基于直线伺服控制的经编电子横移系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速经编机一般具有梳栉数少、机号高、生产速度快等特点,其产品广泛应用于服装、装饰和产业等各个领域。高速经编机的梳栉横移运动规律是影响梳栉横移平稳性、精确性最重要的因素,直接关系到经编机的运转性能。传统的高速经编机主要采用花盘凸轮式横移机构,推动梳栉完成针前、针背横移。花盘凸轮式横移机构能适应经编机的高速运转,但更换织物组织不便,不利于产品开发。本课题研究和开发了一种新的基于直线伺服控制的经编电子横移系统,以增强高速经编机的起花性能。
     首先,论文从带有电子横移系统的高速经编机产品花型结构入手,归纳了这类机器的结构特点;根据经编机梳栉横移工艺要求,分析了高速经编机梳栉横移允许时间,根据实测的几种高速经编机梳栉横移对应的主轴转角,推算了横移时间,其中前梳针前横移时间极短,一般仅为几毫秒到十几毫秒。
     接着,论文结合高速经编机横移运动的高速度、高精度、高频率和间歇式运动特点,运用凸轮机构运动原理,对常用运动规律的特性值进行分析,并通过数学模糊综合评判方法,将修正梯形加速度运动规律选定为电子横移系统的伺服驱动曲线。在此基础上对梳栉横移运动进行深入研究,表明横移允许主轴转角、横移针距数、针距和经编机主轴转速等是影响横移特性值的4个因素。由此对梳栉横移进行优化设计,在确保横移安全的前提下有效地延长了针前横移时间,大大降低了横移的最大速度、加速度和跃度,显著改善了梳栉横移的运动平稳性和精确性。
     然后,论文研究了一种新的基于直线伺服控制的经编电子横移系统的实现方法,架构了一种由上位机、下位机和直线伺服执行机构组成的三级分布式高速经编机集成控制系统。上位机采用控制界面友好、功能强的工控机,便于实现电子送经、电子横移、电子贾卡等集成控制和网络生产管理;下位机采用具有电子凸轮控制功能的高性能PLC,控制稳定可靠,实现横移的平稳无冲击;伺服执行机构选用了执行周期较短的伺服驱动器和推力大、动态响应快、传动机构简洁的直线伺服电机。上位机与下位机通过Internet网络通信,下位机与伺服驱动器之间通过EtherCAT网络进行通信。系统具有实时性强、动态响应快、驱动平稳等特点。
     最后,论文对这一基于直线伺服控制的经编电子横移系统的性能进行了研究,测试了经编机在600~1200r/min不同转速时的指令信号曲线与电机实际运动曲线,随着经编机转速提高,两者在针前横移结束时的吻合性变差;研究了梳栉横移的平稳性,建立了一种梳栉横移的动力学模型,分析了梳栉横移时的振动及其影响,阐明限制电子横移系统适应更高经编机转速的主要因素是梳栉横移结束时的余振;讨论了梳栉横移精确性及其影响因素。
     论文对所架构的基于直线伺服控制的经编电子横移系统性能测试与研究,将有助于提高高速经编机装备技术水平,促进高档经编起花产品研发。
High speed warp knitting machine has the characteristics of few guide bars, fine gauge, high production speed, and its products are widely used in clothing, decorative and technical fields. The motion law of shogging of guide bars on high speed warp knitting machine is the most important factor that affects the motion smoothness and shog accuracy of guide bars and is related to the working performance of the machine directly. Traditional high speed warp knitting machine mainly uses cam as pattern drive mechanism, making guide bars accomplish overlap and underlap. Warp knitting machines with cam pattern drive mechanisms can run at a very high speed of, but changing pattern is inconvenience, which is not conducive to product development. This paper researches and develops a new kind of electronic shogging system based on linear servo control, in order to enhance the patterning performance of high speed warp knitting machine.
     Firstly, starting from pattern structures of fabric knitted by this machine, the characteristics of high speed warp knitting machine with electronic shogging system was summed up. It analyzed the allowable time for shogging based on shogging requirements of guide bar. By measuring rotational angle of mainshaft which corresponds to shogging movement of various high speed warp knitting machines, the shogging time has been calculated, and it is proved that the front guide bar has a very short time to overlap, generally only a few milliseconds to dozen milliseconds depend on the speed of mainshaft of the machine.
     Secondly, the motion law of shogging has been studied. High speed, high precision, high frequency, intermittent characteristics of shogging movement of warp knitting machine were integrated, and the characteristic value of common curve was analyzed by cam follower movement theory. The motion law of modified trapezoidal acceleration curve was chosen as the driving law of linear servo in electronic shogging system by using Mathematical Fuzzy Comprehensive Evaluation Method. Further work was carried out based on the result of former research on guide bar shogging movement. It showed that allowed shogging period, lapping needle, machine gauge and running speed of mainshaft of machine are the four factors that affecting the motion characteristic value of guide bar. By optimizing the shogging motion like this, the overlay time was effectively extends much under the premise of ensuring the safety of shogging. The maximum value of the shogging speed, acceleration and jerk could be deduced down respectively. Thus, the performances of motion smoothness and shog accuracy of guide bars are improved obviously.
     Next, it is studied that a kind of electronic shogging system based on linear servo control for high speed warp knitting machine, and constitutes the three-level distributed control system composed of upper-bit computer, under-bit controller and linear servo implementing agencies. An industrial computer which has a strong ability in program execution, friendly control interface and easy to operate was used as upper-bit computer. It facilitated the realization of electronic let-off, electronic take-up, electronic jacquard and so on to control integrated and network-based production management. Under-bit controller uses a strong PLC with control stability and reliability, and control functions of an electronic cam curve to create a smooth shogging motion without any shock. Linear servo implementing agencies selects a kind of servo drives with short executing period, and a permanent magnet synchronous linear motor with strong thrust, good dynamics and simple frame. Under-bit controller communicates with upper-bit computer via internet network and with servo drives via EtherCAT network. This control system obtains characteristics of real-time processing, high dynamic responsiveness and driving smoothly.
     Finally, the performance of electronic shogging system based on linear servo control for high speed warp knitting machine was tested at the speed range of 600-1200r/min of machine. The command signal curve and the actual movement curve of linear motor are obtained on monitor. The difference between them become bigger while machine speed going up. A kind of dynamic model is set up to analyze the vibration of guide bar during or/and after shogging, and it is indicated that the vibration of guide bar after overlapping is the main factor which makes a limit speed of machine. Further research focused on performance and the factors which affects the shogging accuracy.
     The research on the performance of electronic shogging system based on linear servo control should be helpful to improve the technological level of high speed warp knitting machine and be useful to develop high quality warp knitting pattern products.
引文
1.王道兴.实用经编论文选[M].北京:中国纺织出版社, 2006: 1-4.
    2.缪旭红,徐颖. EL型高速经编机的花型设计与产品开发[J].针织工业,2007(12): 14-16.
    3. Karl Mayer. HKS 4 (P) EL: Electronic guide bar control[J]. Kettenwirk Praxis, 2001(1): 13-14.
    4. Karl Mayer. Tricot machine KS4 EL-EBC with electronic pattern drive[J]. Kettenwirk Praxis,1990(2): 8-9.
    5. S.Raz. Warp Knitting Production[M]. Heidelberg: Melliand Textilberichte GmbH, 1987: 35-37.
    6.郭俊华,蒋高明.经编机梳栉横移机构的发展[J].针织工业, 2006(11): 1-4.
    7. Karl Mayer. Karl Mayer unveils the future on an area of 1750m2 at ITMA 2007[J]. Kettenwirk Praxis,2007(4):34-40.
    8. Karl Mayer. New mechatronic solutions on lace rachel manchines[J]. Kettenwirk Praxis, 2004(1): 6-8.
    9. Karl Mayer. The Future Needs Impulses[J]. Kettenwirk Praxis,2004(3): 3-4.
    10.詹琏译.德国Liba公司Racop 36E多梳栉经编机[J].纺织导报,1996(5): 118.
    11.蒋高明. ELS型电脑经编机的花型准备系统探讨[J].针织工业,1996(1): 16-18.
    12. Karl Mayer. The KS 5 P-EL pile tricot machine with electronic control of guide bars[J]. Kettenwirk Praxis,1992(3): 5-6.
    13. Karl Mayer. Rising above the conventional[J]. Kettenwirk Praxis,2003(3): 3-5.
    14. Karl Mayer. Complex Technology at a glance[J]. Kettenwirk Praxis,2006(4): 27.
    15. Karl Mayer. The fabric for trendsetters[J]. Kettenwirk Praxis,2003(4): 5.
    16.蒋高明.新一代多梳花边机的结构与原理探讨[J].针织工业,2005(6): 1-3.
    17. Karl Mayer. The technical refinements of a leader on the world market give her something to smile about[J]. Kettenwirk Praxis, 2009(3): 6-7.
    18. Karl Mayer. A2.315 and B6.305/400-Future music played here[J]. Kettenwirk Praxis, 2007(3): 5.
    19. In-Soung Jung, Sang-Baeck Yoon, et al. Analysis of forces in a short primary type and a short secondary type permanent magnet linear synchronous motors. IEEE, 1997, MC1: 8.1-8.3.
    20.李路菁,周波,王莉.同步电动机起动问题的分析与解决[J].微特电机, 2007(1): 7-9.
    21.叶云岳.直线伺服电机理论与运用[M].杭州:浙江大学出版社,1999: 4-5,11-13.
    22. Albert W.-J. Hsue, M.-T. Yan, S.-H. Ke. Comparison on linear synchronous motors and conventional rotary motors driven Wire-EDM processes[J]. Journal of Materials Processing Technology, 2007(192-193): 478-485.
    23. Chintae Choi, Tsu-Chin Tsao. Control of linear motor machine tool feed drives for end milling: Robust MIMO approach[J]. Mechatronics, 2005(15): 1207-1224.
    24. Bin-Hong Shen, Mi-Ching Tsai. Robust dynamic stiffness design of linear servomotor drives[J]. Control Engineering Practice, 2006(14): 1325-1336.
    25.仇翔,俞立,南余荣.永磁同步直线伺服电机控制策略综述[J].微特电机,2005(10):39-43.
    26.雷春林,吴捷,陈渊睿.直线伺服系统的智能控制技术[J].微特电机,2004(3):35-38.
    27. Kobayashi Yoshitsugu(Nippon Mayer). Apparatus for driving thread-guiding bar of warp knitting machine[P]. JP6049754,1994.02.22
    28. Mista Kresimir(Mayer Textilmaschf). Shogging bar drive of a warp knitting machine[P]. EP1619281, 2006.01.25.
    29. Helbig. Frank. Linear guide bar drive systems in warp knitting machines[J]. Melliand International, 2005,11(2): 125.
    30. K·米斯塔(卡尔迈耶纺织机械制造有限公司).至少带一个梳栉的经编机[P].中国专利号: CN01123385.0, 2002.02.06.
    31. K·米斯塔, J·菲舍尔(卡尔迈耶纺织机械制造有限公司).带多个提花梳栉的经编机[P].中国专利号: CN01125755.5, 2002.03.13.
    32. Karl Mayer. HKS 5 (EL) and HKS 5 P (EL) High Production Tricot Machines for Plain Materials and Pile Warp Knitted Fabrics[J]. Kettenwirk Praxis,1994,(1):43-48.
    33. Karl Mayer. The EL electronic guide bar control system[J]. Kettenwirk Praxis,1995(3): 21-22.
    34.杨上陆,董湘怀,张虎等.基于PMAC和松下伺服电机的电子横移控制系统研究[J].机床与液压, 2004(11): 73-76.
    35.郑伟,张铭玉.微机控制经编机梳栉运动分析[J].针织工业,2005(11): 1-3.
    36.郑伟,黄耀志.机械式多梳栉经编机微机控制研究[J].针织工业,2005(7): 5-6.
    37.郑伟,黄耀志.微机控制经编机花型数据网络传输[J].针织工业,2008(5): 21-23.
    38.孟建军.高速经编机凸轮从动件运动规律的模糊综合评价[J].纺织学报,2008,29(12): 100-102.
    39.陈腾敏(厦门华铃织造有限公司).多梳节花边机花型梳节移动控制装置[P].中国专利号:ZL200420038590.9, 2004.
    40.黄耀志,林明生,黄丹旗.一种微机控制多梳栉提花经编机[P].中国专利号:ZL200410007135.7, 2004.
    41.郑依福.多梳栉带贾卡经编机[P].中国专利号:ZL03255023, 2005.
    42.王占洪.梳栉横移装置[P].中国专利号:ZL200720045705.0, 2008.
    43.宗平生.经编送经研究[J].针织工业,1980(2):20-28.
    44.王文进,蒋高明.经编多速电子送经系统控制过程与控制算法[J].纺织学报, 2007, 28 (9): 110-113.
    45.王道兴.电子送经系统经轴线速度计算公式的探讨[J].纺织学报,2007,28(12):110-112.
    46.夏风林.伺服控制电子送经测速压辊的作用分析[J].纺织学报,2008,29(7): 95-99.
    47. Karl Mayer. KS 4 EL/KS 4 P-EL: 30,000 courses stored[J]. Kettenwirk Praxis, 1992(2): 5.
    48. Karl Mayer. Fabric special designed for woman[J]. Kettenwirk Praxis,2005,(3): 12-13.
    49.蒋高明编著.现代经编工艺与设备[M].北京:中国纺织出版社, 2001: 9-11.
    50. X.C. Wang, S.K. Ghosh, Y.B. Li. Curvature catering - a new approach in manufacture of sculptured surfaces[J]. Journal of Materials Processing Technology,1993(38): 159-176.
    51. K.Suresh , D.C.H.Yang. Constant scallop- height machining of free- form surfaces[J]. Journal of Engineering for Industry,194(116): 253-259.
    52. D. Renton, M.A. Elbestawi. High speed servo control of multi-axis machine tools[J]. International Journal of MachineTools and Manufacture,2000(40): 539-559.
    53. D. Renton, M.A. Elbestawi. Motion control for linear motor feed drives in advanced machine tools[J]. International Journal of Machine Tools & Manufacture,2001(41): 479- 507.
    54. Xun W.Xu, Lihui Wang, Yiming Rong. Step-NC and Function Blocks for Interoperable Manufacturing[J]. IEEE Transactions on automatic science and engineering, 2006, 3(3):296-307.
    55.石永刚,吴央芳编著.凸轮机构设计与应用创新[M].北京:机械工业出版社,2007: 20-63, 204-239.
    56.彭国勋,肖正扬编著.自动机械的凸轮机构设计[M].北京:机械工业出版社,1990: 66-68.
    57.张同庄.跃度连续型凸轮运动规律研究——类梯形运动规律[J].北京理工大学学报, 1993,13(4): 500-503.
    58.夏风林,葛明桥,蒋高明.高速经编机梳栉横移运动的优化设计[J].纺织学报, 2009, 30(5): 118-121.
    59. Stefan Bruckl. Feed-drive system with a permanent magnet linear motor for ultra precision machine tools[C]. IEEE 1999 International Conference on Power Electronics and Drive Systems, Kowloon, Hong Kong, 1999, 2: 821-826.
    60. Chen Youping, Zhang Dailin, Ai Wu, et al. An improved fuzzy system for position control of permanent magnet linear motor[C]. Proceeding of the Fourth International Conference On Machine Learning and Cybernetics, Guangzhou, 2005, 5: 2731-2735.
    61. Tam M S W, Cheung N.C. A high speed high precision linear drive system for manufacturing automation[C]. APEC 2001 IEEE, Anaheim, CA, 2000, 1: 440-444.
    62. Tan K K, Zhao S. Adaptive force ripple suppression in iron-core permanent magnet linear motors[C].Proceedings of the 2002 IEEE,Vancouver,Canada,2002: 266-269.
    63. TAN K K. Precision motion control with disturbance observer for pulsewidth-modulated- driven permanent-magnet linear motors[J]. IEEE Trans.On Magnetics,2003,5(3): 1813 -1818.
    64.孙禹,蒋高明,丛洪莲.经编机停车横条成因及消除方法研究[J].上海纺织科技, 2006, 34(11): 70-72.
    65.夏风林,蒋高明,葛明桥.高速经编机电子横移系统运动精度分析[J].纺织学报, 2009, 30(3): 106-110.
    66. Andreescu G D. Adaptive observer for sensorless control of permanent magnet synchronous motor drives[J]. Electric Power Components and Systems, 2002, 30(2): 107-119.
    67. Karl Mayer. Control of tricot machine pattern data[J]. Kettenwirk Praxis, 2001(2): 15-16.
    68. Karl Mayer. Complete concept with a direct link to the future[J]. Kettenwirk Praxis, 2004(4): 32-33.
    69. Karl Mayer. KAMCOS-the name for Karl Mayer's machine command system[J]. Kettenwirk Praxis,2005(1): 28.
    70.蒋高明.新一代经编机的现场总线控制系统[J].纺织导报,2007(3):67-72.
    71. Jiang Gaoming, Feng XunWei. Three-Dimensional Simulation of Warp-knitted Fabric[J]. Fibres & Textiles in Eastern Europe, 2008(2): 58-60.
    72. Cong Honglian, Ge Mingqiao, Jiang Gaoming. Three-Dimensional Simulation of Warp-knitted Fabric[J]. Fibres & Textiles in Eastern Europe, 2009(3): 66-69.
    73.殷人昆.数据数据结构(用面向对象方法与C++语言描述)第二版[M].北京:清华大学出版社,2007: 9-20.
    74. S. Simani. Fault diagnosis of a simulated industrial gas turbine via identification approach[J]. International Journal of Adaptive Control and Signal Processing, 2007, 21(4): 326-353.
    75. Laskey K B. Mebn: A language for first-order bayesian knowledge bases[J]. Artificial Intelligence, 2008, 172(2/3): 140-178.
    76. Hsiung Cheng Lin. A remote monitoring and control-based precise multilocation riveting system[J]. Computer Applications in Engineering Education. 2005, 13(4): 316-323.
    77.胡海红,蒋高明,缪旭红.基于人体生理特征的经编塑身裤面料的设计[J].纺织学报, 2009, 30(2): 38-41.
    78.林小峰,宋春宁,宋绍剑,等主编.基于IEC 61131-3标准的控制系统及应用[M].北京:电子工业出版社, 2007: 52-95.
    79. Min-Fu Hsieh, Chin-Juei Tung, Wu-Sung Yao, et al. Servo design of a vertical axis driveusing dual linear motors for high speed electric discharge machining[J]. International Journal of Machine Tools & Manufacture, 2007(47): 546-554.
    80.林健,左健民,汪木兰.直线电动机应用于高速加工的关键技术[J].现代制造工程, 2007(4): 114-118.
    81.肖曙红,张伯霖,郑时雄.直线伺服电机直接驱动进给单元刚度研究[J].机械工艺师,2001(4): 5-7.
    82.范本隽.简明工程力学教程[M].北京:科学出版社,2005: 143-191.
    83.安继儒,田龙刚.金属材料手册[M].北京:化学工业出版社,2008: 443-498.
    84.钱平.伺服系统[M].北京:机械工业出版社,2005: 4-9.
    85.孔震,蒋高明,夏风林.经编机伺服控制系统的参数调节方法[J].纺织学报, 2008, 29(10): 102-104.
    86.缪学勤.论六种实时以太网的通信协议[J].自动化仪表, 2005, 26(4): 1-6.
    87.夏锋,孙优贤.基于交换式以太网实现多现场总线集成[J].电力系统及其自动化学报, 2003,15(4): 58-62
    88. Jean-Philippe Georges, Thierry Divoux, Eric Rondeau. Confronting the performances of a switched Ethernet network with industrial constraints by using the network calculus[J]. International Journal of Communication Systems, 2005, 18(9): 877-903.
    89. Chew M., Chuang C.H. Minimizing residual vibrations in high-speed cam-follower systems over a range of speeds[J]. Journal of mechanical design, 1995, 117(1): 166-172.
    90. Fu Dawei, Wu Yuhou. The application of linear motor in high-speed precision cylindrical grinding[J]. Key Engineering Materials, 2001, 202(1): 433-436.
    91. Wu Yuhou, Zhang Ke, Zhang Yu. Application research of linear motor in the precision manufacture of non-circle section parts[J]. Chinese Journal of Mechanical Engineering, 2004, 40(10):140-143.
    92. Jin Jianx., Guo Youg., Zhu Jiang. Principle and Analysis of a Linear Motor Driving System for HTS Levitation Applications[J]. Physica C,2007(460-462):1445-1446.
    93. Liu Tianhua, Lee Yungchang, Chang Yihua. Adaptive Controller Design for a Linear Motor Control System[J]. IEEE Transactions on Aerospace and Electronic Systems,2004,40(2):601-616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700