锂离子电池用聚合物电解质应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次合成了聚(甲基丙烯酸甲酯-丙烯腈-甲基丙烯酸锂)(PMAML)新型
    基质材料,制备了 PVDF-HFP、PMMA 及 PMAML 复合聚合物电解质;提出了新
    的聚合物电解质制备方法和电池成型方法;探讨了聚合物电解质导电机理和表征
    方法;研究了聚合物锂离子电池相关的界面性质、快速测试和状态预测方法。本
    工作主要围绕以下几方面进行:
     分别采用抽提法和倒相法制备了 PVDF-HFP 聚合物膜,研究了增塑剂对聚合
    物电解质及电极材料性能的影响,优化了电池制备工艺。膜的微观结构取决于抽
    提法中造孔剂和纳米填料含量或倒相法中铸膜液的浓度、溶剂和非溶剂配比。电
    解液持有量决定膜电导率大小,所制聚合物电解质电导率可达 3.53mS?cm-1,机械
    强度良好。负极材料的电化学性能强烈依赖于增塑剂组成。
     通过交联剂 EGD 对 MMA 进行交联,可以改善 PMMA 基凝胶聚合物电解质
    机械性能。结果表明该体系最佳组成为 25%MMA,2%EGD,73%电解液,其室温
    电导率为 2mS?cm-1,电化学窗口为 4.8V。
     首次制备了 PMAML/PVDF-HFP 基新型聚合物电解质,并提出了挥发溶剂一
    步制膜法。调节 PMAML 含量、溶剂挥发速度、环境湿度、铸膜液浓度可控制聚
    合物膜的孔结构。所制聚合物电解质室温电导率可达 3.7mS?cm-1。PMAML 与
    PVDF-HFP 比例和 PMAML 组成影响聚合物电解质的电导率、溶剂保持能力和界
    面性质。
     首次提出了一种新的聚合物锂离子电池组装工艺(简称 DC 法),直接将聚合物
    材料在电极极片上涂膜,待电池成型后注入电解质溶液活化即可。DC 法工艺简单、
    易于生产。制得的聚合物锂离子电池电化学性能稳定、大电流放电能力好。
     用 IR、XRD 和理论模型分析了聚合物电解质导电机理,并以扩散系数和迁移
    数表征了其离子传输性质。Peukert 方程和交流阻抗能很好地预测聚合物锂离子电
    池荷电态,用电流递减放电法能快速测量电池倍率放电性能。
     首次通过设计界面,采用交流阻抗技术详细研究了聚合物电解质(GPE)与锂电
    极、嵌锂电极间界面性质。结果表明:GPE/Li 界面阻抗包括界面钝化层阻抗和电
    荷传递阻抗,贮存时间、循环伏安、恒流极化等可改变界面阻抗的大小及分布,
    GPE/嵌锂电极界面阻抗与电极电位有关,锂离子电池阻抗随电压升高而降低。
A novel polymer material of Poly(methyl methacrylate-co-acrylonitrile-co-
    lithium methacrylate)(hereinafter abbreviated to PMAML) was synthesized, and
    polymer electrolytes based on PVDF-HFP, PMMA, PVDF-HFP and PMAML blend
    were prepared respectively. A new method for preparing polymer electrolyte membrane
    and a new method for fabricating lithium ion battery with polymer electrolyte was
    introduced respectively. The ion conductive mechanism and characterization methods of
    polymer electrolyte were discussed. The interfacial properties, fast test method and
    status forecast related to lithium ion battery were studied. The main contents of this
    thesis as follow:
     Polymer membranes of PVDF-HFP were prepared by extraction and phase
    inversion method respectively, and the affects of organic plasticizer on the performance
    of polymer electrolyte and the electrochemical performance of electrode active material
    were investigated, then fabrication art of lithium ion battery with polymer electrolyte
    were optimized. Content of plasticizer and Inorganic nano powder (in extraction
    method), the content of polymer and non-solvent in the casting liquid (in phase
    inversion method) affect pore structure of polymer membrane. The uptake of liquid
    electrolyte is critical to conductivity of polymer electrolyte, and the conductivity of
    polymer electrolyte with good mechanical stability can reach 3.53mS?cm-1 at ambient
    temperature. The performance of negative material was affected strongly by plasticizers.
     The mechanical property of polymer electrolyte based on PMMA can be improved
    after PMMA was crosslinked by EGD. The experimental results display that the
    optimized component of the polymer electrolyte was 25%MMA,2%EGD,73% liquid
    electrolyte. The conductivity and the electrochemical window of the resulted polymer
    electrolyte was about 2mS?cm-1 and 4.8V respectively.
     In this thesis, polymer electrolyte based on the blend of PMAML and PVDF-HFP
    was prepared originally, and a novel method for preparing polymer membrane was
    introduced. The pore structure of the polymer membrane can be controlled by changing
    the ratio of PMAML to PVDF-HFP, evaporation velocity of solvent, environmental
    humidity and the content of polymer materials in the casting liquid. The conductivity of
     II
    
    
    the resulted polymer electrolyte was 3.7mS?cm-1. The ratio of PMAML to PVDF-HFP
    and the composition of PMAML affect ionic conductivity, liquid electrolyte uptake and
    interfacial property.
     A novel method (abbreviated to DC) for assembling lithium ion battery with
    polymer electrolyte was introduced originally. In DC method, the polymer material was
    coated onto the electrode substrate directly, and lithium ion battery with polymer
    electrolyte can be obtained by injecting liquid electrolyte. This process is simple and
    practical because the ultra dry environment is unnecessary except the step of liquid
    electrolyte injection. Lithium ion batteries with polymer electrolyte based on PMAML
    and PVDF-HFP blend display good electrochemical performance and high rate
    discharge capability.
     Ion transport mechanism in polymer electrolyte was analyzed by theoretical model,
    FT-IR and XRD respectively, and the transport properties were investigated with
    transference number and diffusion coefficient. The charge status of lithium ion battery
    with polymer electrolyte were forecasted by Peukert equation and AC impedance
    technology. The discharge capability of lithium ion battery with polymer electrolyte at
    different rate can be tested rapidly by decreasing discharge current consistently.
     Several kinds of interface were designed, and then interfacial properties between
    polymer electrolyte and electrode were investigated by AC impedance technology
    originally. The test results display that interfacial impedance of GPE/Li comprise of two
    parts which are interfacial passive layer impedance and charge transfer impedance.
    Interfacial impedance value
引文
1. 陈立泉,锂离子电池中的物理问题[J],物理,1998,27(6):354-357。
    2. B. Scrosati. Recent advances in lithium ion battery materials[J], Electrochimica
     Acat,2000,45:2461-2466.
    3. 冯熙康,王伯良,陈爱松等,电动汽车锂离子动力系统的研制[J],电源技术,
     2002,26(2):63-65.
    4. T.Iwahori, I.Mitsuishi, S.Shiraga, et al., Development of lithium ion and lithium
     polymer batteries for electric vehicle and home-use load leveling system
     application[J], Electrochimica Acat,2000,45:1509-1512.
    5. K.Murata. An overview of the research and development of solid polymer
     electrolyte batteries[J], Electrochimica Acta, 1995,43(13-14):2177-2184.
    6. K.N.Han,H.M.Seo,J.K.Kim, et al., Development of a plastic Li-ion battery cell for
     EV applications[J], Journal of power sources,2001,101:196-200.
    7. A.M.Lackner, E. Sherman, P.O.Braatz, et al., High perfomance plastic lithium-ion
     battery cells for hybrid vehicles[J], Journal of power sources, 2002, 104:1-6.
    8. Y. E. Hyung,S.I. Moon,D.H.Yum, et al., Fabrication and evaluation of 100Ah
     cylindrical lithium ion battery for electric vehicle applications[J],Journal of power
     sources,1999,81-82:842-846.
    9. M.Armand, Materials for advanced batteries, D.W.Murphy, Ed., Plenum,New York,
     1980:145.
    10. M.Lazzari,B.Scrosati, A cyclable lithium organic electrolyte cell based on two
     intercalation electrodes[J], J.Electrochem.Soc., 1980,127(3),:773-774.
    11. T. Nagaura, K.Tozawa, Lithium ion reachargeable battery[J], Prog. Batteris
     Sol.Cells, 1990,9,20-27.
    12. 薛建军。锂离子电池正极材料制备及相关电极过程机理研究。天津:天津大学
     博士学位论文,2001。
    13. 詹晖,周运鸿,锂离子电池正极材料的发展[J],电源技术,1999,28(3):102-105.
    14. J.R.Dahn,E.W.Fuller,M.Obrovac, et al., Thermal stability of LixCoO2,LixNiO2 and
     λ–MnO2 and consequences for the safety of Li-ion cells. Solid State
     Ionics,1994,69:265-268.
    15. T.Ohzuku,A.Ueda,M.Nagayama, Electrochemistry and structural chemistry of
     LiNiO2(R3m) for 4 volt secondary lithium cells[J],J.Electrochem.Soc.,1993,140(7):
     1862-1867.
    16. 徐俊峰,江志裕,合成条件对 LiMn2O4 尖晶石的电化学性能的影响[J],电化学,
     2001,7(4):421-426.
     141
    
    
    17. J.M.Tarascon,E.Wang,F.K.Shokoohi, et al.,The spinel phase of LiMn2O4 as a
     cathode in secondary lithium cells[J],J.Electrochem.Soc.,1991,138:2859-2864.
    18. 刘景,温兆银,吴梅梅等,锂离子电池正极材料的研究进展[J],无机材料学报,
     2002,17(1):1-9。
    19. 尤金跨,杨勇,舒东等,锂离子电池新型正极材料-二氧化锰纳米纤维嵌锂行
     为的研究[J],电源技术,1999,23(3):155-157。
    20. A.G.Ritchie. Recent developments and future prospects for lithium rechargeable
     batteries[J]. Journal of power sources,2001,96:1-4.
    21. L.Persi, F.Croce,B.Scrosati. A LiTi2O4-LiFePO4 novel lithium –ion polymer
     battery[J], electrochemistry communications,2002,4:92-95.
    22. 夏熙,中国化学电源 50 年(4)-锂电池(下)[J],电池,2001,31(1):29-35.
    23. T.Ohsaki,M.Kanda,Y.Aoki, et al., High-capacity lithium-ion cells using graphitized
     mesophase-pitch-based carbon fiber anodes[J], Journal of power sources,1997,
     68:102-105.
    24. 吴宇平,万春荣,姜长印等,锂离子电池负极材料的制备[J],电池,2000,30(4):
     143-146。
    25. 蒋小兵,赵新兵,张丽娟等,新型锂离子电池负极材料 CoFe3Sb12 [J],材料研
     究学报,2001,15(4):469-473。
    26. 吕鸣祥,黄长保,宋玉谨。化学电源,天津:天津大学出版社,1992:11-12。
    27. T.F.Otero,I.Cantero, Conducting polymers as positive electrodes in rechargeable
     lithium-ion batteries[J], Journal of power sources,1999,81-82:838-841.
    28. S.Kakuda,T.Momma,T.Osaka, et al.,Ambient-temperature, rechargeable, all-solid
     lithium/ polypyrrole polymer battery[J], J.Electrochem.Soc., 1995,142(1):L1-L2.
    29. M.Morita,S.Miyazaki,M.Ishikawa, et al.,Layered polyaniline composites with
     cation-exchanging properties for positive electrodes of rechargeable lithium
     batteries[J], J.Electrochem.Soc., 1995,142(1):L3-L5.
    30. K.Onishi,M.Matsumoto,K.Shigehara, Lithium/polyaniline secondary battery
     composed of transport-number-adjuste aluminate solid polymer electrolytes[J],
     J.Electrochem.Soc.,2000,147(6):2039-2043.
    31. K.Naoi,K.I. Kawase,Y.Inoue, A new energy storage material:organosulfur
     compounds based on multiple sulfur-sulfur bonds[J], J.Electrochem.Soc.,
     1997,144(6):L171-L172.
    32. J. Simon Xue, Ralph D. Wise, Xulong Zhang, et al., Perfomance characteristics of
     Ultralife’s solid polymer rechargeable batteries[J]. Journal of power
     sources,1999,80:119-127.
    33. Edward A. Cuellar, Michael E. Manna, Ralph D.Wise, et al., Ultralife’s polymer
     142
    
    
     electrolyte rechargeable lithium-ion batteries for use in the mobile electronics
     industry[J]. Jouranl of power soureces,2001,96:184-198.
    34. N.Schmutz, Caroline, Shokoohi, et al.,Method of making a laminated lithium ion
     rechargeable battery cell, USP5470357,1995.
    35. U. Roshio, BEI's polymer lithium secondery battery, Industry Materials(Japanese),
     1999,47(2):21-24.
    36. A.Katsuzi. YUASA's polymer lithium secondary battery(J), Industry Materials
     (Japanese), 1999,47(2):25-29.
    37. 金明钢,孟冬,尤金跨等,发展中的聚合物锂离子电池(2)[J],电池,2002,32(4):
     235-237。
    38. R.Walter,R.Walkenhorst,M.Smith,et al., The role of polymer melt viscoelastic
     network behavior in lithium ion transport for PEO melt/LiClO4 SPES: the “wet gel”
     model[J], Journal of power sources,2000,89:168-175.
    39. D.Fauteux, A.Massucco,M.Mclin. et al., Lithium polymer electrolyte rechargeable
     battery[J]. Electrolyte Acta. 1995,40(13-14):2185-2190.
    40. J.Y.Song,Y.Y.Wang,C.C.Wan, Review of gel-type polymer electrolytes for
     lithium-ion batteries[J],Journal of power sources,1999,77;183-197.
    41. B.B.Owens, Solid state electrolytes:overview of materials and applications during
     the last third of the twentieth century[J], Journal of power sources,2000,90:2-8.
    42. 陈猛,史鹏飞,程新群. 塑料锂离子电池研究概况[J],电池,2000,30(3):129-133.
    43. B. Oh, Y. R. Kim, Evaluation and characteristics of a blend polymer for a solid
     polymer electrolyte[J],solid state ionics,1999,124:83-89.
    44. D.E. Fenton, J.M. Parker,P.V. Wright, complexes of alkaline metal ions with
     poly(ethylene oxide)[J]. Polymer, 1973,14:589-591.
    45. M.Armand, J.M.Chabagno,M. Duclot,et al., Fast ion transport in solids[M],
     Holland:Eds North Lolland Publishing co, 1979,131-134.
    46. C.Berthier,W.Goreck,M.Minier, Microscopies investigation of inoic conductivity in
     alkali metal salts-poly(ethylene oxide) adducts[J], Solid State Ionics,
     1983,11:91-95.
    47. D.J.Wilson,C.V.Nicholas,R.H.Mobbs,et al., Synthesis of block copolymers based
     on oxyethylene chains and their use as polymer electrolytes[J], Br polym J.
     1990,22:129-134.
    48. C.P.Fonseca,T.T.Ceazare,S.Neves, P(DMS-co-EO)/P(EPI-co-EO) blend as a
     polymeric electrolyte[J],Journal of power sources,2002,112:395-400.
    49. C.P.Fonseca,S.Neves, Characterization of polymer electrolytes based on poly
     (dimethyl siloxane-co-ethylene oxide)[J], Journal of power sources, 2002,104:
     143
    
    
     85-89.
    50. 丁 黎 明 , 梳 状 高 分 子 固 体 电 解 质 的 离 子 导 电 性 研 究 [J], 电 化
     学.1996,2(3):299-304.
    51. S. Masui, T.Muranaga,H.Higobashi,et al.,Liquid-free rechargeable Li polymer
     battery[J],Journal of power sources, 2001,97-98:772-774.
    52. 刘长生,过俊石,谢洪泉,聚氧乙烯-聚氧丙烯-聚苯乙烯多嵌段聚合物的力学
     和导电性能研究[J],高分子材料科学与工程,1998,14(3):130-132。
    53. 方世壁, 陈希文, 聚甲基硅氧烷与极性物质、锂盐共混体系的离子传导性能[J],
     功能高分子学报.1994,7(2).109-114.
    54. J.Baucer,C.K.Chiang,G.Davis,USPatent,4654279,1987.
    55. M.Kono,E.Hayashi,M.Watanabe, Network polymer electrolytes with free chain
     ends as internal plasticizer[J],J.Electrochem.Soc.,1998,145(5):1521-1527.
    56. J.Przyluski,W.Wieciorek, New concepts in the study of solid polymeric
     electrolytes[J], Mater Sci. And Engn., 1992,B13:335-339.
    57. T.Ichino, Y.Takeshita,S.Nishi, Mechanical properties of dual-phase polymer
     electrolytes prepared from poly(styrene-co-butadiene)
     rubber/poly(acrylonitrile-co-butadiene) rubber mixed latices[J]. Journalof polymer
     science: part B: polymer physics, 1995,33:2137-2142.
    58. M. Matsumoto, J. S. Rutt, S.Nishi. Polymer electrolytes with multiple conducitive
     channels prepared from NBR/SBR latex films impregnated with lithium salt and
     plasticizer[J]. J. Electrochem.Soc., 1995,142(9):3052-3056.
    59. T.Ichino,M.Matsumoto, Y.Takeshita, et al., New concept for polymer electrolyte:
     dual phase polymer electrolyte[J], Electrochimica Acta,1995:40(13-14):2265-2268.
    60. J.Steven Rutt,M.Matsumoto,T.Ichino, et al., Ion-free latex films composed of fused
     polybutadiene and poly(vinyl pyrrolidone) particles as polymer electrolyte
     materials[J], Journal of polymer science:part A:polymer chemistry,
     1994,32:779-787.
    61. J.S.Rutt,T.Ichino, M.Matsumoto, et al., Synthesis of ion-free latex particles
     composed of polybutadiene and poly(vinyl pyrrolidone)as polymer electrolyte
     materials[J], Journal of polymer science:part A:polymer chemistry,
     1994,32:767-777.
    62. E.Kelly,J.R.Owen,B.C.Steele, Mixed polyether lithium-ion conductors of
     macroscopic mixtures[J], J Electroanal Chem Interficial Electrochem,1984,68: 467.
    63. C.A.Angell, C. Liu, E.Sanchez. Rubbery solid electrolytes with dominant cationic
     transport and high ambient conductivity[J], Nature, 1993,362:137-139.
    64. E.Strauss,D.Golodnitsky,E.Peled. Study of phase changes during 500full cycles of
     144
    
    
     Li/compostite polymer electrolyte/FeS2 battery[J], Electrochimica Acta,2000,
     45:1519-1525.
    65. Q.Li,Y.Takeda,N.Imanish, et al., cycling performances and interfacial properties of
     a Li/PEO-Li(CF3SO2)2N-ceramic filler/LiNi0.8Co0.2O2 cell[J]. Journal of power
     sources,2001,97-98:795-797.
    66. Yuri G. Andreev, Peter B. Bruce. Polymer electrolyte structure and its
     implications[J], Electrochimica Acta, 2000,45:1417-1423.
    67. M.Armand,W.Gorecki,R.Andreani, Proceedings in the second international meeting
     on polymer electrolytes, Elsevier,New York,1990.
    68. G.Nagasubramanian,D.H.Shen,S.Suramudi, et al., Lithium superacid salts for
     secondary lithium batteries [J],Electrochim.Acta 1995,40(13-14):2277-2280.
    69. H.V.Venkatasetty, Proceedings of the 11th annual battery conference on applications
     and advances, California,January,1996,P.311.
    70. T. Osaka, T. Momma, K. Nishimura, et al., Application of solid polymer electrolyte
     to Lithium/Polypyrrole secondary battery system[J], J.Electrochem.Soc., 1994,
     141(8):1994-1998.
    71. K.Zaghib, M.Armand, M.Gauthier. Electrochemistry of anodes in solid-state Li-ion
     polymer batteries[J]. J.Electrochem.Soc., 1998,145(9):3135-3140.
    72. G.B. Appetecchi,F. Croce, P. Romagnoli, et al., High-performance gel-type lithium
     electrolyte membranes[J], Electrochemistry communications,1999,1:83-86.
    73. K.Murata, S.Izuchi,Y.Yoshihisa. An overview of the research and development of
     solid polymer electrolyte batteries[J]. Electrochimica Acta,2000,45:1501-1508.
    74. M.Morita,T.Fukumasu,M.Motada, et al., Polarization behavior of lithium electrode
     in solid electrolytes consisting of a poly(ethylene oxide)-grafted polymer[J],
     J.Electrochem. Soc.,1990,137:3401-3405.
    75. I. Syuichi, S.Ochiai, K.I.Takuchi, Solid polymer electrolytes for lithium cells[J],J
     Power Sources,1997, 68:37-42.
    76. S.I.Moon,C.R.Lee,B.S.Jin, et al., Ionic conductivities of cross-linked polymer
     electrolytes prepared from oligo(ethylene glycol) dimethacrylates[J], Journal of
     power sources,2000,87:223-225.
    77. H.S.Kim,J.H.Shin,C.H.Doh, et al., Preparation and electrochemical performance of
     gel poymer electrolytes using tri(ethylene glycol) dimethacrylate[J], Journal of
     power sources,2002,112:469-476.
    78. B.Laik,L.Legrand,A.Chausse, et al., Ino-0ion interactions and lithium stability in a
     crosslinked PEO conaining lithium salts[J], Electrochimica Acta,1998,44:773-780.
    79. M. Kono,M.Nishiura, E.Ishiko, et al., Novel gel polymer electrolytes based on
     145
    
    
     alkylene oxide macromonomer[J], Electrochimica Acta,2000,45:1307-1312.
    80. Y.Matsuda, N.Namegaya. Application of gel alkylene oxide electrolytes to
     rechargeable lithium batteries[J], Journal of power sources,1999,81-82:762-765.
    81. Y. Ito,K. Kanehori,K.Miyauchi, et al., PEG as plasticizer agent in PEO-LiCF3SO3
     system[J],J Mater Sci,1987(22):1845-1847.
    82. G.Nagasubramanian,S. Di Stefano, 12-crown-4 ether assisted enhancement of the
     ionic conductivity and interfacial kinetics in polyethylene oxide electrolytes[J],J.
     Electrochem Soc.,1990,137(12):3830-3835.
    83. P.Gavelin,R.Ljungb?ck,P.Jannasch,et al. Amphiphilic polymer gel electrolytes.3.
     Influnence of ionophobic-ionophilic balance on the conductive properities.
     Electrochimica Acta, 2001,46(10-11):1439-1446.
    84. Pier P.Prosini,Stefano Passerini,Raffaele Vellone, et al., V2O5 xerogel
     lithium-polymer electrolyte batteries[J]. Journal of power sources,1998,75:73-83.
    85. G.B.Appetecchi,F.Alesandrini,R.G.Duan, et al., Electrochemical testing of
     industrially produced PEO-based polymer electrolytes[J], Journal of power sources,
     2001,101:42-46.
    86. G.B.Appetecchi,F.Croce,G.Dautzenberg, et al., composite polymer electrolytes with
     improved lithium ion metal electrode interfacial properties[J]. J.Electrochem. Soc.,
     1998,145(12):4126-4135.
    87. G.Feuiliade,Perche. Ion-conductive macromolecular gels and membranes for solid
     lithium cells[J],J. Appl.Electrochem,1975,5:63-67.
    88. M.Watanabe,M.Kanbe. Ionic conductivity of hybrid film composed of
     polyacrylonitrile,ethylene carbonate[J].J Polym Sci(polymer physics edition),
     1983,21:939.
    89. M.Watanabe,M.Kanba,H.Matsuda, et al., High lithium ionic conductivity of
     polymeric solid electrolytes[J],Makromol.Chem.Rapid.Commun.1981,2:741-746.
    90. K.M.Abraham.M.Alamgir, Li+-conductive solid polymer electrolytes with
     liquid-like conductivity[J], J.Electrchem.Soc.1990,137:1657-1662.
    91. K.M.Abraham,H.S.Choe,D.M.Pasquarieul. Polymacrylonitrile electrolyte-based Li
     ion batteries[J]. Electrochimica Acta,1998,43(16-17): 2399-2412
    92. G.B.Appetecchi,F.Croce,R.Marassi, et al. Lithium insertion into carbonaceous
     materials and transition metl oxides from high performance polymer electrolytes[J].
     Electrochimica Acta, 1999,45:23-30.
    93. G.B.Appetecchi, S.Panero,E.Spila, et al., Plastic power sources[J], Journal of
     applied electrochemistry,1998,28:1299-1304.
    94. G.B.Appetecchi,F.Croce,R.Marassi, et al., Novel types of lithium-ion polymer
     146
    
    
     electrolyte batteries[J], Solid State ionics,2001,143:73-81.
    95. F.Croce,G.B.appetecchi,B.Scrosati,et al. Synthesis and characterization of highly
     conducting gel electrolytes[J],Electrochimica Acta,1994,39(14):2187-2194.
    96. T.C.Wen,H.H.Kuo, A.Gopalan, The influence of lithium ins on molecular
     interaction and conductivity of composite electrolyte consisting of TPU and
     PAN[J],Solid State Ionics,2002,147:171-180.
    97. H.H.Kuo,W.C.Chen,T.C.Wen, et al., A novel composite gel polymer electrolyte for
     rechargeable lithium batteries[J], Journal of power sources,2002,110:27-33.
    98. O.V.Bushkova,V.M.Zhukovsky,B.I.Lirova,et al., Fast ionic transport in solid
     polymer electrolytes based on acrylonitrile copolymers[J], Solid State
     Ionics,1999,119:217-222.
    99. K.Choi,Y.W.Kim,H.K.Shin, Ionic conduction in PEO-PAN blend polymer
     electrolytes[J]. Electrochimica Acta,2000,45:1371-1374.
    100.K.H.Lee,J.K.Park,W.J.Kim. Electrochemical characteristics of PAN ionomer based
     polymer electrolytes[J]. Electrochimica Acta,2000,45: 1301-1306.
    101.D.W.Kim,Y.K.Sun, Polymer electrolytes based on acrylonitrile-methyl
     methacrylate-styrene terpolymers for rechargeable lithium-polymer batteries[J].
     J.Electrochem.Soc.,1998,145(6):1958-1962.
    102.D.W.Kim, Electrochemical characteristics of a carbon electrode with gel polymer
     electrolyte for lithium-ion polymer batteries[J]. J. Power Sources,1998,
     76:175-179.
    103.D.W.Kim,B.K.Oh,Y.M.Choi, Electrochemical performance of lithium-ion polymer
     cell using gel polymer electrolyte based on acrylonitrile-methyl
     methacrylate-styrene terpolymer[J]. Solid State Ionics,1999,123: 243-249.
    104.S.Slane,M.Salomon. Composite gel electrolyte for rechargeable lithium batteries[J].
     J. Power Sources, 1995,55:7-10.
    105.K.H.Lee,Y.G.Lee,J.K.Park, et al., Effect of silica on the electrchemical
     characteristics of the plasticized polymer electrolytes based on the P(AN-co-MMA)
     copolymer[J], Solid State Ionics,2000,133:257-263.
    106.T.Iijima,Y.Toyoguchi,N.Eda, et al., Denki Kagaku,1985,53:619-623.
    107.O.Bohnke, C.Rousselot, P.A.Giliet, et al., Gel electrolyte for solid state
     electrochromic cell[J]. J Electrochem Soc., 1992,139:862-867.
    108.O.Bohnke,G.Frand,M.Rezrazi, et al., Transition metal derivatives of low oxidation
     state phosphorus oxoacids: synthetic pathways and structural studeies[J], Solid
     State Ionics,1993,66:96-109.
    109.G.B.Appetecchi,F.Croce,B.Scrosati, Kinetics and stability of the lithium electrode
     147
    
    
     in–poly(methyl methacrylate)-based gel electrolytes[J],Electrochimic Acta, 1995,
     40:991-997.
    110.D.W.Kim, Electrochemical characterization of poy(ethylene-co-methly
     acrylate)-based gel polymer electrolytes for lithium ion polymer batteries[J],
     J.Power Sources,2000,87:78-83.
    111.A.M.Stephan, T. P. Kumar, N. G. Renganathan, et al.,Ionic conductivity and FT-IR
     studies on plasticized PVC/PMMA blend polymer electrolytes[J]. J Power Sources,
     2000,88:282-285.
    112.S.Rajendran, O.Mahendran, T.Mahalingam. Thermal and ionic conductivity studies
     of plasticized PMMA/PVDF blend polymer electrolytes[J], European polymer
     journal,2002,38:49-55.
    113.S.Rajendran,O. Mahendran,R.Kannan. Lithium ion conduction in plasticized
     PMMA-PVDF polymer blend electrolytes[J], Materials chemistry and
     physics,2002, 74:52-57.
    114.S.Rajendran,R.Kannan,O.Mahendran. Ionic conductivity studies in
     poly(methylmethacrylate)-polyethlene oxide hybrid polymer electrolytes with
     lithium salts[J]. Journal of power sources,2001,96:406-410.
    115.P.E.Stallworth,S.G.Greenbaum,F.Croce, et al., Lithium-7 NMR and ionc
     conductivity studies of gel electrolytes based on poly(methyl methacrylate)[J],
     Electrochimic Acta,1995,40:2137-2141.
    116.A.S.Gozdz,J.M.Tarascon,C.N.Schmutz, et al., Polymer considerations in
     rechargeable lithium ion plastic batteries[J], 10th annual battery conference on
     advances and applications, Long Beach,CA, January, 1995.
    117.C.Schmutz,J.M.Tarascon,A.S. Gozdz, et al., Anew rechargeable plastic Li-ion
     battery. The electrochemical society proceeding,1995,94-28:330-335.
    118.K.Tsunemi, H.Ohno, E.Tsuchida, A mechanism of ionic conduction of
     poly(vinylidene fluoried)-lithium perchlorate hybrid films[J],Electrochimica Acta,
     1983,28(6):833-837.
    119.E.Tsuchida, H. Ohno,K. Tsunemi. Conduction of lithium ions in polyvinylidene
     fluoride and its derivatives-I[J], Electrochimica Acta,1983,28(5): 591-595.
    120.M.K.Song,J.Y.Cho,B.W.Cho, et al., Characterization of UV-cured gel polymer
     electrolytes for rechargeable lithium batteries[J], Journal of power sources,
     2002,110:209-215.
    121.K.M.Abraham,V.R.Koch,T.J.Blakley, Inorganic-organic composite solid polymer
     electrolytes[J],J. Electrochem.Soc.,2000,147(4):1251-1256.
    122.A.S.Gozdz,C.N.Schmutz,J.M.Tarascon, et al.USPatent 5418091,1995.
    123.J.M.Tarascon,A.S.Gozdz,C.N.Schmutz, et al., Performance of Bellcore’s plastic
     148
    
    
     rechargeable li-ion batteries[J], Solid state Ionics,1996,86-88:49-54.
    124.M.C.Caravanier,B.C.Montigny,D.Lemordant, et al., Absorption ability and kinetics
     of a liquid electrolyte in PVDF-HFP copolymer containing or not SiO2[J], Journal
     of power sources,2002,107:125-132.
    125.Z.Jiang, B. Carroll, K. M. Abraham.Studies of some poly(vinylidene fluoried)
     electrolytes[J],1997,42(17):2667-2677.
    126.A.Du Pasquier,F.Disma,T.Bowmer, et al., Differential scanning calorimetry study of
     the reactivity of carbon anodes in plastic Li-ion batteries[J], J.Electrochem.soc.,
     1998,145(2):472-477.
    127.H.S.Choe,J.Giaccai,M.Alamgir,et al., Preparation and characterization of poly(vinyl
     sulfone)-and poly(vinylidene fluoride)-based electrolytes[J], Electrochimica Acta,
     1995,40:2289-2294.
    128.M.Watanabe,Y.Suzuki,A.Nishimoto, Single ion conduction in polyether electrolytes
     alloyed with lithium salt of a perfuluorinated polyimide[J], Electrochimica
     Acta,2000,45:1187-1192.
    129.K.Onishi,M.Matsumoto, K.Shigehara, Lithium batteries composed of aluminate
     polymer complexes as single-ion conductive solid electrolytes[J], Journal of power
     sources, 2001,92:120-130.
    130.G.Inzelt,M.Pineri,J.W.Schultze, et al., Electron and proton conduction polymers:
     recent developments and prospects[J],electrochimica Acta,2000,45:2403-2421.
    131.M. Watanabe, K. Tadano, K. Sanui, N. Ogata, Polypyrrole/Polymer Electrolyte
     Bilayer Composites Prepared by Electrochemical Polymerization of Pyrrole Using
     Ion-Conducting Polymers as a Solid Electrolyte[J] ,Chem. Lett., 1987, 1239-1242.
    132.M.Popall,M.Andrei,J.Kappel, et al., ORMOCERs as inorganic-organic electrolytes
     for new solid state lithium batteries and supercapacitors[J], Electrochimica
     Acta,1998,43(10-11):1151-1161.
    133.V.D.Noto, V.Zago, S.Biscazzo, et al.,Hybrid inorganic-organic polymer electrolytes:
     synthesis, FT-Raman studies and conductivity of {Zr[(CH2CH2O)8.7]p/(LiClO4)z}n
     network complexes[J], Electrochimica Acta,2003,48:541-554.
    134.T.Fujinami,M.A.Mehta,K.Sugie, et al., Molecular design of inorganic-organic
     hybrid polyelectrolytes to enhance lithium ion conductivity[J],Electrochimica
     Acta,2000,45:1181-1186.
    135.S.H.Kim,J.K.Choi,Y.C.Bae, Mechanical properties and ionic conductivity of gel
     polymer electrolyte based on poly(vinylidene-fluoride-co-hexafluoropropylene)[J],
     Journal of applied science, 2001,81:948-956.
    136.H.P.Wang,H.T.Huang, L.W. Stephanie, Novel microporus poly(vinylidene fluoride)
     149
    
    
     blend electrolytes for lithium-ion batteries[J], J.Electrochem.Soc., 2000,147(8):
     2853-2861.
    137.F.Boudin,X.Andrieu,C.Jehoulet,et al., Microporous PVDF gel for lithium –ion
     batteries[J],Journal of power sources,1999,81-82:804-807.
    138.V.Arcella,A.Sanguineti,E.Quartarone, et al.,vinylidenefluoride-hexafluoropropylene
     copolymers as hybrid electrolyte components for lithium batteries[J],Journal of
     power sources,1999,81-82:790-794.
    139.D.W.Kim,Y.K.Sun, Electrochemical characterization of gel polymer electrolytes
     prepared with porous membranes[J], Journal of power sources,2001,102:41-45.
    140.时钧,袁权,高从堦,膜技术手册,化学工业出版社,2001:44。
    141.T.Michot,A.Nishimot, M.Watanabe, Electrochemical properties of polymer gel
     electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer[J],
     Electrochimica Acta,2000,45:1347-1360.
    142.Y. Aihara S.Arai,K.Hayamizu. Ionic conductivity,DSC and self diffusion
     coefficients of lithium,anion,polymer,and solvent of polymer electrolytes: the
     structrue of the gels and the diffusion mechanism of the ions[J]. Electrochimica
     Acta, 2000,45:1321-1326.
    143.D.Aurbach,B.Markovsky,I.Weissan, On the correlation between surface chemistry
     and performance of graphite negative electrodes for Li ion batteries[J],Journal of
     power sources,1999.45(1-2):67-86.
    144.Y.F.Wang,X.D.Guo,S.Greenbaum, et al., Solid electrolyte interphase formation on
     lithium ion electrodes[J], Electrochmical and solid state letters,2001,4(6):A68-A70.
    145.R.Spotnitz, Simulation of capacity fade in lithium-ion batteries[J], Journal of
     power sources, 2003,113:72-80.
    146.吴宇平,万春荣,姜长印等,锂离子二次电池,化学工业出版社,2002.10:
     152-157。
    147.J.Vondrak,M.Sedlarikova,J.Velicka, et al., Gel polymer lectrolytes based on
     PMMA[J], Electrochimica Acta,2001,46:2047-2048.
    148.E.Quartarone,C.Tomasi,P.Mustarelli, et al., Long term structural stability of
     PMMA-based gel polymer electrolytes[J], Electrochimica Acta,1998,43(10-11):
     1435-1439.
    149.Y.K.Yarovoy,H.P.Wang,S.L.Wunder. Dymamic methanical spectroscopy and
     conductivity studies of gel electrolytes based on stereocomplexed poly(methy
     150
    
    
     methacrylate)[J], Solid State Ionics,1999,118:301-310.
    150.A.M.Stephan,R.Thirunakaran,N.G.Renganathan, et al., A Study on polymer blend
     electrolyte based on PVC/PMMA with lithium salt[J], Journal of power
     sources,1999,81-82:752-758.
    151.H.T.Kim,K.B.Kim,S.W.Kim et al., Li-ion polymer based on phase-separated gel
     polymer electrolyte[J], Electrochimica Acta,2000,45:4001-4007.
    152.西尔弗斯坦(著),姚海文(译)。有机化合物光谱鉴定(第二版),北京:科学出版
     社,1988.4:114。
    153.D.W.Kim,Y.K.Sun, Effect of mixed solvent electrolytes on cycling performance of
     rechargeable Li/LiNi0.5Co0.5O2 cells with gel polymer electrolytes, Solid State
     Ionics, 1998,111:243-252.
    154.H.Akashi,Ko-ichi Tanaka,K.Sekai, A flexible Li polymer primary cell with a novel
     gel electrolyte based on poly(acrylonitrile)[J], Journal of power
     sources,2002,104:241-247.
    155.G.B.Appetecchi,P.Romagnoli,B.Scrosati, Composite gel membranses: a new class
     of improved polymer electrolytes for lithium batteries[J], Electrochemistry
     communications,2001,3:281-284.
    156.D.W.Kim,J.M.Ko,J.H.Chun, Electrochemical characteristics of Li/LiMn2O4 cells
     using gel polymer electrolytes[J], Journal of power sources,2001,92:151-155.
    157.D.W.Kim,Y.R.Kim, J.K.park,et al., Electrical properties of the plasticized polymer
     electrolytes based on arylonitrile-methyl methacrylate copolymers[J], Solid state
     ionics,1998,106:329-337.
    158.A.Du Pasquier, P.C.Warren,D.Culver, et al., Plastic pvdF-HFP electrolyte laminates
     prepared by a phase-inversion process. 12th solid state ionics conference,
     Halkidiki,Greece, June,12,1999.
    159.张美珍,柳百坚,谷晓昱。聚合物研究方法,中国轻工业出版社,2000:93。
    160.林尚安,陆耘,梁兆熙。高分子化学,科学出版社,1998:150。
    161.罗惠萍. 有机化学四谱基础,杭州:浙江大学出版社,1988:74。
    162.吴浩青,李永舫。电化学动力学。北京:高等教育出版社,1998:133-139。
    163.D.W.Dees,V.S.Battaglia,L.Redey, et al., Toward standarding the measurement of
     electrochemical properties of solid-state electrolytes in lithium batteries[J], Journal
     of power sources, 2000,89:249-255.
    164.C.X.Wang, Y.Y.Xia, T.Fujieda, et al., The factors affecting the electrochemical
     151
    
    
     performance of Li/LixMnO2 solid-state polymer battery[J], Journal of power
     sources,2002,103:223-229.
    165.M.Doyle,J.Newman,J.Reimers, A quick method of measuing the capacity versus
     discharge rate for a dual lithium-ion insertion cell undergoing cycling[J],Journal of
     power sources, 1994,52:211-216.
    166.W.X.Shen,C.C.Chan,E.W.C, et al., Estimation of battery available capacity under
     variable discharge currents[J], Journal of power sources,2002,103:180-187.
    167.F.Huet, A review of impedance measurements for determination of the state-of
     charge of state-of –health of secondary batteries[J], Journal of power sources,
     1998,70:59-69.
    168.F.Ciardelli, E.Tsuchida,D.Wohhrle(著),张志奇,张举贤(译),高分子金属络合物,
     北京大学出版社。1999:54。
    169.P.E. Stallworth,J.J.Fontanella,M.C.Wintersgill, et al., NMR,DSC and high pressure
     electrical conductivity studies of liquid and hybrid electrolytes[J], Journal of power
     sources,1999,81-82:739-747.
    170.赵书兰。高分子材料(修订版),哈尔滨船舶工程学院(哈尔滨工程大学)出
     版社,1993:155~157。
    171.C.Svanberg,R.Bergman,L.Borjesson, et al., Diffusion of solvent/salt and segmental
     relaxation in polymer gel electrolytes[J], Electrochimica Acta,2001,46:
     1447-1451.
    172.Peter V.Wright, Polymer electrolytes-the early days[J], Electrochimica
     Acta,1998,43(10-11):1137-1143.
    173.O.S.Mclachlan, Equations for the conductivity of macroscopic mixtures[J], Journal
     of physics C Solid state physics, 1986,19:1339-1354.
    174.G.M.Mao,M.L.Saboungi.D.L.Price, et al., Structure of liquid PEO-LiTFSI
     electrolyte[J], Physical review letters,2000,84(24):5536-5539.
    175.C.S.Kim,S.M.Oh, Importance of donor number in determining solvating ability of
     polymers and transport properties in gel-type polymer electrolytes[J],2000, 45:
     2101-2109.
    176.Z.X.Wang,B.Y. Huang,R.J.Xue, et al., Spectroscopic investigation of interacts
     among components and ion transport mechanism in polyacrylonitrile based
     electrolytes, 11th international conference on solid state ionics, Hawaii,USA, Nov.
     1997.
     152
    
    
    177.A. Ferry,L.Edman, M.Forsyth, et al. NMR and Raman studies of a novel
     fast-ion-conducting polymer-in-salt electrolyte based on LiCF3SO3 and PAN[J].
     Electrochimica Acta,2000,45: 1237-1242.
    178.M.Forsyth, D.R.Macfarlane,A.J.Hill. Glass tranition and free volume behaviour of
     poly(acrylonitrile)/LiCF3SO3 polymer-in-salt electrolytes compared to poly(ether
     urethane)/LiClO4 solid polymer electrolytes[J]. Electrochimica Acta,
     2000,45:1243-1247
    179.Z.X. Wang,B.Y. Huang,S.M. Wang, et al. Competition between the plasticizer and
     polymer on associating with Li+ ions in polyacrylonitrile-based electrolytes[J].
     J.Electrochem.Soc., 1997,144(3):778-786.
    180.Z.X. Wang,B.Y. Huang,H.Huang, et al. A vibrational spectroscopic study on the
     interaction between lithium salt and ethylene carbonate plasticizer for PAN-based
     electrolytes[J]. J.Electrochem.Soc.,1996,143(5):1510-1514.
    181.R.Kurono,M.A.Mehta,T.Inoue, et al, Preparation and characterization of lithium ion
     conducting borosiloxane polymer electrolytes[J], Electrochimica
     Acta,2001,47:483-487.
    182.M.Watanabe,A.Suzuki,T.Santo, et al., Investigation of Ion Transport in Network
     Polymers from Poly(propylene oxide) Using Azobenzene Probes [J], Macrolecules,
     1986,19:1921-1925.
    183.王兆翔,黄碧英,薛荣坚等。聚合物电解质中离子输运机制的谱学研究[J],电
     化学,1998,4(1):79-87。
    184.Susan D.Thompson, J. Newman, Differential diffusion coefficients of sodium
     polysulfide melts[J], J.Electrochem.Soc., 1989,136(11):3362-3369.
    185.Y. P. Ma, M. Doyle, T. F. Fuller, et al., The measurement of a complete set of
     transport properties for a concentrated solid polymer electrolyte solution [J]. J.
     Electrochem. Soc.,1995,142(6):1859-1868.
    186.A. Ferry, M.M.Doeff, L.C.Dejonghe, Transport property measurements of polymer
     electrolytes[J]. Electrochimica ACTA, 1998,10-11:1387-1399.
    187.Peter G.Bruce, Steady state current flow in solid binary electrolyte cells[J],
     J.Electrocanl.Chem., 1987,225:1-17.
    188.J.Evans, Colin A.Vincent, Electrochemical measurement of transference numbers in
     polymer electrolytes[J], Polymer, 1987,28:2324-2328.
    189.K.I. Morigaki, Analysis of the interface between lithium and organic electrolyte
     153
    
    
     solution[J], Journal of power sources,2002,104:13-23.
    190.D.Ostrovskii,F.Ronci,Bscrosati, et al., Reactivity of lithium battery electrode
     materials toward non-aqueous electrolytes:spintaneous reactions at the
     electrode-electrolyte interface investigated by FTIR.[J], Journal of power
     sources,2001,103:10-17.
    191.史美伦。交流阻抗谱原理及应用,北京:国防工业出版社,2001.3:349-358。
    192.曹楚南,张鉴清。电化学阻抗谱导论,科学出版社,2002.7:20-24。
    193.G.B.Appetecchi,F.Croce,L.Persi, et al., Transport and interfacial properties of
     composite polymer electrolytes[J], Electrochimica Acta, 2000,45:1481-1490.
    194.T.Sotomura, K.Adachi,M.Taguchi, et al., Developing stable,low impedance
     interface between metallic lithium anode and polyacrylonitrile-based polymer gel
     electrolyte by preliminary voltage cyclin[J], Journal of power
     sources,1999,81-82:192-199.
    195.T.Osaka,M.Kitahara,Y.Uchida, et al., Improved morphology of plated lithium io
     poly(vinylidene fluoride) based electrolyte[J], Journal of power sources,
     1999,81-82:734-738.
    196.I.Ismail, A.Noda,A.Nishimoto, et al., XPS study of lithium surface after contact
     with lithium-salt doped polymer electrolytes[J], Electrochimica
     Acta,2001,46:1595-1603.
    197.M.Watanabe,T.Endo,A.Nishimoto, et al., High ionic conductivity and electrode
     interface properties of polymer electrolytes based on high molecular weight
     branched polyether[J], Journal of power sources,1999,81-82:786-789.
    198.H.S.Kim,B.W.Cho,J.T.Kim, et al., Electrochemical properties and performance of
     poly(acrylonitrile)-based polymer electrolyte for Li/LiCoO2 cells[J], Journal of
     power sources,1996,62:21-26.
    199.J.Y.Song,H.H.Lee,Y.Y.Wang, et al., Two- and three-electrode impedance
     spectroscopy of lthium-ion batteries[J], Journal of power
     sources,2002,111:255-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700