土壤N_2O排放的影响因子及其定量模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化亚氮(N_2O)是大气中一种痕量气体,它具有产生温室效应和破坏平流层臭氧的双重作用。土壤是全球最主要的N_2O释放源,其贡献达70-90%。针对农田土壤N_2O排放量、排放机理及减排措施等的研究,不论从环境还是从经济方面都具有重要意义。本研究以年均降水量为632mm的黄土高原南部旱作区冬小麦—休耕地土壤为对象,通过两个小麦生长年度不同处理的大田试验和相应的室内实验,对土壤N_2O排放量及其与影响因子的关系、定量模型和能量特征进行了系统研究。
     通过研究建立了水、热、肥、耕(深)多因子对土壤N_2O排放影响的模拟方程以及含温度和水分因子的N_2O排放动态方程;揭示了土壤N_2O排放水分效应和温度效应的零值现象,并获得了相应的零值参数;确定了土壤N_2O零值变化的土壤临界含水量和临界温度的上、下限值;发现了耕层较深土样N_2O排放特征的温度依变性,15℃显示为较深土样N_2O排放滞留温度,20℃呈现为较深土样N_2O排放递增转折温度,25℃~30℃为土壤N_2O排放的“跃增”温区;证实了本地区旱地农田小麦孕穗—开花期是土壤N_2O排放高峰期,温度和碳源物质是制约本地区土壤N_2O排放的关键因子;提出了土壤脲酶活性可作为旱作小麦田0-20cm土层N_2O排放的生物学指标并论证了其可行性。此外应用活化能,活化热力学参数从能量特征上对土壤N_2O排放机制进行了探讨。
     所取得的主要研究进展和结论如下:
     1.冬小麦生长期间,麦田土壤和休耕地土壤N_2O排放通量分别为5.22~70.92ug/m~2.h,4.7~60.2ug/m~2.h,麦田土壤N_2O排放通量大于休耕地土壤;小麦孕穗—开花期麦田土壤N_2O排放通量高于其它生育期,其排放通量在20.7~70.92ug/m~2.h之间。两个试验期(2001年,2002年),小麦各生育期麦田土壤N_2O排放通量与对应的旬内日均气温之间呈弱的相关性。2001年土壤N_2O平均排放通量与相应旬内雨量之间相关性较密切,而2002年二者相关性差。2001年与2002年相比,小麦生长期内降雨量偏低,但并未对N_2O平均排放通量产生明显影响,在此情况下硝化作用对N_2O排放起重要作用。
     农田土壤N_2O排放通量与耕层水分及水热交互作用之间未达显著相关,而与10cm、20cm深处温度之间达显著的线性相关,小麦田N_2O排放通量与10cm、20cm深处温度之间的相关性小于休耕地。小麦田N_2O排放通量与土壤C/N比成正相关,表明C/N比是影响本地土壤N_2O排放大小的关键因子,增施有机肥等C源物质可促进农田土壤N_2O排放。
     2.土壤深度对旱地麦田N_2O排放的效应受水分和温度的影响。在土壤中水分条件(14.5%)时,N_2O平均择放通量(Y)土样深度(h)系数(dY/dh)是Y的函数,随Y值增大而增大,与土样深度无关;较深土样N_2O排放滞留温度为15℃,5-10cm深度土壤对N_2O排放通量贡献率最大。在土壤高水分条件(18.7%)下,15℃温度时,耕层土壤N_2O排放主要来自5-15cm深度,而较深土样N_2O主要滞留土体中;20℃即N_2O排放递增转折温度时,N_2O平均排放通量土样深度系数(dY/dh)与h呈反比;温度达25℃,N_2O的产出量和热扩散性已显著增强,足以抵消
    
    随土样深度增加而增大的对NZo排放的阻滞作用,因而(d习咖)与土样深度无关;30℃时,
    NZO排放滞留率均呈负值,表明对NZO的排放有明显的促进作用,并出现NZO平均排放通量的
    “跃增区”。
     3.小麦田土壤NZO平均排放通量高于休耕地NZO平均排放通量的ro.36%~43.26%,在小麦
    生育旺盛期,休耕地土壤NZO平均排放通量仅占小麦田的加%左右。植物效应引起的土壤N20
    排放通量增量仅与土壤有机质增量呈显著负相关,早地小麦田NZO的排放主要通过土壤逸出地
    面。
     4.小麦田覆膜处理土壤NZO平均排放通量比未覆膜处理增加了33.04%;休耕地土壤覆膜处
    理NZO排放通量比未覆膜处理增加了10.53%。覆膜对小麦地土壤NZO排放的增排效应高于休耕
    地。其排效应主要来自土壤scm深处温度的提高及有机质含量增加和耕层含水量的提高。
     5.小麦田原状土样N20累积排放量(y)与时间(O的动力学曲线均符合Elovich方程(y=
    a+b int)。由土样第10天NZo累积排放量yl。与温度T拟合方程得。一scm土样Nzo排放临界温
    度下限为0.3840℃,上限为50.92℃的理论值。由yl二才(土壤含水量)拟合方程得土城Nzo零
    值变化临界含水t下限为7.38%,上限为31.42%,7.38%水分与实验测得产生N20吸收现象的含
    水量(7 .86%)相近.由ylo----琳yl二T拟合方程所得(dyl。/dw)二o,(dyl。/dO=o时所揭示的
    单位含水量变化和单位温度变化引发的土壤NZO累积排放量变化为零的现象称之为土滚N20排
    放水分效应和温度效应的零值现象.所得土镶Nzo排放水分效应零值土城湿度W0为19.4%,该
    值与试验测定判定结果基本吻合,证实W0值存在的客观性,相应所得土城N20排放温度效应零
    值土城温度T0为30.4℃,该温度与土壤产生NZO的消化、反硝化作用最适温度相近,亦证实T0
    值的可靠性。
     动力学方程显示在一定土壤湿度、温度下,随时间变化土样NZO累积排放量是土样深度因子
    的函数,故NZo排放量室内实验所得结果与采样深度密切相关。ylo一h拟合方程表明30.oscm为
    土城N20排放深度效应零值?
N2O, as a trace gas in the atmosphere, could cause greenhouse effect and damage the ozone lay in stratosphere. The main source of N2O is from soil, with a contribution rate of 70-90%. Investigation into N2O emission amount, emission mechanism and approaches to reduce the emission from farmland is of great significance for environment protection and economic growth. Fallow lands of winter wheat in the southern part of loess plateau with an annual precipitation of 632mm were selected as the study object, Field and lab experiments were carried out during two wheat growth periods to investigate the correlations between N2O emissions and its influential factors, quantitative model and energy characteristics.
    Through this experiment, the simulation equations of factors such as water content, heat, fertilizer and the depth of the tilled land that would influence N2O emissions flux were established, the dynamic N2O emissions equation concerning water content and temperature was also established. These equations would explain the zero influence of water and temperature on N2O emissions and provide relevant parameters. The critical soil water content and N2O emissions critical minimal and maximal temperature contributing to the zero influence on N2O emissions. It also was found that N2O emissions in deeper soil would change with the temperature. 15@ is the emission retardation temperature in deep soil layer; 20@ is the turning temperature for the increase of N2O emissions; 25癈-30癈 is the boosting range for the emission. It has proved that the period from wheat booting to blossoming is the boom period for N2O emissions. Temperature and C source matters are the key factors that would influence N2O emissions in this r
    egion. This paper also put forwards that urease activity at the soil depth of 0-20cm could be used as the biological indicator of N2O emissions in wheat field and has proved its feasibility. In addition, by using biological active energy and thermo-chemical energy parameters, the paper also discussed N2O emissions mechanism.
    The progress and innovative thinking are as followings:
    1. During the growth period of winter wheat, the N2O emission from wheat field and the fallow land is 5.22-70.92ug/m2and 4.7-60.2ug/m2, respectively N2O emission in wheat land is larger than that in the fallow land; N2O emission during the period from booting to blooming is larger than that in any other growth periods, with an average amount of 20.7-70.92ug/m2 During the two experimenting periods (2001, 2002), the emission flux of different growth stages is insignificantly correlated to the corresponding average daily temperature within ten days of each month. However, in 2001, the average emission flux is closely related to the rainfall in the corresponding ten days of each month, the correlation in 2002 is not significant. Compared with that in 2002, the rainfall in the growth periods in 2001 is smaller, but this fact did not have a significant influence on N2O emission flux, but nitration function had a significant influence on N2O emission. N2O emission flux in farmland isn't significantly related to the
     water content in tilled layer, the
    
    
    interaction between water and heat, but apparently has liner relation with the temperature in the soil layers at the depth of 10cm and 20cm. The correlation is less significant that with fallow land. N2O emission is also positively related to the N/C ratio, this ratio is regarded to be the key factor that affects N2O emission. Increase the application of organic fertilizer and other C source substances may promote N2O emission in soil.
    2. The impact of soil depth to N2O emission in arid wheat field is greatly influenced by water content and the temperature conditions. When the water content in the soils is 14.5%, the sample soil depth coefficient of the average N2O emission flux (dY/dh) is the function of Y and would increase with the Y value, it has no correlation with the depth of soil; the temperature for N2O emission retardation is at 15℃, soil at the depth of 5-10cm has t
引文
1. Anderson IC and Poth MA. 1998. Controls on fluxes of trace gases from Brazilian cerrado soils. J Environ Qual,27(5) : 1117-1124
    2. Arth, Frenzel P. Nitrification and enitrification in the rhizosphere of rice:the detection of processes by anew multi-channel electrode.Biol. Pert. Soil, 2000, 31: 427~435
    3. Bakken L R. Denitrification under different cultivated plants: effects of soil moisture tension, nitrateconcentration, and photosynthetic activity. Biol Pert Soils, 1988, 6: 271-278
    4. Bergstrom D.W., Tenuta M. & Beauchamp E.G. 1994. Increase in nitrous oxide production in soil induced by ammonium and organic carbon . Biology and Fertility of soil, 18,1-6
    5. Betlach, M.R. and Tiedje, J.M.1981. Kinetic explanation for accumulation of nitrite, nitric oxide and nitrous oxide during bacterial denitrification. Apply-Environmental Microbial, 42:1074-1084
    6. Blackmer AM and Bremner JM. 1978. Inhibitory effect of nitrate on reduction of N2O to N2 by soil micro-organisms. Soil Biol Biochem, 10: 187-191
    7. Blackmer AM and Bremner JM. 1978. Stimulatory effect of nitrate on reduction of N2O to N2 by soil micro-organisms. Soil Biol Biochem, 10: 313-315
    8. Blackmer, A.M. and Bremner, J.M.1976. Potential of soil as a sink for atmospheric nitrous oxide , Geophysics. Res.Lert.3: 739-742
    9. Bouwman A F. The role of soils and land use in the greenhouse effect. Background paper of the international conference "Soil and the Greenhouse Effect".Wageningen, The Netherlands: Int Soil Ref And Into Cnt, 1989. 14-18.
    10. Bouwman AF. Compilation of a global inventory of emissions of nitrous oxide. Wageningen, 1995, 57-76
    11. Bouwman, A.F. 1990 Exchange of Greenhouse Gases Between Terrestrial Ecosystems and the atmosphere IN: Bouwman, A.F. (ED). Soil and Greenhouse Effect [M]. Wiley and sons. Chickster, New York, p: 61-127
    12. Bouwman, A.F. 1990 Exchange of Greenhouse Gases Between Terrestrial Ecosystems and the atmosphere IN: Bouwman, A.F. (ED). Soil and Greenhouse Effect . Wiley and sons. Chickster, New York, p, 61-127
    13. Buresh,R.J. and De Datta,S.K. 1990. Denitrification losses from puddled rice soils in the tropics. Bio.Fertil.Soils, 9:1-13.
    14. Buresh,R.J.,De Datta,S.K., Samson,M.Z.et al.1991. Dinitrogen and nitrous oxide flux from urea basely applied to puddled rice soils. Soil Sci.Soc.Am.J.,55:268-273
    15. Cai G X. Gaseous Loss of Nitrogen from Fertilizer Applied to Flooded Rice[D]. Thesis for Ph.D.degree, University of Queensland, 1988. 275
    16. Castro M S, Stedudler P A, Mellio J M. Factor controlling atmospheric methane consumption by temperate forest soils. Global Biogeochemistry Cycles, 1995,9: 1-10
    
    
    17. Chiang RC, Cavicchioli R, Gunsalus. Locked-on and locked-off signal transduction mutations in the pefiplasmic domain of the E. coli NarQ and NarX sensors affect nitrate-and nitrite-dependent regulation by NarL and NarP. Mol Microbiol. 1997,24:1049-1060
    18. Christense N S,Ambu S P, Arah J R M,et al.Nitrous oxide emission from an agricultural field:comparison between measurements by flux chamber and micrometeorologicaltechnigues[J]. Atmospheric Environment,Oxford, England, 199 6,30(24) :4183-4190.
    19. Ciais P,Tans P P,Trolier M,et al.A large No rthern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2, Science, 1995, 269: 1098-1102
    20. Conrado Moreno-vivian, Purificacion Cabello, Martinez-Luque, Francisco Castillo. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductase. J Bacteriol.l999,181:6573-6584
    21. Crutzen P J. The influence of nitrogen oxide on the atmospheric ozone content. Quart J Roy Meterol Soc, 1970, 96: 7311-7327
    22. Darwin A J, Tyson KL, Busby JW, Stewart V. Differential regulation by the homologous response regulators NarL and NarP of E. coli K12 depends on DNA binding site arrangement. Mol Microbiol. 1997, 25:583-595
    23. Davidson E A, 1992. Sources of nitric oxide and nitrous following wetting of dry soil , Soil sci 56: 95-102
    24. Davidson E A, 1992. Sources of nitric oxide and nitrous following wetting of dry soil. Soil sci 56:95-102、
    25. Davidson E A. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems[M].In: Rogers J E et al, eds. Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Field Conditions. American Society for Micro-biology, Washington, 1991:219-23 5.
    26. De Boer APN, J van der Oost, WNM. Reijnders, HV Westerhoff, AH Stouthamer, RJM van Spanning. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans. Eur J Biochem. 1996,242:592-600
    27. De  Datta,S.K.,Buresh,R.J.,Samson,M.I.et al. 1991. Direct measurement of ammonia and denitrification fluxes from urea applied to rice. Soil Sci.Soc.Am.J.,55:543-548.
    28. Delgado J A and Mosier A R. Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux, J Environ Qual, 1999, 25(6) : 1105-1111. [ 16] 、
    29. Dingkuhn,M., Penning deVries, F.W.T., et al. Improvement of rice plant type concepts: System research enables interaction of physiology and breeding. Kluwer Academic Publishers, 1993, 19-35
    30. Donoso L, Santana R and Sanhueza E. 1993. Seasonal variation of N2O fluxes at a tropical savannah site: soil consumption of N2O during the dry season. Geophys Res Lett,20: 1379-1382
    31. Dutch J, Ineson P. Denitrification of an upland forest site. Forestry, 1990, 63:363-377
    
    
    32. Eichner M J. Nitrous oxide emissions from fertilized soils: Summary of available data[J], J. of Environ. Quality, 1990; 19: 272-280
    33. Eriksen A B, Holtan-Hartwig L. Emission spectrometry for direct measurement of nitrous oxide and dinitrogen from soil , Soil Soc AM J, 1993,57:738-742
    34. Fengmin Li,An-Hong Guo,and Hong Wei. Effects of clear plastic film mulch on yield of spring wheat. Field Crops Res. 1999,63:79-86
    35. Fillery,I.R.P.1983. Biological denitrification. In: Freney, J.R. & Simpson,J.R.eds. Gaseous Loss of Nitrogen from Plant-Soil Systems. Martinus Nijhofff.33-64.
    36. Fillery,I.R.P. 1983. Biological denitrification. In:Freney,J.R. & Simpson.J.R.eds. Gaseous Loss of Nitrogen from Plant-Soil Systems. Martinus Nijhofff.33-64.
    37. Firestone,M.K.1982. Biological denitrification. In: Stevenson F.J.ed. Nitrogen in Agricultural Soils No.22 ASA,CSSA & SSSA, Madison,Wisconsin.289-326.
    38. Firestone,M.K.1982. Biological denitrification. In: Stevenson F.J.ed. Nitrogen in Agricultural Soils No.22 ASA,CSSA & SSSA, Madison,Wisconsin.289-326.
    39. Focht,D.D.1979. Microbial kinetics of nitrogen losses in flooded soils. In: Nitrogen and Rice Los Banos. Philippines:IRRI.119-134.
    40. Galbally, I.E. Factors controlling Nox emission from soils. In: Exchange of trace gases between terrestrial ecosystem and the atmosphere. Andreae, M.O. and schimel, D.S. Eds. Dahlem Konferenzen wiley, Chichester. 1989,23(6) : 35-42
    41. Galbally, I.E. Factors controlling Nox emission from soils. In: Exchange of trace gases between terrestrial ecosystem and the atmosphere. Andreae, M.O. and schimel, D.S. Eds. Dahlem Konferenzen wiley, Chichester. 1989,23(6) : 35-42
    42. Haynes, R. J. 1986. Mineral Nitrogen in the Plant Soil System. New York: Academic Press, Inc.
    43. Houghton J. T. et al. Climate Change: The IPCC Assessment on Climate Change. London; Cambridge University Press, 1990:1
    44. Hutchinson GL and Davidson EA. 1993. Processes for production and consumption of gaseous nitrogen oxides in soil. In: Agricultural Ecosystem Effect on Trace Gases and Global Climate Change.ASA Special Publication 55. 79-93
    45. Hyman M R, Arp D J. Quantification and removal of some contaminating gases from acetylene used to study gas-utilizing enzymes and microorganisms[J]. Appl Environ Microbiol, 1987, 53: 298-303.
    46. IPCC Estimated source and sink of nitrous oxide. Cambridge: Cambridge University Press: 1992
    47. IPCC, Climate changes 1995-The science of climate change. Contribution of Group I to second Assessment Report of the Intergovernmental panel on climate change, 15
    48. IPCC. Radiative forcing of climate change. Genera: WMO/UNEP: 1994
    49. IPCC. Radiative forcing of climatic change. Genera: WMO/UNEP, 1994.
    50. IPCC.Climate Change 1995-The Science of Cli-mate Change. Contribution of Working Group I
    
    to Second Assessment Report of the Intergovernmental Panel on Climate Change. 15.
    51. Jensen K, Sloth N P, Risgaardpetersen N, et al. Estimation of nitrification and denitrification from microprofiles of oxygen and nitrate in model sediment systems. Appl. Eenviron. Microbiol, 1994,60:2094-2100
    52. Jensen,K., Revsbech, N.P. and Nielsen, L.P. 1993. Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Appl.Environ.Microbio, 59: 3287-3296.
    53. Jordan,W.R.Whole plant responds to water deficits: an overview In taylor, H.W., et al. Limitations to efficient water use in crop production. ASA-CSSA-SSSA, USA, 1983, 289-317
    54. Katyal,J.C., Xarter, M.F. and Vlek,P.L.G. 1988. Nitrification activity in submerged soils and its relation to denitrification loss. Biol. Fertil. Soils, 7:16-22.
    55. Keller M, Kaplan W A, Wofsy S C. Emissions of N2O CH4 and CO2from tropical forest soils. J. Geophys. Res, 1986:11791-11802.
    56. Khanif, Y.M., Ammonia volatileization from Malaysian soils following application of urea. Pertanika Trop. Agric. Sci., 1992,15(2) : 115-120
    57. Koike Land A Hattori 1975. Energy yield of denitrification: an estimate from growth yield in continuous cultures of Pseudomonas denitrifications under nitric-, nitrate-and nitrous oxide-limited conditions . Microbial 88: 11-19.
    58. Koskinen,W.C. and Keeney,D.R. 1982. Effect of pH on the rate of gaseous products of denitrification in a silt loam soil. Soil Sci.Soc. Am.J, 46:1165-1167
    59. Kralova M, Mascheleyn P H, Liondau C W H, Production of dinitrogen and nitrous oxide in soil suspensions as affected by redox potential. Water, Air, Soil Pollut, 1992, 61: 37-45. 、
    60. Kromka M, Stepanov AL and Umarov MM. 1992. Reduction of nitrous oxide by the microbial biomass in soils. Eurasian Soil Sci,24: 68-74
    61. Laville P, Jambert C, Cellier P et al.Nitrous oxide fluxes from a fertilized maize crop using micrometeorological and chamber methods.Agricultural and Forest Meteorology,1999,96:19-38.
    62. Li Shengxiu and Xiao Ling.1992. The distribution and management of dry lands in the People's Republic of China. Adv Soil Sic, 18: 147-302
    63. Lloyd D. Microbial processes and the cycling of atmospheric trace gases. Trends in Ecology and Evolution, 1995, 10: 476-478
    64. Martin K, Parsons L L, Murray R E, et al. Dynamics of soil denitrifier populations; Relationshipsbetween enzyme activity, most-probable-number counts and actual N gas loss. Appl Environ Microbiol, 1988,54:2711-2716
    65. Masscheleyn P H, Delaune R D, Patrick W H. Measurements of rice soil suspention effect of soil oxidation-redution status. Chemosphere. 1993;26: 251-260.
    66. Matson P and Vitousek PM. 1987. Cross-system comparisons of soil nitrogen transformation and nitrous oxide flux in tropical forest ecosystems. Global Biogeochem Cycles, 1: 163-170
    
    
    67. Minami K., Fakushi S., Methods for measuring N2O flux from water surface and N2O dissolved in water from agriculture land. Soil Sci Plant Natr, 084; 30:495-501
    68. Mosier A R, Mohanty S K, Bhadrachalam A, et al. Evolution of dinitrogen and nitrous oxide from the soil to the atmosphere through rice plants. Biol Fertil Soils, 1990, 9:61-67
    69. Munch J C. Nitrous emissions from soil as determined by the composition of denitrifying microbialpopulation. Dev Geochem, 1991,6:309-316
    70. Munch J C. Organism specific denitrification in samples of an diffluent with different nitrate concentrations. Z Pflanzenernahr Bodenk, 1989,152:395-400
    71. Nambiar, E.K., Interaction of mechanisms of gaseous losses of nitrogen in upland soils[J]. Indian Soc. Soil Sci., 1996,29(1) : 97-100
    72. Nishio T. Estimatingnitrogen transformation rates in surface aerobic soil of a paddy field. Siol Biol. Biochem, 1994,26:1273-1280
    73. Nugroho S G, Kuwatsuka S. Effect of farmyard manure on ammonification, nitrofication, denitrofi-cation and N2-fixation at different levels of soil moisture. Soil Sci Plant Nutr, 1992;38: 597-600.
    74. Parkin T B, Tiedje J M. Application of soil core method to investigate the effect of oxygen concen-tration on denitrofication. Soil Biol Biochem, 1984; 16: 331-334.
    75. Powlson D S, Staffigna P G, Kragt-Cottaar M. Denitrification at sub-optimal temperatures in soils from different climatic zones. Soil Biol Biochem, 1988,20:719-723
    76. Prade K, Trolldenier G. Effect of wheat roots on denitrification at varying soil air-filled porosity andorganic-carbon content. Biol Fertil Soils, 1988, 7: 1-6
    77. Prather M, Dervent R, Ennalt D, et al. Other trace gases and atmospheric chemistey. In: Houghton J T, et al., eds. Climaate change 1994. Cambridge: Cambridge University Press, 1995, 77-126.
    78. Prinn R, Cunnlod D, Rasussen R, et al. Atmospheric emissions and trends of nitrous oxide deduced from 10 years of ALE-GAGE data , Geophys Res, 1990, 95: 18369-18385.
    79. Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soil. Global Boigeochemistry Cycles, 1995, 9: 23-36
    80. Ravi,V., Lourduraj,A.C. Comparative performance of plastic mulching on soil moisture content, soil temperature and yield of rainfed cotton. Madras Agric.J. 1996. 83:709-711
    81. Robertson G P, Vitousek P M, Matson P A, et al. Denitrification in a clearcut Loblolly pine plantation in the southeastern US. Plant Soil, 1987, 97: 119-129
    82. Robertson L.A., Kuenen J.G. Physiology of Nitro-fying and denitrifying bacteria. In, Rogers J. E. And Whitman Wbceds. Manorial Production and Consumption of Greenhouse Gases: Methane, Nitrogen oxides and Halo methane's. American Society for microbiology Washington D.C. 1991:189-199
    83. Rodhe H. A comparison of the contribution of various gases to the greenhouse effect, Science, 1990,248: 1217-1219.
    
    
    84. Rodhn H A. A comparison of the contribution of various gases to the greenhouse effect. Science, 1990,248: 1217-1219
    85. Rowe.J T. Ubbink-KoK D. Molenaar AJM. Driessen. NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration by E. coli. Mol Microbiol. 1994,12:579-586
    86. Ruclaz A. et.al. 1991. Production of nitrous oxide immediately after wetting dry soil. FEMS Microbiol. Ecol., 85:117-124
    87. Schmidt J, Seiler W,Conrad R. Emission of nitrous oxide from temperate forest soils into theatmosphere. J Atmos Chem, 1988,6:95-115
    88. Schutz H, Seiler W, Conrad R. Processes involved in formation and emission of methane in rice paddies. Biogeochem, 1989, 7: 33-53
    89. Scott Smith, M. and Tiedje,M. J. 1979. The effect of roots on soil denitrification. Soil Sci. Soc. Am. J.,43(5) :951-957
    90. SEILER W, CONRAD R. Contribution of troipical ecosystems to the global of trace gases, especially CH4, H2, CO and N2O [M]. In: Dickinsion eds, Geophysiology of Amazonia: Vegetation and Climate Interactions, New York: Wiley and Sons, 1987,133-160.
    91. Simon CB, Stuart JF, Bernd L, Rob James MT. Molecular genetics of the genus Paracoccus :metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev. 1998,62:1046-1078
    92. Smith K A. Greenhouse gas fluxes between land surface and the atmosphere. Progress of Physical Geography, 1990,3:249-272
    93. Smith K A. Greenhouse gas fluxes between land surface and the atmosphere. Progress of Phy-sical Geography, 1990; 3:349-272.
    94. Sommmerfeld, R.A., Moister, A.R. et al 1993 CO2, CH4, N2O flux through a Wyoming snoupake and implications for global budgets [J], 361:140-142
    95. Stepanov A L. Microbial transformation of nitrous oxide in external environment. Abstracts, 2ndsession, 11th. International Symposium on Environmental Biogeochemistry, Salamanca. 1993
    96. Struwe, S. and Kjollor, A. Denitrification in wet forest soil systems in situ and in slurry experiments. Forest Eecologe and Managrment, 1991, 44: 41-52
    97. Weier KL, Doran JW, Power, JFetal, 1993 .Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil science soc Amer.J, 57:66-72
    98. Wienhold F G, Frahm H,Harris G W.Measurements of N2O fluxes from fertilized grassland using a fast response tunable diode laser spectrometer.J Geophys Res,1994,99(D8) :16557-16567
    99. Wienhold F G, Wellng M, Harris G W.Micrometeorological measurement and source region analysis of nitrous oxide fluxes from an agricultural soil.Atmospheric Environment, 1995,29(17) :2219-2227.
    100. Williams E J, Hutchinson G L, Tehsenfeld F C. NOx and N2O emission from soil. Global Biogeochemical Cycles, 1992,6: 351-388.
    
    
    107.白红英,韩建刚,张一平.不同土层土样理化生性状与硝化酶活性及N_2O排放通量的相关性研究,农业环境保护,2002,21(3):193-196.
    108.蔡祖聪.尿素和KNO_3对水稻土无机氮转化过程和产物的影响-无机氮转化过程,土壤学报,2003,40(2):239-245
    109.蔡祖聪.水分类型对土壤排放的温室气体组成和综合温室效应的影响.土壤学报.1999,36(4):484-491
    110.蔡祖聪等.土壤水分状况对CH_4氧化,N_2O和CO_2排放的影响.土壤.1999,31(6):289-294
    111.曹慧,孙辉,杨浩等.土壤酶活性对土壤质量的指示研究进展.应用与环境生物学报,2003,9(1):105-109
    112.陈冠雄,商曙晖 等.植物释放N_2O研究,应用生态学报,1990,1(1)
    113.陈玉芬 杨军 顾尉蓝 等.广州地区晚造稻田氧化亚氮排放量与施肥灌溉关系的研究,华南农业大学学报,1999,02
    114.党廷辉,蔡贵信,郭胜利等.黄土高原黑垆土冬小麦系统中尿素氮去向及增产效果.土壤学报,2002,39(3):199-204.
    115.丁洪,蔡贵信,王跃思等.华北平原不同作物-潮土系统中N_2O排放量的测定,农业环境保护,2001,20(1):7-9,30
    116.杜建军,田霄鸿,王朝辉,李生秀,高亚军,李世清.根系吸收水分和养分的作用以及以肥促根的效应.见:汪德水.旱地农田水肥关系原理与调控技术.北京:中国农业科技出版社,1995,106-107
    117.杜睿,王庚辰,吕达仁等.箱法在草地温室气体通量野外实验观测中的应用研究[J].大气科学,2001,25(1):61-70.
    118.杜睿,王庚辰,吕达仁等.内蒙古大针茅草原的N_2O和CH_4通量变化特征,中国环境科学,2001,21(4):289-292
    119.杜睿,王庚辰,吕达仁等.内蒙古温带半干旱羊草草原温室气体N_2O和CH_4通量变化特征,自然科学进展,2001,11(6):595-601
    120.杜睿,陈冠雄、吕达仁等.土壤含水量与温度对羊草、大针茅典型草原土壤—植物系统温室气体收支影响的初步研究,气候与环境研究,1997,2(3):273-279
    
    
    121.樊廷录.旱地地膜小麦研究成效和加快发展的必要性及建议.干旱地区农业研究,1997,15(1):27-32
    122.封克 汤炎 钱晓晴 王小治 张素玲 施用石灰对酸性土壤中氧化亚氮形成的影响,土壤与环境,1999,03
    123.封克,殷士学.影响氧化亚氮形成与排放的土壤因素,土壤学进展,1995,23(6):35-41
    124.傅涛,倪九派,魏朝富等.双氰胺在四川3种主要土壤上的硝化抑制作用,土壤与环境,2001,10(3):210-213
    125.高世铭,马天恩,田富林.旱地春小麦全生育期地膜覆盖栽培技术研究初报.甘肃农业科技,1987,1:22-26
    126.高世铭等.旱地有限补充供水与覆盖保水技术研究.见:陈万金、信迪诠(主编),中国北方旱地农业综合发展与对策.北京:中国农业科技出版社,1994,225-229
    127.郭安红,李凤民,李召祥.春小麦干物质生产和根信号对表土干旱的响应.应用生态学报,1999a,10(6):689-695
    128.郭安红,魏虹,李凤民.土壤水分亏缺对春小麦根系干物质积累和分配的影响.生态学报,1999b,19(2):66-72
    129.郭李萍,林而达,李少杰.大气氮化物的源汇及气候与环境效应,农业环境保护,1999,18(5):193-199
    130.郭志利,古世禄.覆膜栽培方式对谷子产量及效益的影响.干旱地区农业研究,2000,18(2):33-39
    131.韩建刚.地膜覆盖对冬小麦田土壤中N_2O排放的影响,硕士论文,2002年5月
    132.候爱新,陈冠雄.不同种类氮肥对土样释放N_2O的影响,应用生态学报,1998,9(2):176-180.
    133.黄国宏,陈冠雄等.东北典型旱作农田N_2O和CH_4排放通量研究,应用生态学报.1995,6(4):383-386
    134.黄国宏、陈冠雄等.土壤含水量与N_2O产生途径研究,应用生态学报.1999,10(1):53-56
    135.黄国宏等,玉米植株对大田温室气体N_2O排放的影响。应用生态学报,1998,9(3):261-264
    136.黄耀,焦燕,宗良纲等.土壤理化性质对麦田N_2O排放影响的研究.环境科学学报,2002,22(5):598-601
    137.蒋静艳,黄耀.农业土壤N_2O排放的研究进展,农业环境保护,2001,20(1):51-54
    138.蒋静艳,黄耀.农业土壤N_2O排放的研究进展农业环境保护,2001,20(1):51-54
    139.蒋以超,张一平.土壤化学过程的物理化学,中国科技出版社,1993,12:110-174
    140.康绍忠,蔡焕杰,梁银丽等.大气CO_2浓度增加对春小麦冠层温度、蒸发蒸腾与土壤剖面水分动态影响的试验研究[J].生态学报,1997,17(4):412-417.
    141.冷石林,韩仕峰,王立祥,中国北方旱地作物节水增产理论与技术.北京:中国农业科技出版社,1996:166-172
    142.李凤民,王俊,王同朝.地膜覆盖导致减产的机理.中国农业科学,2001,33(2)330-333.
    143.李贵桐,李保国,黄元仿.碳源与底物对不同层次土壤产生N_2O能力的影响,土壤与环境,2002,11(3):227-231
    
    
    144.李靖,韩思明,王永熙,谢惠民.黄土台塬(乾县)粮食高产型农业综合发展研究.干旱地农业研究,2000,16(专辑):1-18
    145.李俊,于沪宁,于强等,农田N_2O通量测定方法分析,地学前缘,2002,9(2):377-385
    146.李俊,于强,同小娟.植物--大气N_2O一个重要的源,地学前缘,2002,9(1):112
    147.李良谟.土壤硝化作用研究概况,土壤进展,1984,5:1-8
    148.李楠,陈冠雄.植物释放N_2O速率及施肥的影响,应用生态学报,1993,4(3):95-298
    149.李生秀,贵立德.小麦吸氮规律与土壤中矿质氮的变化.西北农业大学学报,1992,20(增刊):25-31
    150.李世清,李凤民,宋秋华.半干旱地区地膜覆盖对土壤氮素有效性的影响.生态学报,2001,21
    151.李世清.黄土高原平作穴播小麦地膜覆盖的效应及其模型,博士后研究工作总结,2001,5
    152.李学恒.土壤化学[M],高等教育出版社,2001.7:280-309
    153.李振高,俞慎.土壤硝化-反硝化作用研究进展,土壤,1997,6:281-286.
    154.梁东丽,同延安,OVE Emterdy.土壤反硝化田间原位测定方法的研究进展,土壤与环境,2001,10(2),149-153
    155.梁东丽,同延安,Ove Emteryd.菜地不同施氮量下N_2O逸出量的研究,西北农林科技大学学报(自然科学版),2002,30(2):73-77.
    156.梁东丽,同延安,Ove Emteryd 等.干湿交替对旱地土壤N_2O气态损失的影响,干旱地区农业研究,2002,20(2):28-31,48
    157.梁东丽,同延安,Ove Emteryd 等.灌溉和降水对旱地土壤N_2O气态损失的影响,植物营养与肥料学报,2002,8(3),298-302
    158.刘景双,万金达,李忠根等.三江平原沼泽地N_2O浓度与排放特征初步研究,环境科学,2003,24(1)
    159.鲁春霞,吕耀,谢高地等.稻田温室气体排放的时空差异性与精准施肥,2002,24(6):86-90
    160.罗奇祥.施氮肥的环境后果—综述[J].土壤学进展,1994,22(2):29-32.
    161.孟平,宋兆民,张劲松等.农林复合系统对环境质量调控作用研究
    162.闵安成,张一平,朱铭莪等.田间土壤水势温度效应,土壤学报,1995,32(2):237~240
    163.施书莲,杜丽娟,邢光熹.水稻植株对稻田土壤N_2O排放的影响,见:李振生主编挖掘生物高效利用土壤养分潜力保持土壤环境良性循环论文集,1999,274-279
    164.史弈、黄国宏.土壤反硝化酶活性变化与N_2O排放的关系,应用生态学报.1999,10(3):329-331
    165.宋文质等.我国农田的主要温室气体CO_2、CH_4、N_2O排放研究,环境科学,1996,17(1):85-88
    166.孙海国,张福锁.缺磷胁迫下小麦根系酸性磷酸酶研究,应用生态学报,2002,13(3):379-381
    167.孙海国,张福锁.缺磷胁迫下小麦根系形态特征研究,应用生态学报,2002,13(3):285-299
    168.孙向阳,徐化成.北京低山区两种人工林土壤中N_2O排放通量的研究,林业科学,2001,37(5):57-63
    169.田光明,何云峰,李勇先.水肥管理对稻田土壤甲烷和氧化亚氮排放的影响,土壤与环境,2002,11(3):294-298
    
    
    170.王彩绒,田霄鸿,李生秀.土壤中氧化亚氮的产生及减少排放量的措施,土壤环境,2001,10(2) P:143-148
    171.王庚辰,温玉璞.温室气体浓度和排放监测及相关过程.中国环境科学出版社,1996
    172.王庚辰.陆地生态系统温室气体排放(吸收)测量方法简评.气候与环境研究,1997,2(3):251-263.
    173.王国栋,张一平,张君常等.土壤水势温度滞后效应的研究.水土保持研究,1996,3(3):125~130
    174.王少彬,宋文质.中国大气中N_2O浓度及土壤排放通量测定,中国环境科学,1994,24(12):327-332
    175.王树森,邓根之.地膜覆盖增温机制研究.中国农业科学,1991,24(3):74-78
    176.王树森.地膜覆盖土壤能量平衡及其对土壤热状况的影响.中国农业气象,1990,2
    177.王效科,李长生.中国农业土壤N_2O排放量估算,环境科学学报,2000,20(4):483-488
    178.王效科,庄亚辉,李长生.中国农田土壤N_2O排放通量分布格局研究生态学报,2001,21,(8):1225-1231
    179.王艳芬.内蒙古典型草原N2O研究刍议,气候与环境研究,1997,3,280-284
    180.谢建治.田间土壤反硝化作用动态初探,农业环境保护,1999,18(6):272-274
    181.邢光熹,蔡祖聪,鹤田治雄等.土壤水分状况和质地对稻田N_2O排放的影响土壤学报,2000,37(4),499-515
    182.徐华 邢光熹 蔡祖聪 等.土壤质地对小麦和棉花田N_2O排放的影响,农业环境保护,2000,19(1)1-3
    183.徐华.丘陵区稻田N_2O排放的特点,土壤与环境,1999,8(4):266-270
    184.徐慧,张秀君,黄斌等.针阔混交林植物N_2O排放的研究,林业研究(英文版)2001,12(1):13-17
    185.徐慧等.长白山北坡不同土壤N_2O和CH_4排放初步研究,应用生态学报,1995,6(4):373-377
    186.徐文彬,洪业汤,陈旭晖 等.应用DNDC模型估算区域农业土壤N_2O释放通量和释放量—以贵州省为例,环境科学,2000,21(2):11-15
    187.徐文彬.浅谈推算和预测宏观尺度土壤N_2O释放量的方法土壤通报,2000,31(2):91-95
    188.徐文彬等.贵州省旱田土壤N_2O释放及环境影响因素,环境科学,2000,21(1):7-11
    189.徐文彬等.未来气候变化对旱田生态系统N_2O释放的潜在影响,中国环境科学,1999,19(5)
    190.徐文彬等.温度对旱田土壤N_2O的影响影响研究,土壤学宝,2000,39(1):1-8
    191.颜晓元,施书莲,杜丽娟 等 水分状况对水田土壤N_2O排放的影响,土壤学报,2000,37(4):499-515
    192.阳捷行.关于土壤生态系统的气体代谢研究,国外农业环境保护,1992,(3):39-41
    193.杨军,贺丽萍,杨崇 等.广州地区晚季稻田CH_4、N_2O排放研究初报,1997,18(3):62-66
    194.姚荣奎等.大气N_2O的GC-ECD方法和环境浓度及来源[J].环境化学.1994,13(1):22-29
    195.于克伟,陈冠雄等.农田和森林土壤中N_2O的产生与还原,应用生态报.2000,11(3):385-389
    196.于克伟等.几种旱地农作物在农田N_2O释放中的作用及环境因素的影响,应用生态学报,1995,6(4):387-391
    
    
    197.俞慎,李振高.稻田生态系统生物硝化-反硝化作用与氮素损失,应用生态学报,1999,10(5)
    198.袁力云.反硝化作用在土壤氮素平衡中的作用,土壤进展,1988,5:8-13,23[112]、
    199.岳市宏 陈宝智 土黎.温室气体的环境影响及控制技术的研究现状,环境保护 2001、№ 12[13]、
    200.曾江海,王智平.农田土壤N_2O生成与排放研究,土壤通报,1995,26(3):123-134
    201.张宝军.作物栽培[M].西北农业大学出版.2002:27-51
    202.张光亚,闵航,陈美慈等.氧化亚氮形成的微生物学分子机制研究进展,应用与环境生物学报,2001,7(5):507-510
    203.张秀君,徐慧,陈冠雄.影响森林土壤N_2O排放和CH_4吸收的主要因素,环境科学,2002,23(5):8-12
    204.张一平,白锦鳞,张君常等.温度对土壤水势影响的研究.土壤学报,1990,27(4):454-458[
    205.郑循华,王明星,王跃思等.华东稻麦轮作生态系统的N_2O排放研究,应用生态学报,1997,8(5):495-499
    206.郑循华等.温度对农田N_2O产生与排放的影响,环境科学,1997,18(5):1-5
    207.郑循华等.稻麦轮作生态系统中土壤湿度对N_2O产生与排放的影响,应用生态学报,1996,7(3):273-279
    208.郑循华等.华东稻田CH_4和N_2O排放,大气科学,1997,21(2):231-237
    209.中国科学院南京土壤研究所微生物室主编.土壤微生物研究法.北京:科学出版社,1985:260-268.
    210.陈文新.土壤环境微生物学.北京:
    211.周礼恺 土壤的脲酶活性与尿素肥料在土壤中的转化.土壤学进展,1984(1):1-7
    212.周礼恺,土壤酶学.北京:科学出版社,1987:152-157
    213.周文能,林而达.小麦地N_2O排放特征研究,中国农业气象,1994,15(1):6-8
    214.朱兆良.关于土壤氮素研究的几个问题[J].土壤学进展,1989,(2):1-8.
    215.邹国元,张福锁,陈新平等.农田土壤硝化-反硝化作用与N_2O的排放,土壤与环境,2001,10(4):273-276
    216.邹国元,张福锁.根际反硝化作用与N_2O释放,中国农业大学学报,2002,7(1):77-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700