纤维素新溶剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素(C_6H_(10)O_5)_n是一种天然的可再生的高分子材料,生长和存在于大量的丰富的绿色植物中。纤维素材料本身无毒,可以粉状、片状、膜以及长短丝等不同形式出现,使得纤维素作为基质材料的潜在使用范围非常广泛。近年来,随着石油和煤炭储量的日益下降,以及各国对环境污染的日益关注和重视,利用可再生资源--纤维素正日益受到研究领域和产业界的关注。本论文以磷酸为溶剂制备纤维素的纺丝溶液,对溶解过程及溶解机理等做了大量的研究和探索工作,并对该溶剂体系中纤维素溶液的性能进行了研究。
     制备纤维素纺丝溶液的首要任务是制备无水的磷酸体系,因为磷酸中水的存在影响了磷酸的溶解能力。因此,通过混合多聚磷酸和磷酸,制得无水的混酸溶剂体系,得到的溶剂可以快速有效地溶解纤维素。本论文就混酸体系的P_2O_5含量、温度、搅拌强度对溶剂平衡时间(即溶剂体系达到无水的时间)的影响作了讨论。结果表明:溶剂中P_2O_5含量增大,平衡时间增长;温度升高,溶剂平衡时间缩短;剪切速率提高,溶剂的平衡时间也缩短。
     纤维素在磷酸中的溶解,是一个快速有效的过程。在较短的时间内,纤维素由最初的棒状纤维变化为凝胶粒子而后完全溶解,并出现液晶现象。其机理是磷酸与纤维素分子间形成氢键,生成中间产物而实现溶解。并且在此过程中产生了结晶变体,纤维素由原来的Ⅰ型变为纤维素Ⅱ型。
     磷酸对纤维素的溶解效果,本论文是通过溶剂中P_2O_5含量、纤维素含量及温度等影响因素来讨论的。本实验溶剂体系的P_2O_5含量选择在72%到76%之间。随着P_2O_5含量的增大,纤维素的溶解时间延长;固含量增大,纤维素的溶解时间缩短;溶解温度提高,纤维素的溶解时间缩短。从纺丝溶液的稳定性,均一性和可纺性方面综合考虑,最佳的溶解条件为:P_2O_5含量为74%,固含量为18%,溶解温度为0℃。
     本文通过自制的毛细管流变仪,对纺丝液的流变性能进行了测试,进而为纤维素的液晶纺丝成型提供实验依据。纤维素磷酸溶液在18%(wt)至20%(wt)的浓度范围内是切力变稀流体;溶液的粘流活化能ΔE_η随着溶液P_2O_5含量的增大而增大,随着溶液浓度的增大而增大,随着剪切力的增大而减小。为保证所制得的纤维素溶液的稳定性,必需在0℃以下低温密封保存,以避免纤维素降解,影响溶液粘度,进而影响纺丝工艺参数。
     本论文研究的主要创新点:
     1.采用了新的溶剂体系:磷酸/多聚磷酸的混合溶剂体系,能快速有效地制得纤维素溶液;
     2.相比于粘胶法制备纤维素溶液,该法缩短了溶解时间,操作简单,对环境污染小,而且溶剂来源广泛,价格低廉,无毒;
     3.制得了性能优良的纺丝溶液,且呈现明显的液晶现象。
Cellulose is a kind of natural resources which can be found and regenerated from a wide range of green plants. It is an important innocuous macromolecule. It appears in many different kinds of shapes, such as powder, sheet, film, sleave and etc. Recently, the potential use of cellulose-based materials has been the subject of extensive investigations with the decline of oil and coal reserves. In this dissertation, phosphoric acid was chosen to be the solvent of cellulose, and the spinning solution was prepared. Also, the mechanism and process of dissolution were discussed.
     Because of weaker solubility with the increasing amount of water in the solvent, the preparation of anhydrous phosphoric acid was the chief task to obtain excellent cellulose spinning solution. It was found that an anhydrous solution was formed in a specific mixture of phosphoric acid and polyphosphoric acid. In order to obtain its new state of equilibrium, the influencing factors were studied. It had been shown that the equilibrium time prolonged with the increase of P_2O_5 concentration and it shortened with the increase of temperature and shear rate.
     Dissolution of cellulose in phosphoric acid was very fast and effective. Clavel cellulose first changed into gel particles and soon completely dissolved, after that anisotropic solutions were formed. Regenerated cellulose fibres which coagulated from ethanol had the different chemical composition as before, which formed a new mesophase in dissolution process. At the same time, the crystal structure was changed from celluloseⅠto celluloseⅡ.
     The influence of dissolution temperature, P_2O_5 concentration, cellulose concentration and the degrees of polymerization was examined. Phosphoric acid and polyphosphoric acid were mixed at different ratios so that the solvent had a P_2O_5 concentration between 74%and 76%. The result showed that dissolution time of cellulose prolonged with the increase of P_2O_5 concentration and it shortened with the increase of cellulose concentration and dissolution temperature. Considering the effects of dissolving temperature, solution concentration, equality and stability of solution on the dissolving process of cellulose, we could conclude the optimal conditions as follows: the P_2O_5 concentration was 74wt%, the dissolving temperature was around 0℃and the cellulose concentration was 18wt% or so.
     In this dissertation, rheological properties of the liquidcrystalline solutions of cellulose in phosphoric acid werediscussed by using homemade capillary rheometer. Also theinfluencing factors of cellulose concentration, temperature andshear rate were studied. These experimental results could providepowerful instructions for the spinning process of cellulose. Theresults indicated that: viscosity of solutions whose celluloseconcentration were from 18% to 20% were found to be dilutedwith the increase of shear rate. The viscous activation energy⊿E_ηof solutions increased with the increase of solution concentrationand P_2O_5 concentration. In the mean time, it decreased with theincrease of shear rate. The cellulose solution must be preserved inspecial temperature that was lower than 0℃and airproofed tomake sure that there was no degradation in the solution.
     The innovation points of this dissertation as follows:
     1. This dissertation selected the new solvent system that wasmixed with phosphoric acid and polyphosphoric acid, anddissolution of cellulose in this solvent was very fast and effective.
     2. Comparing with those of existing regenerated cellulosefibres, this preparation measures greatly reduced the dissolvingtime, simplified the operation and had no pollution to theenvironment. Also the solvent was innocuous, low-priced and convenient to obtain.
     3. This preparation measures could obtain excellent liquidcrystalline spinning solution and the cellulose fibers spinned hadexcellent properties.
     Xu Haixia (material Processing and Engineering)
     Supervised by Hu Panpan, Liu Zhaofeng
引文
[1] 邵自强,解芳,谭惠民.NaOH水溶液对改性软木纤维素的超分子结构作用研究[J].人造纤维,2001,31(3):1-3
    [2] 刘仁庆.纤维素化学基础[M].北京:科学出版社出版,1985.160.
    [3] 杨文礼,蒋听培,王庆瑞,邬国铭.纤维素与粘胶纤维[M].北京:纺织工业出版社,1981.37.
    [4] N G Tsygankova, D D Grinshpan, A O Koren. Mndo modeling of complex formation in N, Ndimethylacetamide-lithium chloridecellulose dissolving system[J]. Cellul Chem Technology, 1996(30): 357~373.
    [5] Albin F, Turbak. Recent developments in cellulose solvent systems[J]. TAPPI, 1984(67): 94.
    [6] Charles L McCormicck, Peter A Callais. Solution studies of cellulose in Lithium Chlorideand, NDimethylacetamide[J]. Macromolecule, 1985(18): 2394.
    [7] Turbak, Albin F. Process for forming shaped cellulosic product[P].US, 4352770,1982.
    [8] McComick, Charles L. Novel cellulose solutions[P]. US, 4278790, 1981.
    [9] Quigley Michael,Colin. Forming solutions of cellulose in tertiary amine N-oxide solvents[P]. WO, 9621678, 1996.
    [10] Quigley Michael, Armistead Werner. Method and apparatus for forming solutions of cellulose inaqueous tertiary amine oxide[P]. WO, 406530, 1996.
    [11] Graveson Ian. Forming solutions[P]. US,6110978, 2000.
    [12] Meister, Fran. Formed shape made of regenerated cellulose and process for its production[P]. US,5792399,1998.
    [13] Firgo, Heinrich. Process for forming a cellulose spong[P].US,6007750, 1999.
    [14] 金立国,汪晓峰.LYOCELL纤维纺丝工艺[J].合成纤维,1998(1):18~22.
    [15] 王之德.溶剂法制人造纤维技术进展[J]l现代化工,1992(2):25~28.
    [16] Grinshpan D D. Investigation of the cellulose swelling process in its dissolving system[J]. KoksnesKim, 1994(1): 8~11.
    [17] Grinshpan D D et al. Process of preparing hydrocellulose fibres and films from aqueous solutions of cellulose in zinc chloride[J]. Fibre Chemistry, 1988, 20(6): 365.
    [18] Chegolya A Set al. Production of regenerated cellulose fibres without carbon disulfide[J]. Textile Res J, 1989, 9: 505.
    [19] Romanov V V et al. State and prospects of development in the manufacture of hydrocellulose fibres based on new technology[J]. Fibre Chemistry, 1991, 23(2): 80.
    [20] G F Davidson. The solution of chemically modified cotton cellulose in alkaline solutions. I. In solutions of sodium hydroxide particularly at temperatures below the normal[J]. Journal of the Textile Institute,1934, 25: 174-196.
    [21] G F Davidson. Solution of chemically modified cotton cellulose in alkaline solutions. Ⅱ. Comparison of the solvent actions of solutions of lithium, sodium, potassium and tetramethylammonium hydroxides. [J] Journal of the Textile Institute, 1936, 27: 112-130.
    [22] G F Davidson. The solution of chemically modified cotton cellulose in alkaline solutions.Ⅲ. In solutions of sodium and potassium hydroxide containing dissolved zinc, beryllium and aluminum oxides[J].Journal of the Textile Institute, 1937,28: T27.
    [23] U Roessner. Solubility behavior of cellulosic fibers in treatments with aqueous alkali at different times and temperatures[J]. Deut. Textiltech, 1966, 16: 304-309.
    [24] Isogai A, Atalla R H. Alkaline method for dissolving cellulose. US, 5, 410, 034,1995.
    [25] S I Suvorova,V I Scharkov.Effect of preswelling of cellulose on the degree of substitution by ethyl xanthate sodium salt[J]. Nauch.Tr. Leningrad. Lesotekh. Akad, 1971,137:65-71.
    [26] 新型可降解粘胶纤维[J].技术创新.2004(10):9.
    [27] 周琪,张俐娜.羟乙基纤维素的制备方法[P].CN 02115697.2,2002.
    [28] 邬义明.植物纤维化学[M].北京:中国轻工业出版,1995:197.
    [29] Kamide K, OkajimaK, Matsuit, et al.Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C-NMR[J]. Polymer Journal, 1984,16(12): 857~866
    [30] Chevalier. Method for manufacturing alveolate cellulose products[P]. US, 6129867, 2000.
    [31] 松井,敏彦齐藤,政利.纤维素溶液的组分[P].JP 255702.
    [32] M H Litt, N G Kumar,T M Shimko,et al.Paper and Textile Chemistry[M]. New York, 1976.
    [33] A F Turbak, R B Hammer, N A Portony, et al. A critical review of cellulose solvent systems[J]. ACS Symposium Series,Washington, DC, 1977: 12-25.
    [34] J O Warwicker. Swelling. In: N M Bikales, L Segal,eds.Cellulose and Cellulose Derivatives[M]. Vol V, Part, Wiley, New York, 1971. 325-379.
    [35] W Sellars, F Vilbrandt. Mercerization of cotton with sulfuric acid[J]. Am Dyest Rep,1928,17: 645.
    [36] J O Warwicker, R Jeffries, R L Colbran, et al. The Cotton Silk and Manmade Fibers Research Association[M]. Shirley Institute, Didsbury, Manchester, England, 1966.
    [37] R Willstatter, L Zechmeister. Hydrolysis of cellulose(1)[J]. Chem Ber, 1913, 46: 2401.
    [38] Hattori Makiko, Shimaya Yoshihiko, et al. Structural changes in wood pulp treated by 55 wt% aqueous calcium thiocyanate solution[J]. Polymer Journal, 1998, 30(1): 37-42.
    [39] H E Williams. Action of thiocyanates on cellulose[J]. Journal of the Society of Chemical Industry, 1921, 40: 221-4T.
    [40] H E Williams.Theory of the solvent action of aqueou solutions of neutral salts on cellulose[J]. Mem Proc Manchester Lit Philos Soc, 1921, 65: 12.
    [41] Ant Wuorinen, A Visapaa. Determination of the crystallinity of mixtures of celluloses with different crystallinities[J].Paperi ja Puu, 1959, 41: 345.
    [42] Pohjola, Leila, Aarnikoivu, Pirkko L. Preparation of cellulose urethanes in the melt of N-ethylpyridinium chloride[J]. Papen ja Puu,1976,58(4): 331-334.
    [43] Pohjola, Leila,Eklund, V. Polyurethane block copolymers from cellulose triacetate[J]. Paperi ja Puu, 1977, 59: 117-120.
    [44] Linko, Y. Y.; Pohjola, L.; Linko, P. Entrapped glucose isomerase for high fructose sirup production[J]. Process Biochemistry 1977,12(6): 14-16.
    [45] Aaltonen O, Karvinen J,Komppa V,Pohjola, Leila. et al. Properties of rayon spun from cellulose dissolved into N-ethylpyridinium chloride solution[J]. Paperi ja Puu,1977, 59(11): 739-42.
    [46] 宋俊,程博闻,丁长坤.离子溶液—纤维素的新溶剂体系[J].人造纤维,2005,35(3):13-16.
    [47] WerbowyiR S, Gray D G, Mol Cryst Liq(Lett), 1976, 34: 97
    [48] ChanzyH, PeguyAJ, J. Polym. Sci., Polym. Phys., 1980, 18, 1137.
    [49] NavardP, HuadinJ, Br. Polym. J., 1980, 12(4), 174.
    [50] PatelDL, GilbertRD, J. Polym Sci., PolymPhys., 1981, 19, 1231.
    [51] ConioG, CorazzaP, BianchiEetal., J. Polym Sci., Polym. Lett., 1984, 22, 273.
    [52] BianchiE, CiferriA, ConioGetal., Macromolecules, 1985, 18, 646.
    [53] ChenYS, CuculoJA, J. Polym. Sci.,Polym. Chem., 1986, 24, 2075.
    [54] YangKS, Ph. D. Thesis, North Carolina State University, 1988.
    [55] BianchiE, CiferriA, ConioGetal., J. Appl. Polym. Sci., 1989,27,1477.
    [56] DongXM, Gray, DG, Kyoto Conferenceon Cellulosics, Kyoto, Japan, October31~November 1,1994.
    [57] 唐爱民,梁文芷.高分子通报,2000(4):1.
    [58] He Y B, Fu Z L,Meng L Z,Chen Y Y.Wuhan Univ J.National Sci, 1999, 4(3): 331.
    [59] Chan W H.. J Appl Polym Sci,1992, 46: 921.
    [60] Alfaya R V S,Gushiken Y. J. Colloid Interface Sci, 1999, 213: 438.
    [61] Afanaser V A. Pure & Appl Chem. 1989,61: 1993.
    [62] Werbowyi R S, Gray D G. Mol Crysi Liq(Lell). 1976, 34: 97.
    [1] Boerstoel Hanneke,Koenders Bernardus Maria, Westerink Jan Barend. Cellulose solutions and products made therefrom[P].US 5932158,1999.
    [2] Miyamoto Ikuya, Okajima Kunihiko. Cellulose Dope[P].JP4258648, 1992.
    [3] MG Northolt, H Boerstoel, H Maatmman,et. al. The structure and properties of cellulose fibers spun from an anisotropic phosphoric acid solution, Polymer, 2001, 42: 8249-8264
    [4] Kamide K, Okajima K, Toshihiko. Mesophase dope containing cellulose derivative and inorganic acid[P].DE 3035084,1981.
    [5] Boerstoel H, Maatman H, Westerink J B, et al.Liquid crystalline solutions of cellulose in phosphoric acid[J].Polymer,2001,42(17): 7371-7379.
    [6] Boerstoel H,Maatman H,Picken S J, et al.Liquid crystalline solutions of cellulose acetate in phosphoric acid[J]. Polymer,2001,42(17):7363-7369.
    [7] Boerstoel H, Koenders B M, Westerink J B.Cellulose Solutions And Products Made Therefrom[P].WO 9606208,1996.
    [8] 何曼君,陈维孝,董西侠.高分子物理(修订版),上海,复旦大学出版社,2005.261—278.
    [9] Ullmann's Encyclopedia of Industrial Chemistry, vol A19, pp465 VCH Weinheim(1991)
    [10] J O Waxwicker.Swelling.In: N M Bikales, L Segal,eds.Cellulose and Cellulose Derivatives[M]. Vol V, Part, Wiley, New York, 1971. 325-379.
    [11] 杨之礼,蒋听培,王庆瑞等.纤维素与粘胶纤维(上册)[M].北京:纺织工业出版社,1980.93
    [12] J O Warwicker. Cellulose and Cellulose Derivatives [M]. Wiley-Intersci ence,New York, 1971,325-379.
    [1] 华东纺织工学院化纤教研组,化学纤维成形过程的物理化学基础,北京,纺织工业出版社,1981,56
    [2] 何曼君,陈维孝,董西侠,高分子物理(修订版),上海,复旦大学出版社,2005,261—278
    [3] 华东纺织工学院化纤教研组,化学纤维成形过程的物理化学基础,北京,纺织工业出版社,1981,76
    [4] H.Boerstoel,H.Maatman,J.B.Westerink,B.M.Koenders.Liquid crystalline of cellulose in phosphoric acid[J].Polymer Journal, 2001,42(1): 7371-7379.
    [5] J O Warwicker.Swelling.In:N M Bikales,L Segal,eds.Cellulose and Cellulose Derivatives[M].Vol V, Part,Wil ey, New York, 1971.325-379.
    [1] 杨之礼,蒋听培,王庆瑞等.纤维素与粘胶纤维(上册)[M].北京:纺织工业出版社,1980.153~182
    [2] 成都科技大学分析化学教研室,浙江大学分析化学教研室.分析化学[M].第二版.北京:高等高等教育出版社育出版社,1992.125~127
    [3] 蔡显鄂,项一非,刘衍光.物理化学实验[M].北京:高等教育出版社,1999.177~180
    [4] 傅献彩,沈文霞,姚天仰.物理化学(下册)[M].第四版.北京:高等教育出版社,2001.1047~1055
    [5] 刘仁庆.纤维素化学基础[M].北京:科学出版社,1985.86~94
    [6] ISO 5351/1-1981(E).Cellulose in dilute solutions-determination of limiting viscosity number-Part 1:Method in cupfi-ethylene(CED) solution[S].
    [7] 杨之礼,蒋听培,王庆瑞等.纤维素与粘胶纤维(上册)[M].北京:纺织工业出版社,1980.64~72
    [8] 哈丽丹·买买提,努尔买买提,吾满江·艾力.粘度法测定植物纤维素的聚合度[J].合成纤维工业.2006,29(1):40~42.
    [9] 孔行权.粘胶纤维生产分析检验[M].北京:纺织工业出版社,1983.94~95
    [10] 杨之礼,蒋听培,王庆瑞等.纤维素与粘胶纤维(上册)[M].北京:纺织工业出版社,1980.194~195
    [11] 徐铁鹰.旋转粘度计在测量中的正确应用[J].计量与测试技术.2005,32(2):33~34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700