is realized by sol-gel and heat-treatment methods. The prepared catalysts were characterized by XRD, TEM, TG-DTA and FT-IR. The experiments of photocatalytic degradation of dyestuff wastewaters using the transition metal doped mixed crystal TiO2 as photocatalyst under sunlight or visible light irradiation were conducted and the influence factors such as dopant content, heat-treatment temperature, heat-treatment time, catalyst addition amount, dyestuff concentration, solution pH and irradiation time were investigated. The results revealed that the prepared photocatalysts behaved high photocatalytic activity under sunlight or visible light irradiation, which can completed decomposed dyestuff molecules. Thus, the experiments explore the way of large-scale using sunlight to treat dyestuff wastewater and the method has a good application future.
引文
[1] Zhang F. L., Zhao J. C., Shen T., et al. TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Applied Catalysis B: Environmental, 1998, Vol. 15(1-2): 147~156.
    [2]张天永,张友兰,赵进才.染料及表面活性剂的太阳光催化降解.天津大学学报, 2003, Vol. 36(1): 5~8.
    [3]刘程.表面活性剂应用手册.北京:化学工业出版社, 1997
    [4]吴茂英,李堃宝.表面活性剂污染及其治理研究进展.自然杂志, 2002, Vol. 24(3): 138~141.
    [5]李希明,向兰,柯家骏.含油废水中烃类污染物生物降解特性的研究.化工环保, 1997, Vol. 17(6): 369~370.
    [6]唐婉莹,黄俊,周申范.白腐真菌用于有机废水处理的研究,化工环保, 1999, Vol. 19 (5): 269~272.
    [7]孙治荣,范延臻,李军.活性炭纤维去除水中有机微污染物的效果.环境科学, 2000, Vol. 21(5): 101~103.
    [8]韩兆慧,赵化侨.半导体多相光催化应用研究进展.化学进展, 1999, Vol. 11(1): 1~10.
    [9]籍宏伟,马万红,黄应平.可见光诱导TiO2光催化的研究进展.科学通报, 2003, Vol. 48(21): 2199~2204.
    [10] Santos A., Yustos P., Cordero T., et al. Catalytic wet oxidation of phenol on active carbon: stability, phenol conversion and mineralization. Catalysis Today, 2005, Vol. 102-103: 213~218.
    [11]王红娟,李忠.半导体多相光催化氧化技术.现代化工, 2002, Vol. 22(2): 56~60.
    [12]陈全虎.水和废水中苯系物分析方法研究.石化技术, 1997, Vol. 4(2): 107~109.
    [13]徐向阳,郑平,俞秀娥.染化废水厌氧生物处理技术的研究.环境科学学报, 1998, Vol. 18(2): 153~160.
    [14] Fox M. A. & Dulay M. T. Heterogeneous photocatalysis. Chemical Reviews, 1993, Vol. 93 (1): 341~357.
    [15] Chen D. W. & Ray A. K. Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chemical Engineering Science, 2001, Vol. 56(4): 1561~1570.
    [16]岳林海,樊邦棠.半导体复合体系光催化剂降解水溶性染料研究.环境污染与防治, 1994, Vol. 16(4): 2~4.
    [17]李敏贤,申利春.纳米TiO2光催化剂的制备与应用研究进展.化工中间体, 2007, Vol. 9: 28~32.
    [18] Klabunde K., Stark J. & Koper O. J. Nanocrystals as stoichiometric reagents with unique surface chemistry. The Journal of Physical Chemistry, 1996, Vol. 100(30): 12142~12153.
    [19]徐瑛,陈友治,李志华.沉淀法制备纳米TiO2过程中的粉体性能研究.武汉理工大学学报(理科版), 2003, Vol. 25(1): 8~10.
    [20]董梅,崔波. TiO2光催化剂的研究与应用.青岛化工学院学报(自然科学版), 2001, Vol. 22(3): 247~252.
    [21]单志俊,邓慧萍. TiO2光催化氧化技术的研究进展.中国资源综合利用, 2007, Vol. 25(2): 7~11.
    [22]费贤翔,林睿,王文华,等. TiO2可见光催化研究进展.化工时刊, 2007, Vol. 21(2): 60~62.
    [23]周连芳,李闯,金顺爱.半导体光催化氧化法在环保中应用.黑龙江水利科技, 2007, Vol. 35(1): 150~151.
    [24] Chen X. B. & Mao S. T. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 2007, Vol. 107(7): 2891~2959.
    [25] Fujishima A., Rao T. N. & Tryk D. A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, Vol. 1(1): 1~21.
    [26] Kawai T. & Sakata T. Photocatalytic hydrogen production from liquid methanol and water. Journal of the Chemical Society, Chemical Communications, 1980, Vol. 15: 694~695.
    [27] Bickley R., Gonzalea-Carreno T. & Lees J. A structural investigation of titanium dioxide photocatalysts. Journal of Solid State Chemistry, 1991, Vol. 92(1): 178~190.
    [28] Kim D. H., Choi D. K., Kim S. J., et al. The effect of phase type on phtotcatalytic activity in transition metal doped TiO2 nanoparticles. Catalysis Communications, 2008, Vol. 9(5): 654~657.
    [29] Kemp T. J. & Mclntyre R. A. Transition metal-doped titanium(IV) dioxide: Characterisation and influence on photodegradation of poly(vinyl chloride). Polymer Degradation and Stability, 2006, Vol. 91(1): 165~194.
    [30] Gracien E. B., Shen J. N., Sun X. R., et al. Photocatalytic activity of manganese, chromium and cobalt-doped anatase titanium dioxide nanoporous electrodes produced by re-anodization method. Thin Solid Films, 2007, Vol. 515(13): 5287~5297.
    [31]尹荔松,周岐发,唐新桂.纳米TiO2粉晶的晶粒长大动力学及相转位动力学.功能材料, 2000, Vol. 31(2): 186~193.
    [32]吴腊英,李长江.纳米二氧化钛粉末的溶胶-凝胶法合成及晶相转化.无机化学学报, 2002, Vol. 18(4): 399~403.
    [33] Zhang J., Xu Q., Feng Z. C., et al. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angewandte Chemie International Edition, 2008, Vol. 47(9): 1766~1769.
    [34] Fujishima A. & Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, Vol. 238(5358): 37~38.
    [35] Okamoto K. I., Yamamoto Y., Tanaka H., et al. Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Bulletin of the Chemical Society of Japan, 1985, Vol. 58(7): 2015~2022.
    [36] Carraway E. R., Hoffman A. J. & Hoffmann M. R. Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environmental Science & Technology, 1994, Vol. 28(5): 786~793.
    [37] Gr?tzel M. Heterogeneous photochemical electron transfer. BatonRouge, FL, CRC Press, 1988
    [38] Asbury J. B., Hao E., Wang Y. Q., et al. Bridge length-dependent ultrafast electron transfer from re polypyridyl complexes to nanocrystalline TiO2 thin films studied by femtosecond infrared spectroscopy. Journal of Physical Chemistry B, 2000, Vol. 104(50): 11957~11964.
    [39] SauvéG., Cass M. E., Coia G., et al. Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes. Journal of Physical Chemistry B, 2000, Vol. 104(29): 6821~6836.
    [40] Ilev V. Phthalocyanine-modified titania-catalyst for photooxidation of phenols by irradiation with visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2002, Vol. 151(12): 195~199.
    [41] Cho Y. M., Choi W. Y., Lee C. H., et al. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environmental Science & Technology, 2001, Vol. 35(5): 966~970.
    [42] Giuseppe M., Roberta D. S., Giuseppe V., et al. Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine. Journal of Catalysis, 2003, Vol. 217(2): 334~342.
    [43] Jiang D., Xu Y., Hou B., et al. Syhthesis of visible light-activated TiO2 photocatalyst via surface organic modification. Journal of Solid State Chemistry, 2007, Vol. 180(5): 1787~1791.
    [44] Ikeda S., Abe C., Torimoto T., et al. Photochemical hydrogen evolution from aqueous triethanolamine solutions sensitized by binaphthol-modified titanium (IV) oxide under visible-light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2003, Vol. 160(1-2): 61~67.
    [45] Litter M. I. & Navío J. A. Photocatalytic properties of iron-doped titania semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 1996, Vol. 98(3): 171~181.
    [46] Wang Y. Q., Chen H. M., Hao Y. Z., et al. Preparation, characterization and photoelectrochemical behaviors of Fe(III)-doped TiO2 nanoparticles. Journal of Materials Science, 1999, Vol. 34(15): 3721~3729.
    [47] Choi W. Y., Termin A. & Hoffmann M. R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry, 1994, Vol. 98(51): 13669~13679.
    [48] Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, Vol. 293(5528): 269~271.
    [49] Ohno T., Mitsui T. & Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalystunder visible light. Chemistry Letters, 2003, Vol. 32(4): 364~368.
    [50] Luo H., Takata T. & Lee Y. Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chemistry of Materials, 2004, Vol. 16(5): 846~849.
    [51] Li D., Haneda H., Labhsetwar N. K., et al. Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chemical Physics Letters, 2005, Vol. 401(4-6): 579~584.
    [52] Khan S. U., Al-Shahry M. & William B. I. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, Vol. 297(5585): 2243~2245.
    [53] Prabakar K., Takahashi T., Nakashima T., et al. Optimization and deposition of CdS thin films as applicable to TiO2/CdS composite catalysis. The Journal of Vacuum Science & Technology A, 2006, Vol. 24(4): 1613~1617.
    [54] Ho W. K. & Yu J. C. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles. Journal of Molecular Catalysis A: Chemical, 2006, Vol. 247(1-2): 268~274.
    [55] Comparelli R., Cozzoli P. D., Curri M. L., et al. Photocatalytic degradation of methyl-red by immobilized nanoparticles of TiO2 and ZnO. Water Science and Technology, 2004, Vol. 49(4): 183~188.
    [56] Bedja I. & Kamat P. V. Capped semiconductor colloids. Synthesis and photo-electrochemical behavior of TiO2 capped SnO2 nanocrystallites. Journal of Physical Chemistry B, 1995, Vol. 99(22): 9182~9188.
    [57] Tatsuma T., Saitoh S., Ngaotrakanwiwat P., et al. Energy storage of TiO2-WO3 photocatalysis systems in the gas phase. Langmuir, 2002, Vol. 18(21): 7777~7779.
    [58] Kozlov D., Bavykin D. & Savinov E. Effect of the acidity of TiO2 surface on its photocatalytic activity in acetone gas-phase oxidation. Catalysis Letters, 2003, Vol. 86(4): 169~172.
    [59] Yu J. C., Yu J. G. & Zhao J. C. Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment. Applied Catalysis B: Environmental, 2002, Vol. 36(1): 31~43.
    [60] Invanda M., Musi? S., Popovi? S., et al. XRD, Raman and FT-IR spectroscopic observations of nanosized TiO2 synthesized by the sol–gel method based on an esterification reaction. Journal of Molecular Structure, 1999, Vol. 480-481: 645~649.
    [61] Zhou M. H., Yu J. G., Cheng B., et al. Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Materials Chemistry and Physics, 2005, Vol. 93(1): 159~163.
    [62] Wang C. Y., Bottcher C., Bahnemann D. W., et al. A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity. Journal of Materials Chemistry, 2003, Vol. 13(9): 2322~2329.
    [63] Hinda L., Eric P., Ammar H., et al. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water byUV-irradiated titania. Applied Catalysis B: Environmental, 2002, Vol. 39(1): 75~90.
    [64] Spurr R. A. & Myers H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Analytical Chemistry, 1957, Vol. 29(5): 760~762.
    [65] Hung W. C., Fu S. H., Tseng J. J., et al. Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol-gel method. Chemosphere, 2007, Vol. 66(11): 2142~2151.
    [66] Maensiri S., Laokul P. & Klinkaewnarong J. A simple synthesis and room-temperature magnetic behavior of Co-doped anatase TiO2 nanoparticles. Journal of Magnetism and Magnetic Materials, 2006, Vol. 32(2): 448~453.
    [67] Bouras P., Stathatos E. & Lianos P. Prure versus metal-ion-doped nanocrystalline titania for phtotcatalysis. Applied Catalysis B: Environmental, 2007, Vol. 73(1-2): 51~59.
    [68] Wang J., Jiang Y. F., Zhang Z. H., et al. Investigation on the sonocatalytic degradation of acid red B in the presence of nanometer TiO2 and comparison of catalytic activities of anatse and rutile TiO2 powders. Ultrasonics Sonochemistry, 2007, Vol. 14(5): 545~551.
    [69] Burgos M. & Langlet M. The sol-gel transformation of TIPT coatings: a FTIR study. Thin Solid Films, 1999, Vol. 349(1-2): 19~23.
    [70] DvoranováD., BrezováV., Mazúr M., et al. Investigations of metal-doped titanium dioxide photocatalysts. Applied Catalysis B: Environmental, 2002, Vol. 37(2): 91~105.
    [71] Hoffmann M. R., Martin S. T., Choi W. Y., et al. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, Vol. 95(1): 69~96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700