生物质气化焦油还原NO的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质气化是一种主要的生物质能利用方式,但是在气化过程中产生的焦油给生物质气化技术应用带来了一些问题。由于焦油凝结、形成烟雾、聚合成更复杂的结构,造成生物质气化气输送管道的堵塞,损害内燃机和燃气轮机,因而焦油成为限制生物质气化技术应用的瓶颈。虽然学者们对脱除焦油做了大量研究工作,但是目前还缺少高效、经济的脱除焦油的成熟技术,从而限制了生物质气化技术商业化应用。由于焦油氧化可以转化为C1-2烃类物质,这些烃类物质具有还原NO的能力,所以本文提出采用含焦油的生物质气化再燃还原燃煤锅炉NO这一技术路线,不需要脱除焦油,以便使焦油得到资源化综合利用,并对生物质气化焦油还原NO、含焦油的生物质气化再燃开展基础研究,所得到的研究成果对含焦油的生物质气化再燃技术工程应用有指导作用。
     由于焦油组分很多,所以本文选取典型的焦油模型化合物开展研究。本文采用热重-质谱联用仪,对生物质热解、气化焦油组分进行了分析。分析结果表明,苯、甲苯、苯乙烯和苯酚均有明显的累积离子流峰面积,是生物质焦油的主要组分,涵盖了初级、二级和三级焦油产物,所以选取苯、甲苯、苯乙烯和苯酚作为典型的生物质焦油的模型化合物。
     为了揭示焦油还原NO的内在机理,本文对一种典型焦油模型化合物还原NO的化学反应动力学机理模型进行了研究。基于焦油氧化裂解生成化学结构简单的烃类与非烃类分子、自由基,然后通过这些中间产物还原NO的反应机理,以甲苯作为代表性的焦油模型化合物,开展了甲苯还原NO的化学反应动力学机理模型的研究。提出了简单烃类和非烃类混合物还原NO的简单烃类与非烃类混合物还原NO的NRMF机理模型和甲苯还原NO的NRT机理模型,其中NRT机理模型是在NRMF机理模型的基础上加入甲苯氧化裂解反应步骤后得到的。通过实验对NRMF和NRT机理模型的验证,以及机理分析,得出以下结论:在焦油还原NO的过程中,焦油趋向于生成含C≡C键的HCCO和C2H自由基中间产物,这两种自由基还原NO的反应活性比CHi(i=1, 2, 3)自由基高,对还原NO的作用比CHi自由基更重要。
     本文对所选取的苯、甲苯、苯乙烯和苯酚等典型焦油模型化合物还原NO开展了实验研究,分析各焦油组分还原NO的特性。得出以下结论:表征燃料与氧量浓度比率的当量比φ和温度是决定NO还原效率的主要因素。具有取代基的甲苯、苯乙烯、苯酚还原NO的效率比苯高,而且含烃基取代基的甲苯、苯乙烯还原NO的效率甚至可以超过乙炔。工程实际在利用焦油还原NO时,可以使生物质气化多生成含烃基取代基的焦油。这四种典型的焦油模型化合物同时还原NO时,随着氧量减少,在900-1100℃时NO还原效率单调增加,在1300、1400℃时NO还原效率单调降低,在1200℃时,为过渡阶段。
     由于焦油是混合在生物质气化气中的,因此本文开展了含焦油的生物质气化再燃特性的实验研究,得出以下结论:在含焦油后,生物质气化气还原NO的效率明显地比不含焦油时有所提高;当量比φ和温度是影响含焦油的生物质气化再燃的重要因素,工程实际中应控制再燃区有适当的氧气浓度,控制焦油聚合、甚至生成碳黑,以便实现含焦油的生物质气化再燃还原NO能力的最大化。
Gasification is a main conversion technology of biomass energy, but tar produced in gasification process cause some problems to the technology. Tar is undesirable due to condensation, formation of tar aerosols and polymerization to form more complex structures, which cause blockage in transporting pipe and damage to engines and turbines. Then, tar is still the bottleneck of the technology. Though many researchers have been working on tar removal, the efficient and cheap removal of tar is still immature and the main technical barrier for the successful commercialization of biomass gasification technology. Some research indicate that oxidation of tar produces light C1-2 hydrocarbons that can reduce NO, which means that tar can reduce NO. So, a technical routine of biomass gasification gas reburning with tar, or biogas reburning without tar removal, is put forth to deal with the comprehensive utilization of tar in the present work. The work is to investigate some basic issues of NO reduction by biomass gasification tar and by biogas with tar. The research results have the guiding role for the engineering application of the technology of biomass gasification gas reburning with tar.
     Tar compositions are so complex that some typical tar model compounds are selected to study. TG-MS apparatus is used to analyze the tar compositions produced in pyrolysis and gasification of several typical biomasses. The TG-MS analyses indicate that the cumulated ion intensity area of benzene, toluene, styrene and phenol is large. The four compounds are main compositions of tar, and they cover from the primary tar to the tertiary tar. Then, those four hydrocarbons are selected as the typical tar model compounds for the further research.
     The chemical kinetic modeling of NO reduction by a typical tar model compound is studied, in order to discover the mechanism of NO reduction by tar. Base on the mechanism of NO reduction by hydrocarbon and non-hydrocarbon intermediates produced in the tar oxidative decomposition, the chemical kinetic modeling of NO reduction by toluene is studied. The chemical kinetic model of NO reduction by a mixture of light hydrocarbon and non-hydrocarbon fuels (NRMF) is developed at first. Then, the chemical kinetic model of NO reduction by toluene (NRT) is developed, after some reactions of toluene oxidative decomposition are added into the NRMF model. The validity of the NRMF model and the NRT model is proved, experimentally. The reaction pathway of NO reduction is analyzed. The study indicates that tar tends to yield HCCO and C2H radicals. The reaction activity of the two radicals is higher than CHi (i=1, 2, 3) radicals, so that the two radicals are more important in NO reduction.
     Experimental study of NO reduction by the four typical tar model compounds, benzene, toluene, styrene and phenol, is carried out to analysis the experimental characteristics of them. The results of the experiments indicate that the bulk equivalence ratio,φ, and temperature are the main factors in NO reduction; the NO reduction ability of tar model compound with substituent is higher than benzene; toluene and styrene, which have hydrocarbon substituent, can reduce more amount of NO than acetylene under suitable conditions. Then more tar with hydrocarbon substituent is expected than benzene in the engineering application of biomass gasification gas reburning with tar. The experiment of the four typical model tar compounds simultaneous reburning indicates that the NO reduction efficiency increases at 900-1100℃, and increases at 1300-1400℃, as the content of oxygen decreases. It is a transition stage as 1200℃.
     Tar is mixed in biogas from gasifier, and NO reduction by biogas with tar is investigated, experimentally. The experimental results show that tar can improve the NO reduction by biogas with tar with comparison to by biogas without tar. The bulk equivalence ratio,φ, and temperature are the main factors in biogas reburning with tar. Then, remaining proper oxygen concentration and controlling tar polymerization even to yield soot is needed to maximize the ability of NO reduction by biogas reburning with tar.
引文
[1]中华人民共和国可再生能源法
    [2] Leung D Y C, Yin X L, Wu C Z. a Review on the Development and Commericialization of Biomass Gasification Technologies in China. Renewable and Sustainable Energy Reviews, 2004, 8, 565-580
    [3] Chen G, Andrie J, Spliethoff H,et al. Biomass Gasification Integrated with Pyrolysis in a Circulating Fluidised Bed. Solar Energy, 2004,76,345–349
    [4]郭秀兰,黄鹤,周强,赵月春.生物质焦油裂解催化剂研究进展.可再生能源,2004,1,9-13
    [5] Sutton D, Kelleher B, Ross J R H. Review of Literature on Catalysts for Biomass Gasification. Fuel Processing Technology, 2001, 73, 155-173
    [6] Devi L, Ptasinski K J, Janssen F J J G. a Review of the Primary Measures for Tar Elimination in Biomass Gasification Processes. Biomass and Bioenergy, 2003,24,125-140
    [7] Jess A. Mechanisms and Kinetics of Thermal Reactions of Aromatic Hydrocarbons from Pyrolysis of Solid Fuels. Fuel. 1996,75(12):1441–1448
    [8] Brezinsky K., the High Temperature Oxidation of Aromatic Hydrocarbons, Progress in Energy and Combustion Science, 1986,12, 1-24
    [9] Rüdiger H, Kicherer A, Greul U. Investigations in Combined Combustion of Biomass and Coal in Power Plant Technology. Energy & Fuels, 1996, 10,789-796
    [10] Glarborg P, Kristensen P G, Dam-Johansen K. Nitric Oxide Reduction by Non-hydrocarbon Fuels. Implications for Reburning with Gasification Gases. Energy & Fuels, 2000, 14, 828-838
    [11]范志林,张军,林晓芬等,生物质气再燃还原NO的实验研究,中国工程热物理学会第十一届学术会议,燃烧学分册,2005,555-560
    [12] Greul U, Spliethoff H, Magel H C, et al. Impact of Temperature and Fuel-Nitrogen Content on Fuel-Staged Combustion with Coal Pyrolysis Gas.In:Twenty-Sixth Symposium(International)on Combustion, The Combustion Institute, Pittsburgh, 1996, 2231-2239
    [13] Steinberg M, Fallon P T, and Sundaram M S. Flash Pyrolysis of Biomass with Reactive and Non-Reactive Gas. Biomass, 1986, 9, 293-315
    [14]朱锡锋,陆强.生物质快速热解自备生物油.科技导报. 2007, 25(21), 69-75
    [15]姚福生,易维明,柏雪源等.生物质快速热解液化技术.中国工程科学. 2001, 4, 63-67
    [16]刘荣厚,张春梅.我国生物质热解液化技术的现状.可再生能源, 2004, 3, 11-14
    [17] Mckendry P. Energy Production from Biomass (Part 2): Conversion Technologies. Bioresource Technology, 2000, 83, 47-54
    [18]吴创之.生物质气化发电技术讲座(2)生物质气化工艺的设计与选用.可再生能源,2003,2,51-52
    [19] Reed T B, Gaur S.“Survey of Biomass Gasification—1998,”Volume 1 Gasifier Projects and Manufacturers around the World, Golden, CO: The National Renewable EnergyLaboratory and The Biomass Energy Foundation, Inc. 1998
    [20] Moersch O, Spliethoff H, Hein K R G. Tar Quantification with a New Online Analyzing Method. Biomass and Bioenergy, 2000,18,79-86
    [21] Milne T A, Evans R J, Abatzoglou N. Biomass Gasifier“Tars”: Their Nature, Formation, and Conversion. National Renewable Energy Laboratory, NREL/TP-570-25357, 1998
    [22] Kiel J H A, van Paasen S V B, Neeft J P A, et al. Primary Measures to Reduce Tar Formation in Fluidised-bed Gasifiers, Final Report SDE Project P1999-012, ECN-C-04-014
    [23] Taralas G, Kontominas M G. Numerical Modeling of Tar Species/VOC Dissociation for Clean and Intelligent Energy Production. Energy & Fuels, 2005,19,87-93
    [24]吴创之.生物质气化发电技术讲座(3)生物质焦油裂解技术.可再生能源,2003,3,53-57
    [25] Narváez I, Orío A, Aznar M P,et al. Biomass Gasification with Air in an Atmospheric Bubbling Fluidized Bed. Effect of Six Operational Variables on the Quality of Produced Raw Gas. Industrial and Engineering Chemistry Research. 1996,35:2110–2120
    [26] Kinoshita C M , Wang Y , Zhou J. Tar Formation under Different Biomass Gasification Conditions. Journal of Analytical and Applied Pyrolysis. 1994,29:169–181
    [27] Yu Q, Brage C, Chen G, et al. Temperature Impact on the Formation of Tar from Biomass Pyrolysis in a Free-fall Reactor. Journal of Analytical and Applied Pyrolysis. 1997,40–41:481–489
    [28] Bruinsma O S L, Tromp P J J. Gas Phase Pyrolysis of Coal-related Aromatic Compounds in a Coiled Tube Flow Reactor, 2. Heterocyclic Compounds, Their Benzo and Dibenzo Derivatives. Fuel. 1988, 67:334-340
    [29] Herguido J, Corella J,González-Saiz J. Steam Gasification of Lignocellulosic Residues in a Fluidized Bed at a Small Pilot Scale. Effect of the Type of Feedstock. Industrial and Engineering Chemistry Research. 1992,31:1274–1282
    [30] Taralas G, Kontominas M G, Kakatsios X. Modeling the Thermal Destruction of Toluene(C7H8) as Tar-related Species for Fuel Gas Cleanup. Energy & Fuel. 2003, 17, 329-337
    [31] Asadullah M, Miyazawa T, Ito S, et al. Demonstration of Real Biomass Gasification Drastically Promoted by Effective Catalyst. Applied Catalysis A: General. 2003,246:103–116
    [32] Sutton D, Kelleher B, Ross J R H. Review of Literature on Catalysts for Biomass Gasification. Fuel Processing Technology. 2001,73:155–173
    [33] Pérez P, Aznar M P, Caballero M A, et al. Hot Gas Cleaning and Upgrading with a Calcined Dolomite Located Downstream a Biomass Fluidized Bed Gasifier Operating with Steam-oxygen Mixtures. Energy & Fuels. 1997, 11, 1194-1203
    [34] RapagnáS, Jand N, Kinnemann A, et al. Steam-gasification of Biomass in a Fluidized-bed of Olivine Particles. Biomass and Bioenergy. 2000,19:187-197
    [35] Aznar M P, Corella J, Gil J, et al. Biomass Gasification with Steam and Oxygen Mixturesat Pilot Scale and with Catalytic Gas Upgrading Part I: Performance of the Gasifier[C]. in Developments in Thermochemical Biomass Conversion, Edited by Bridgwater A.V., et al. London: Blackie, 1997.pp. 1194–208
    [36] Houben M P, de Lange H C, van Steenhoven A A. Tar Reduction through Partial Combustion of Fuel Gas. Fuel. 2005,84:817–824
    [37] Ledsma E B, Kalish M A, Nelson P F, et al. Formation and Fate of PAH during the Pyrolysis and Fuel-rich Combustion of Coal Primary Tar. Fuel. 2000,79:1801-1814
    [38]蒋剑春.生物质能源转化技术与应用(I).生物质化学工程. 2007, 41, 59-65
    [39] Wendt J O L, Sternling C V, Matovich M A. Reduction of Sulfur Trioxide and Nitrogen Oxides by Secondary Fuel Injection. in 14th Symposium (International) on Combustion, the Combustion Institute, Pittsburgh, 1972, pp. 897-904
    [40]徐华东,罗永浩,王恩禄等.再燃烧技术及其在我国的应用前景.动力工程,2001,21,1320-1323
    [41] Savolainen K. Co-firing of Biomass in Coal-fired Utility Boilers. Applied Energy, 2003,74, 369-381
    [42] Maly P M, Zamansky V M, Ho L. Alternative Fuel Reburning. Fuel, 1999,78,327-334.
    [43]李戈,池作和,斯东坡等.生物质废弃物再燃降低NOx排放的实验研究.热力发电,2004,2,42-44
    [44] Harding N S, Adams B R. Biomass as a Reburning Fuel: a Specialized Cofiring Application. Biomass and Bioenergy, 2000,19,429-445
    [45] Adams B R, Harding N S. Reburning Using Biomass for NOx Control.. Fuel Processing Technology, 1998,54,249–263
    [46] Berge N, Oskarsson J, Rudling L, et al. Reburning of a P. F. Flame with an LCV-gas Combined with SNCR, in Clean Technology for Solid Fuels(1996-1998) ,VolumeⅤ, Bruxelles, European Commission, 1999, 665-694
    [47]钟北京,傅维标.气体燃料再燃对NOx还原的影响.热能动力工程,1999,14,419-423
    [48] ?stberg M., Glarborg P., Jensen A., a Model of the Coal Reburning Process. In 27th Symposium (international) on Combustion, the Combustion Institute, Pittsburgh, 1998, 3027-3035
    [49] Smith G P, Golden D M, Frenklach M, Moriarty N W, Eiteneer B, Goldenberg M, Bowman T, Hanson R K, Song S, Gardiner W C, Lissianski V V, Qin Z W. http://www.me.berkeley.edu/gri_mech/
    [50] Alzueta M A, Glarborg P, Kim D J. Experimental and Kinetic Modeling Study of the Oxidation of Benzene. Int. J. Chem. Kinet, 2000, 32, 498-522
    [51] Blander M. Biomass Gasification as a Means for Avoiding Fouling and Corrosion during Combustion. Journal of Molecular Liquids, 1999, 83, 323-328
    [52]沈伯雄,姚强.天然气再燃脱硝的原理和技术.热能动力工程, 2002,17, 7-9
    [53] Folsom B A, Sommer T M, Engelhardt D A, et al. Gas Reburning for High Efficiency NOx Control a Boiler Durability Assessment. In:Proceedings of the American Power Conference, Chicago, 1996,58,2,1035-1040
    [54] Breen B P, Schrecengost R, Brown R C, et al. Fuel-Lean Reburn with In-Situ Gasification of Coal, Biomass and Biomass-Coal Mixtures and with Biomass-Derived Gases. In: 2004 Conf. on Reburning for NOx Control-“Reburning on Trial”,Morgantown,USA,May 18,2004
    [1]张晓文,赵改宾,杨仁全等.农作物秸秆在循环经济中的综合利用.农业工程学报, 2006, 22, 107-109
    [2] Worasuwannarak N, Sonobe Taro, Tanthapanichakoon Wiwut. Pyrolysis Behaviors of Rice Straw, Rice Husk, and Corncob by TG-MS Technique. Journal of Analytical and Applied Pyrolysis. 2007, 78, 265-271
    [3] Karayildirim T, Yanik J, Yuksel M. Characterisation of Products from Pyrolysis of Waste Sludges. Fuel, 2006, 85, 1498-1508
    [4] Hajaligol M, Waymack B, Kellogg D. Low Temperature Formataion of Aromatic Hydrocarbon from Pyrolysis of Cellulosic Materials. Fuel, 2001, 1799-1807
    [5]马承荣,肖波,杨家宽等.生物质热解影响因素研究.环境生物技术,2005(5):10-13
    [6]吴创之.生物质气化发电技术讲座(3)生物质焦油裂解技术.可再生能源,2003,3:53-57
    [7] Evans R J, Milne T A. Molecular Characterization of the Pyrolysis of Biomass. 1.Fundamentals. Energy & Fuels, 1987a, 1,123–138
    [8] Evans R J, Milne T A. Molecular Characterization of the Pyrolysis of Biomass. 2. Applications. Energy & Fuels, 1987b, 1,311–319
    [9]吴创之,马隆龙主编,生物质能现代化利用技术.北京:化学工业出版社,2003
    [10] McKendry P. Energy Production from Biomass (part 3): Gasification Technologies. Bioresource Technology, 2002, 83:55–63
    [11] McKendry P. Energy Production from Biomass (part 2): Conversion Technologies. Bioresource Technology, 2002, 83:47–54
    [12] De Bari I, Barisano D, Cardinale M. et al. Air Gasification of Biomass in a Downdraft Fixed Bed: a Comparative Study of the Inorganic and Organic Products Distribution. Energy & Fuels, 2000, 14, 889-898
    [13] Senneca O., Ciaravolo S., Nunziata A. Composition of the gaseous products of pyrolysis of tobacco under inert and oxidative conditions. Journal of Analytical and Applied Pyrolysis. 2007, 79, 234-243
    [14] Kinoshita C M,Wang Y, Zhou J. Tar Formation under Different Biomass Gasification Conditions. Journal of Analytical and Applied Pyrolysis. 1994, 29, 169-181
    [15]杨海平,米铁,陈汉平等,生物质气化中焦油的转化方法,煤气与热力,2004,24(3):121-126
    [16] Brage C, Yu Q Z, Chen G X, et al. Tar Evolution Profiles Obtained from Gasification ofBiomass and Coal. Biomass and Bioenergy, 2000, 18, 87-91
    [17] Taralas G, Kontominas M G, Kakatsios X. Modeling the Thermal Destruction of Toluene(C7H8) as Tar-related Species for Fuel Gas Cleanup, Energy & Fuel 2003,17,329-337
    [18]江苏省环境监测中心,突发性污染事故中危险品档案库,http://www.ep.net.cn/msds/index.htm
    [19] Coll R, SalvadóJ, Farriol X, et al. Steam Reforming Model Compounds of Biomass Gasification Tars: Conversion at Different Operating Conditions and Tendency towards Coke Formation. Fuel Processing Technology, 2001, 74, 19–31
    [20] Taralas G Kontominas M G. Numerical Modeling of Tar Species/VOC Dissociation for Clean and Intelligent Energy Production. Energy & Fuels, 2005,19, 87-93
    [21] Jess A. Mechanisms and Kinetics of Thermal Reactions of Aromatic Hydrocarbons from Pyrolysis of Solid Fuels. Fuel, 1996,75, 1441–1448
    [22] Lammers G, Beenackers A A C M. Effects of Temperature and Gas Composition on the Model Tar Compound Decomposition Kinetics, In: Kyritsis S, Beenackers A, Helm P, Chiaramonti D, editors. Proceeding of the 1st World Conference on Biomass for Energy and Industry, Sevilla, Spain, 5-9 June 2000,pp.2052-2055
    [23] Simell P A, Hepola J O, Krause A O I. Effects of Gasification Gas Components on Tar and Ammonia Decompostion over Hot Gas Cleanup Catalysts. Fuel, 1997, 76,12, 1117-1127
    [24] Swierczynski D, Libs S, Courson C, et al. Steam Reforming of Tar from a Biomass Gasification Process over Ni/Olivine Catalyst Using Toluene as a Model Compound. Applied Catalysis B: Enviromental, 2007, 74, 211-222
    [25] Hu X L, Toshiaki H, Kinya S, et al. Removal of Tar Model Compounds Produced from Biomass Gasification Using Actived Carbons. Journal of the Japan Institute of Energy, 2007, 86, 707-711
    [26] Abu Ei-Rub Z, Bramer E A, Brem G. Experimental Comparison of Biomass Chars with Other Catalysts for Tar Reduction. Fuel, 2008, doi:10.1016/j.fuel.2008.01.004
    [27] Polychronopoulu K, Bakandritsos A, Tzitzios V, et al. Absorption-Enhanced Reforming of Phenol by Steam over Supported Fe Catalysts. Journal of Catalysis, 2006, 241, 132-148
    [1] Bounaceur R, Da Costa I, Fournet R. et al. Experimental and Modeling Study of the Oxidation of Toluene. International Journal of Chemical Kinetics. 2005, 37(1), 25-49
    [2] Taralas G, Kontominas M G, Kakatsios X. Modeling the thermal Destruction of Toluene (C7H8) as Tar-Related Species for Fuel Gas Cleanup. Energy & Fuels, 2003, 17, 329-337
    [3] Taralas G, Kontominas M G. Numerical Modeling of Tar Species/VOC Dissociation for Clean and Intelligent Energy Production. Energy & Fuels, 2005, 19, 87-93
    [4] Alzueta M A, Glarborg P, Kim D J. Experimental and Kinetic Modeling Study of the Oxidation of Benzene. Int. J. Chem. Kinet. 2000, 32, 498-522
    [5] Costa I D, Fournet R, Billaud F, et al. Experimental and Modeling Study of the Oxidation of Benzene. International Journal of Chemical Kinetics, 2003, 35, 503-524
    [6] Kilpinen P, Glarborg P, Hupa M. Reburning Chemistry: a Kinetic Modeling Study. Industrial and Enginnering Chemistry Research. 1992, 31, 1477-1490
    [7] Glarborg P, Alzueta M U, Kim D J. Kinetic Modeling of Hydrocarbon/Nitric oxide Interactions in a Flow Reactor. Combustion and Flame, 1998, 115, 1-27
    [8] Dagaut P, Luche J, Cathonnet M. Experimental and Kinetic Modeling of the Reduction of NO by Propene at 1 atm. Combustion and Flame, 2000, 121, 651-661
    [9] Bilbao R, Alzueta M U, Millera A, et al. Dilution and Stoichiometry Effect on Gas Reburning: an Experimental Study. Industrial and Enginnering Chemistry Research. 1997, 36, 2440-2444
    [10] Bilbao R, Millera A, Alzueta M U. Influence of the Temperature and Oxygen Concentration on NOx reduction in the Natural Gas Reburning Process. Industrial and Enginnering Chemistry Research. 1994, 33, 2846-2852
    [11] Mereb J B, Wendt J O L. Air Staging and Reburning Mechanisms for NOx Abatement in a Laboratory Coal Combustor. Fuel, 1994, 73, 1020-1026
    [12]斯穆特L D,史密斯P J著.傅维标,卫景彬,张燕屏译.周力行校.煤的燃烧与气化.科学出版社, 1995
    [13]钟北京,傅维标.气体燃料再燃对NOx还原的影响.热能动力工程, 1999, 14, 419-423
    [14] Glarborg P, Alzueta M U, Kim D J. Nitric Oxide Reduction by Non-hydrocarbon Fuels. Implications for Reburning with Gasification Gases. Energy & Fuels 2000,14, 828-838
    [15] Ergut A, Levendis Y A, Carlson J. Emissions from the Combustion of Polystyrene, Styrene and Ethylbenzene under Diverse Conditions. Fuel, 2007, 86, 1789-1799
    [16] Brezinsky K, Pecullan M, Glassman I. Pyrolysis and Oxidatio of Phenol. Journal of Physical Chemistry. A. 1998, 102, 8614-8619
    [17] AlfèM, Apicella B, Barbella R, et al. Similarities and Dissimilarities in n-Hexane and Benzene Sooting Premixed Flame. Proceedings of the Combustion Institute, 2007, 31, 585-591
    [18] Emdee J L, Brezinsky K, Glassman I. a Kinetic Model for the Oxidation of Toluene near1200 K. Journal of Physical Chemistry, 1992, 96, 2151-2161
    [19] Oehlschlaeger M A, Davidson D F, Hanson R K. Thermal decomposition of toluene: overall rate and branching ratio. Proceedings of the combustion institute. 2007, 31, 211-219
    [20] Brouwer L D, Muller-Markgraf W, Troe J. Thermal decomposition of toluene: a comparison of thermal and laser photochemical activation experiments. Journal of Physical Chemistry. 1988,92, 4905-4914
    [21] Pamidimukkala K M, Kern R D, Patel M R. et al. High-Temperatre Pyrolysis of Toluene. Journal of Physical Chemistry. 1987,91:2148-2154
    [22] Brezinsky K. the High-Temperature Oxidation of Aromatic hydrocarbons. Progress in Energy and Combustion Science, 1986, 12, 1-24
    [23] Chai Y, Pfefferle L D. an Experimental Study of Benzene Oxidation at Fuel-Lean and Stoichiometric Equivalence Ration Conditions. Fuel, 1998, 77, 313-320
    [24] Tregrossi A, Ciajolo A, Barbella R. the Combustion of Benzene in Rich Premixed Flames at Atmospheric Pressure. Combustion and Flame, 117, 1999, 553-561
    [25] Dagaut P, Lecomte F. Experiments ans Kinetic Modeling Study of NO-reburning by Gases from Biomass Pyrolysis in a JSR. Energy Fuels, 2003,17,608-613
    [26] Smith G P, Golden D M, Frenklach M, Moriarty N W, Eiteneer B, Goldenberg M, Bowman T, Hanson R K, Song S, Gardiner W C, Lissianski V V, Qin Z W. http://www.me.berkeley.edu/gri_mech/
    [27] Coda Zabetta E, Hupa M. http://www.abo.fi/fak/tkf/cmc/research/index.html
    [28] Coda Zabetta E, Kilpinen P, Hupa M, et al. Kinetic Modeling Study on the Potential of Staged Combustion in Gas Turbines for the Reduction of Nitrogen Oxide Emissions from Biomass IGCC Plants. Energy & Fuels, 2000, 14, 751-761
    [29]王海峰,陈义良,陈华蕾等. CH4/O2/N2层流扩散火焰瞬态响应特性数值模拟.计算物理,2006,32,193-198
    [30]杨锐,王应时.燃气轮机燃烧室效率模化试验中压力指数的研究.中国工程科学,2003,5,83-87
    [31] Guo H S, Liu F S, Smallwood G J. a Numerical Study on NOx formation in Laminar Counterflow CH4/Air Triple flames. Combustion and Flme, 2005, 143(3), 282-298
    [32] Barlow R S, Karpetis A N, Frank J H et al. Scalar Profiles and NO formation in Laminar Opposed-flow Partially Premixed Methane/Air Flames. Combustion and Flame, 2001, 127(3), 2102-2118
    [33] Kilpinen P, Hupa M, Aho M, H?m?l?inen J. In Proceedings of the 7th International Workshop on Nitrous Oxide Emissions, Apr 21–23, 1997; Wieser, P., Ed.; Bergische Universit?t Gesamthochschule Wuppertal: Cologne, Germany, April 21–23, 1997
    [34] Li J, Zhao Z, Kazakov A, Dryer F L. Comprehensive kinetic mechanisms for C1 species combustion. Proc. Combust. Inst., 2004, 30
    [35] Coda Zabetta E, Kilpinen P. Improved NOx Submodel for In-Cylinder CFD Simualtion ofLow- and Medium-Speed Compression Ignition Engines. Energy & Fuels, 2001, 15, 1425-1433
    [36] Kee R J, Rupley F M, Miller J A, et al. Chemkin Colletction, Release 3.7.1, Reaction Design, Inc., San Diego, CA(2003)
    [37] Dagaut P, Lecomte F, and Chevaliller S, et al. the Reduction of NO by Ethylene in a Jet-Stirred Reactor at 1 atm: Experimental and Kinetic Modelling. Combustion and Flmae, 1999, 119, 494-504
    [38] Colket M B, Seery D J. Reaction Mechanisms for Toluene Pyrolysis. Twenty-fifth Symposium (international) on Combustion. The Combustion Institute. 1994, 883-891
    [39] Smith R D. a Direct Mass Spectrometric Study of the Mechanism of Toluene Pyrolysis at High Temperature. Journal of Physical Chemistry. 1979, 83, 1553-1563
    [40] Smith R D. Formation of Radicals and Complex Organic Compounds by High-Temperature Pyrolysis: the Pyrolysis of Toluene. Combustion and Flame. 1979, 35, 179-190
    [41] Jess A. Mechanisms and Kinetics of Thermal Reactions of Aromatic Hydrocarbons from pyrolysis of Solid Fuels. Fuel, 1996, 75, 1441-1448
    [42] Emdee J L, Brezinsky K, Glassman I. a Kinetic Model for the Oxidation of Toluene near 1200 K. Journal of Physical Chemistry. 1992, 96, 2151-2161
    [43] Alzueta M U, Glarborg P, Kim D J. Low Temperature Interactions between Hydrocarbons and Nitric Oxide: an Experimental Study. Combustion and Flame 1997, 109, 25-36
    [44]韩德刚,高盘良编著.化学动力学基础.北京大学出版社,北京,1987
    [45]蔡汝秀,江江,黄厚评等.停流动技术在生物质化学分析中的应用.分析化学,1993,21,345-351
    [46]黄厚评,蔡汝秀,曾云鹗等.流动注射停流荧光动力学分析方法测定痕量铁的研究.高等学校化学学报,1995,16,47-49
    [47] Wang R Y, Gao X, Lu Y T. a Surfactant Enhanced Stopped-Flow Kinetic Fluorimetric Method for the Determination of Trace DNA. Analytic Chemical Acta, 2005,538-543
    [48]蒋海龙,杨敏丽,吕九如.流动注射示差动力学化学发光测定微量硅.分析化学,1997,25,149-152
    [49]叶英植,韩华云,陈亚华.卡尔曼滤波速差动力学停流动光度法同时测定铁、镍、铜.分析化学,1995,23,1126-1131
    [50] Biggs P, Boyd A A, Canosa-Mas C E, et al. a Discharge Stopped-Flow Technique for Time-Resolved Studies of Slow Radical Reactions in the Gas Phase. Measurement Science Technology, 1991, 2, 675-678
    [51] Herron J T, Hule R E. Rate Constants for the Reactions of Ozone with Ethene and Propene, from 235.0-362.0 K. the Journal of Physical Chemistry, 1974, 78, 21, 2085-2088
    [52] Muthusamy M, Ambundo E A, George S J, et al. Stopped-Flow Fourier Transform Infared Spectroscopy of Nitromethane Oxidation by the Diiron (IV) Intermediate of Methane Monooxygenase. J Am. Chem. Soc. 2003, 125, 11150-11151
    [53]黄君礼,鲍治宇编著.紫外吸收光谱法及其应用.北京:中国科学技术出版社,1992
    [54]周名成,俞汝勤编.紫外与可见分光光度分析法.北京:化学工业出版社,1986
    [55] Oehlschlaeger M A, Davidson D F, Hanson R K. Experimental Investigation of toluene+H→benzyl+H2 at high temperatures. Journal of Physical Chemistry. A. 2006,110:9867-9873
    [56] Oehlschlaeger M A, Davidson D F, Hanson R K. High-Temperature Thermal Decomposition of Benzyl Radicals. Journal of Physical Chemistry. A. 2006,110:6649-6653
    [57] Bilbao R, Millera A, Alzueta M U, et al. Evaluation of the Use of Different Hydrocarbon Fuels for Gas Reburning. Fuel, 1997, 76, 1401-1407
    [58]毛健雄,毛健全,赵树民编著.煤的清洁燃烧.科学出版社, 1998
    [59] Aarna I, Suuberg E M. a Review of the Kinetics of the Nitric Oxide-Carbon Reaction. Fuel, 1997, 76, 475-491
    [60] CommandréJ M, Stanmore B R, Salvador S. the High Temperature Reaction of Carbon with Nitric Oxide. Combstion and Flame, 2002, 128, 211-216
    [61] Illán-Gómez M J, Linares-Solano A, Salinas-Martínez de Lecea C. NO Reduction by Activated Carbons. 1. the Role of Carbon Porosity and Surface Area. Energy & Fuels, 1993, 7, 146-154
    [62] Kenndy I M. Models of Soot Formation and Oxidation. Prog. Energy. Combust. Sci. 1997, 23, 95-132
    [63]范卫东,谢广录,徐宾等.碳黑非催化还原NO的实验研究.中国工程热物理学会第十一届年会论文集,燃烧学(下册),北京, 2005, 652-661
    [64] Ruiz M P, Callejas A, Millera A, et al. Soot Formation from C2H2 and C2H4 Pyrolysis at Different Temperatures. Journal of Analytical and Applied Pyrolysis, 2007, 79, 244-251
    [65] Ruiz M P, Callejas A, Millera A, et al. Influence of the Temperature on the Properties of the Soot Formed from C2H2 Pyrolysis. Chemical Engineering Journal, 2007, 127, 1-9
    [66] Richter H, Howard J B. Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot- a Review of Chemical Reaction Pathway. Progress in Energy and Combustion Science, 2000, 26, 565-608
    [67] Bockhorn H. Soot Formation in Combustion, Mechanism and Models. Verlag Berlin Heidelberg, Springer, 1994
    [68] Petrella R V, Sellers G D. Studies of the Combustion of Hydrocarbons by Kinetic Spectroscopy I: Fundamental Combustion Studies of Styrene. Combustion and Flame, 1971, 16, 83-87
    [69]白洪涛,黄旭日,于健康等.乙炔基C2H与氧气反应的密度泛函理论研究.化学学报学报, 2004, 62, 461-466
    [70] Frassoldati A, Faravelli T, Ranz E I. Kinetic Modeling of the Interaction between NO and Hydrocarbons at High Temperature. Combustion and Flame, 2003, 135, 97-112
    [1]吴创之.生物质气化发电技术讲座(3)生物质焦油裂解技术.可再生能源, 2003,3,53-57
    [2] Houben M P. Analysis of Tar Removal in a Partial Oxidation Burner, the Eindhoven University Press., Eindhoven : Technische Universiteit Eindhoven, 2004
    [3]杨海平,米铁,陈汉平等.生物质气化中焦油的转化方法.煤气与热力,2004,24,121-126
    [4] Taralas G, Kontominas M G, Kakatsios X. Modeling the Thermal Destruction of Toluene(C7H8) as Tar-related Species for Fuel Gas Cleanup. Energy & Fuel, 2003,17,329-337
    [5] Kinoshita C M, Wang Y, Zhou Y. Tar Formation under Different Biomass Gasification Conditions. Journal Analytical and Applied Pyrolysis, 1994, 29, 169-181
    [6] Brage C, Yu Q Z, Chen G X, et al. Tar Evolution Profiles Obtained from Gasification of Biomass and Coal. Biomass and Bioenergy, 2000, 18, 87-91
    [7] Evans R J, Milne T A. Molecular Characterization of the Pyrolysis of Biomass. 1.Fundamentals. Energy & Fuels, 1987, 1,2,123–138
    [8] Evans R J, Milne T A. Molecular Characterization of the Pyrolysis of Biomass. 2. Applications. Energy & Fuels, 1987, 1,4,311–319
    [9] Coll R, SalvadóJ, Farriol X, et al. Steam Reforming Model Compounds of Biomass Gasification Tars: Conversion at Different Operating Conditions and Tendency towards Coke Formation. Fuel Processing Technology, 2001, 74, 19–31
    [10] Taralas G Kontominas M G. Numerical Modeling of Tar Species/VOC Dissociation for Clean and Intelligent Energy Production. Energy & Fuels, 2005,19, 87-93
    [11] Jess A. Mechanisms and Kinetics of Thermal Reactions of Aromatic Hydrocarbons from Pyrolysis of Solid Fuels. Fuel, 1996,75, 1441–1448
    [12] Lammers G, Beenackers A A C M. Effects of Temperature and Gas Composition on the Model Tar Compound Decomposition Kinetics, In: Kyritsis S, Beenackers A, Helm P, Chiaramonti D, editors. Proceeding of the 1st World Conference on Biomass for Energy and Industry, Sevilla, Spain, 5-9 June 2000,pp.2052-2055
    [13]毛健雄,毛健全,赵树民编著.煤的清洁燃烧.科学出版社, 1998
    [14] Alzueta M A, Glarborg P, Kim D J. Experimental and Kinetic Modeling Study of the Oxidation of Benzene. Int. J. Chem. Kinet, 2000, 32, 498-522
    [15] Santoro R J, Richardson T F. Concentration and Temperature Effects on Soot Formation in Diffusion Flames. In: Bockhorn H. Soot Formation in Combustion, Mechanism and Models. Verlag Berlin Heidelberg, Springer, 1994.221-238
    [16] Glassman I, Nishida O, Sidebotham G. Critical Temperature of Soot Formation. In: Bockhorn H. Soot Formation in Combustion, Mechanism and Models. Verlag Berlin Heidelberg, Springer, 1994.316-324
    [17] Ruiz M P, Callejas A, Millera A, et al. Influence of the Temperature on the Properties of the Soot Formed from C2H2 Pyrolysis. Chemical Engineering Journal, 2007, 127, 1-9
    [18] Richter H, Howard J B. Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot- a Review of Chemical Reaction Pathway. Progress in Energy and Combustion Science, 2000, 26, 565-608
    [19] Bittner J D, Howard J B. Composition Profiles and Reaction Mechanism in a Near-Sooting Premixed Benzene/Oxygen/Argon Flame. 18th Symposium (International) on Combustion, the Combustion Institute, Pittsburg, 1981, 1105-1116
    [20] Levy M, Szwarc M. Reactivities of Aromatic Hydrocarbons toward Methyl Radicals. Journal of American Chemistry Society. 1955, 77, 1949-1955
    [21] Aarna I, Suuberg E M. a Review of the Kinetics of the Nitric Oxide-Carbon Reaction. Fuel, 1997, 76, 475-491
    [22] Hu X L, Toshiaki H, Kinya S, et al. Removal of Tar Model Compounds Produced from Biomass Gasification Using Actived Carbons. Journal of the Japan Institute of Energy, 2007, 86, 707-711
    [23] Abu Ei-Rub Z, Bramer E A, Brem G. Experimental Comparison of Biomass Chars with Other Catalysts for Tar Reduction. Fuel, 2008, doi:10.1016/j.fuel.2008.01.004
    [24] Polychronopoulu K, Bakandritsos A, Tzitzios V, et al. Absorption-Enhanced Reforming of Phenol by Steam over Supported Fe Catalysts. Journal of Catalysis, 2006, 241, 132-148
    [25] Brezinsky K, Pecullan M, Glassman I. Pyrolysis and Oxidatio of Phenol. J. Phys. Chem. A, 1998, 102, 8614-8619
    [26] Agafonov G L, Naydenova I, Vlasov P A, et al. Detailed Kinetic Modeling of Soot Formation in Shock Tube Pyrolysis and Oxidation of Toluene and n-Heptane. Proceedings of the Combustion Institute, 2007, 31 ,575-583
    [27] Petrella R V, Sellers G D. Studies of the Combustion of Hydrocarbons by Kinetic Spectroscopy I: Fundamental Combustion Studies of Styrene. Combustion and Flame, 1971, 16, 83-87
    [28] Bilbao R, Alzueta M U, Millera A. Experimental Study of the Influence of the Operating Variables on Natural Gas Reburning Efficiency. Ind. Eng. Chem. Res., 1995,34: 4531-4539
    [29] Maly P M, Zamansky V M, Ho L et al. Alternative Fuel Reburning. Fuel, 1999, 78, 327-334
    [30] Bilbao R, Millera A, Alzueta M U, et al. Evaluation of the Use of Different Hydrocarbon Fuels for Gas Reburning. Fuel, 1997, 76, 1401-1407
    [31] Glarborg P., Alzueta M.U., Kim D.J. Kinetic Modeling of Hydrocarbon/Nitric oxide Interactions in a Flow Reactor. Combustion and Flame 1998, 115, 1-27
    [32] Kilpinen P, Glarborg P, Hupe M. Reburning Chemistry: a Kinetic Modeling Stidy. Industrial and Engineering Chemistry Research, 1992, 31, 1477-1490
    [33] Smith G P, Golden D M, Frenklach M, Moriarty N W, Eiteneer B, Goldenberg M, Bowman T, Hanson R K, Song S, Gardiner W C, Lissianski V V, Qin Z W. http://www.me.berkeley.edu/gri_mech/
    [34] Dagaut P, Lecomte F, Chevailler S, et al. Experimental and Kinetic Modeling of Nitric Oxide Reduction by Acetylene in an Atmospheric Pressure Jet-Stirred Reactor. Fuel, 1999, 78, 1245-1252
    [35] Frassoldati A., Faravelli T., Ranz E.i, Kinetic Modeling of the Interaction between NO and Hydrocarbons at High Temperature. Combustion and Flame, 2003, 135, 97-112
    [36] Alzueta M U, Borruey M, Callejas A, et al. an Experimental and Modeling study of the Oxidation of Acetylene in a Flow Reactor. Combustion and Flame, 2008, 152, 377-386
    [37] NIST Chemistry WebBook, http//webbook.nist.gov/chemistry/
    [38]张生勇主编.有机化学.北京:科学出版社, 2001.
    [39] Emdee J L, Brezinsky K, Glassman I. a Kinetic Model for the Oxidation of Toluene near 1200 K. J. Phys. Chem. 1992, 96, 2151-2161
    [1]吴创之,马隆龙主编.生物质能现代化利用技术,北京:化学工业出版社,2003
    [2] Fan Z L, Zhang J, Sheng C D, et al. Experimental Study of NO Reduction through Reburning of Biogas. Energy & Fuels, 2006, 20, 579-582
    [3] Bounaceur R, Costa I D, Fournet R. Experimental and modeling study of the oxidation of toluene. International Journal of Chemical Kinetics, 2005,37(1), 25-49
    [4] Colket M B, Seery D J. Reaction Mechanism for Toluene Pyrolysis. Twenty-fifth Symposium (international) on combustion, the combustion institute: Pittsburgh, 1994, 883-891
    [5] Bittner J D, Howard J B. Composition Profiles and Reaction Mechanism in a Near-Sooting Premixed Benzene/Oxygen/Argon Flame. 18th Symposium (International) on Combustion, the Combustion Institute, Pittsburg, 1981, 1105-1116
    [6] Glarborg P, Alzueta M U, Kim D J et al. Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor. Combustion and Flame, 1998,115,1-27
    [7] Bilbao R, Alzueta M U, Millera A et al. Simplified Kinetic Model of the Chemistry in the Reburning Zone Using Natural Gas. Industrial and Engineering Chemistry Research, 1995,34,4540-4548
    [8] Dagaut P, Luche J, Cathonnet M. Experimental and kinetic modeling of the reduction of NO by propene at 1 atm. Combustion and Flame, 2004,121,651-661
    [9] Costa I Da, Fournet R, Billaud F, et al. Experimental and Modeling Study of the Oxidation of Benzene. International Journal of Chemical Kinetics, 2003, 35, 503-524
    [10] Smith G P, Golden D M, Frenklach M, Moriarty N W, Eiteneer B, Goldenberg M, Bowman T, Hanson R K, Song S, Gardiner W C, Lissianski V V, Qin Z W. http://www.me.berkeley.edu/gri_mech/
    [11] NIST Chemistry WebBook, http//webbook.nist.gov/chemistry/
    [12] Glarborg P, Kristensen P G, Kim D J. Nitric Oxide Reduction by Non-hydrocarbon Fuels. Implications for Reburning with Gasification Gases. Energy Fuels. 2000,14,828-838
    [13] Sivaramakrishnan R, Tranter R S, Brezinsky K. High-Pressure, High-Temperature Oxidation of Toluene. Combustion and Flame, 2004,139, 340-350
    [14] Brezinsky K. the High-Temperature Oxidation of Aromatic Hydrocarbons. Progress in Energy and Combustion, 1986,12,1-24
    [15] Taralas G, Kontominas M G, Kakatsios X. Modeling the Thermal Destruction of Toluene (C7H8) as Tar-Related Species for Fuel Gas Cleanup. Energy & Fuels. 2003;17, 329-337
    [16] Smith R D. a Direct Mass Spectrometric Study of the Mechanism of Toluene Pyrolysis at High Temperatures. Journal Physical Chemistry, 1979,83(12),1553-1563
    [17] Smith R D. Formation of Radicals and Complex Organic Compounds by High-Temperature Pyrolysis: the Pyrolysis of Toluene. Combustion and Flame, 1979,35,179-190
    [18] Simell P A, Hepola J O, Krause A O I. Effects of Gasification Gas Components on Tar andAmmonia Decomposition over Hot Gas Cleanup Catalysts. Fuel, 1997, 76, 1117-1127
    [19] Bilbao R, Alzueta M U, Millera A, et al. Dilution and Stoichiometry Effects on Gas Reburning: an Experimental Study. Industrial and Engineering Chemistry Research, 1997, 36, 2440-2444
    [20] Richter H, Howard J B. Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot- a Review of Chemical Reaction Pathway. Progress in Energy and Combustion Science, 2000, 26, 565-608
    [21] Houben M P, de Lange H C, van Steenhoven A A. Tar Reduction through Partial Combustion of Fuel Gas. Fuel, 2005, 84, 817–824
    [22] Devi L, Ptasinski J K, Janssen F J J G. a Review of the Primary Measures for Tar Elimination in Biomass Gasification Processes. Biomass and Bioenergy, 2003, 24, 125-140
    [23] Skj?th-Rasmussen M S, Galrborg P, ?stberg M, et al. Formation of Polycyclic Aromatic Hydrocarbons and Soot in Fuel-Rich Oxidation of Methane in a Laminar Flow Reactor. Combustion and Flame, 2004, 136, 91-128
    [1] Baulch D L, Cobos C J, Cox R A, et al. Evaluated Kinetic Data for Combusion Modelling. Supplement I. J. Phys. Chem. Ref. Data. 1994, 23, 847-1033
    [2] Pamidimukkala K M, Kern R D, Patel M R, et al. High-Temperature Pyrolysis of Toluene. J. Phys. Chem. 1987, 91, 2148-2154
    [3] Braun-Unkhoff M, Frank P, Just Th. A shock tube study on the thermal decomposition of toluene and of the phenyl radical at high temperatures. 1989, 22
    [4] Colket M B, Seery D J. Reaction Mechanism for Toluene Pyrolysis. 25th Symp. (int) Combust. The Combustion Institute. 1994, 883-891
    [5] Tokmakov I V, Park J, Gheyas S, et al. Experimental and Theoretical Studies of the Reaction of the Phenyl radical with Methane. J. Phys. Chem. A. 1999, 103, 3636-3645
    [6] Oehlschlaeger M.A, Davidson D F, Hanson R K. Thermal Decomposition of Toluene: Overall Rate and Branching Ratio.Proceedings of the Combustion Institute, 2007, 31, 211-219
    [7] Frank P, Herzler J, Just Th, Wahl C. High-Temperature Reactions of Phenyl Oxidation. Int. Combust. Proc. 1994,25,833-840
    [8] Heckmann E, Hippler H, Troe J. High-Temperature Reactions and Thermodynamic Properties of Phenyl Radicals. Symp. Int. Combust. Proc. 1996, 26,543-550
    [9] Kern R D, Wu C H, Skinner G. B, et al. Collaborative Shock Tube Studies of Benzene Pyrolysis. Symp. Int. Combust. Proc. 1984, 20, 789-797
    [10] Tokmakov I V, Lin M C. J. Combined Quantum Chemical/RRKM-ME Computational Study of the Phenyl Plus Ethylene, Vinyl Plus Benzene, and H Plus. Phys. Chem. A. 2004, 108, 9697-9714
    [11] Horn C, Frank P, Tranter R S. et al. Direct Measurement of the Reaction Pair C6H5NO ? C6H5 + NO by a combined shock tube and flow reactor approach.Symp. Int. Combust. Proc. 1996, 26, 575-582
    [12] Choi Y M, Lin M C. et al. Kinetics and Mechanisms for Reactions of HNO with CH3 and C6H5 Studied by Quantum-Chemical and Statistical-Theory Calculations. Inter. J. Chem. Kinet. 2005, 37,261-274
    [13] Atkinson R. Estimation of OH Radical Reaction Rate Constants and Atmospheric Lifetimes for Polychlorobiphenyls, Dibenzo-p-Dioxins, and Dibenzofurans. Environ. Sci. Technol. 1987, 21
    [14] Asaba T, Fujii N. High Temperature Oxidation of Benzene. Proc. Int. Symp. Shock Tubes Waves.1971, 8, 1-12
    [15] Emdee J L, Brezinsky K, Glassman I. a Kinetic Model for the Oxidation of Toluene near 1200 K. J. Phys. Chem. 1992, 96, 2151-2161
    [16] Brouwer L D, Muller-Markgraf W, Troe J. Thermal Decomposition of Toluene: a Comparison of Thermal and Laser-Photochemical Activation Experimants. J. Phys. Chem. 1988, 92, 4905-4914
    [17] Slysh R S, Kinney C R. Some Kinetics of the Carbonization of Benzene, Acetylene and Diacetylene at 1200 oC. J. Phys. Chem.1965,65, 1044-1045
    [18] Zhang H X, Ahonkhai S I, Back M H. Rate Constants for Abstraction of Hydrogen from Benzene, Toluene, and Cyclopentane by Methyl and Ethyl Radicals over the Temperature Range 650-770 K. Can. J. Chem. 1989, 67, 1541-1549
    [19] Mathey F, Le Floch P. a Theoretical Study of The Formation of Phosphaacetylene by Thermolysis of Triallylphosphine J. Org. Chem. 2004, 69, 5100-5103
    [20] Wu C H, Kern R D. Shock-Tube Study of Allene Pyrolysis. J. Phys. Chem., 1987, 91(24), 6291-6296
    [21] Eiteneer B, Frenklach M. Experimental and Modeling Study of Shock-Tube Oxidation of Acetylene. Int J. Chem. Kinet. 2003, 35, 391-414
    [22] Knyazev, V.D.; Slagle, I.R. Experimental and Theoretical Study of the C2H3?H+C2H2 Reaction. Tunneling and the Shape of Falloff Curves. J. Phys. Chem.1996, 100, 16899-16911
    [23] Homann K H, Wellmann Ch. Kinetics and Mechanism of Hydrocarbon Formation in the System C2H2/O/H at Temperatures up to 1300 K. Ber. Bunsenges. Phys. Chem.1983, 87
    [24] Laufer, A.H.; Gardner, E.P.; Kwok, T.L. et al. Computations and Estimates of Rate Coefficients for Hydrocarbon Reactions of Interest to the Atmospheres of the Outer SolarSystem. Icarus (ISSN 0019-1035), vol. 56, Dec. 1983, 560-567
    [25] Breen J E, Glass G P. the Reaction of the Hydroxyl Radical with Acetylene. Int. J. Chem. Kinet. 1970, 3, 145-153
    [26] Tsang W, Hampson R,F. Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds. J. Phys. Chem. Ref. Data. 1986,15, 1087-1091
    [27] Benson S W. Int. Kinetics and Thermochemistry of the Reaction of Acetylene and Nitric Oxide. J. Chem. Kinet. 1994, 26, 997-1011
    [28] Benson S W. Radical Processes in the Pyrolysis of Acetylene. Int. J. Chem. Kinet. 1992, 24, 217-237
    [29] Davis S G, Wang H, Brezinsky K, et al. Laminar Flame Speeds and Oxidation Kinetics of Benzene-Air and Toluene-Air Flames. Symp. Int. Combust. Proc.1996, 26, 1025-1033
    [30] Lin C Y, Lin M C. Thermal Decomposition of Methyl Phenyl Ether in Shock Waves: the Kinetics of Phenoxy Radical Reactions. J. Phys. Chem. 1986,90,425–431
    [31] Baulch D L, Cobos C J, Cox R A, et al. Evaluated Kinetic Data for Combustion Modelling. J. Phys. Chem. Ref. Data. 1992, 21, 411-429
    [32] He Y Z, Mallard W G, Tsang W. Kinetics of Hydrogen and Hydroxyl Radical Attack on Phenol at High Temperatures. J. Phys. Chem. 1988, 92, 2196-2201
    [33] Solly R K, Benson S W. Kinetics of the Gas-Phase Unimolecular Decomposition of the Benzoyl Radical. J. Am. Chem. Soc.; 1971; 93(9); 2127-2131
    [34] Bounaceur R, Da Costa I, Fournet R, et al. Experimental and Modeling Study of the Oxidation of Toluene. Int. J. Chem. Kinet. 2005, 37(1), 25-49
    [35] Smith G P, Golden D M, Frenklach M,et al.GRI-Mech 3.0, http://www.me.berkeley.edu/gri_mech/
    [36] Coda Zabetta E, Hupa M. http://www.abo.fi/fak/tkf/cmc/research/index.html
    [37] Coda Zabetta E, Kilpinen P, Hupa M, et al. Kinetic Modeling Study on the Potential of Staged Combustion in Gas Turbines for the Reduction of Nitrogen Oxide Emissions from Biomass IGCC Plants. Energ Fuel 14 (2000) 751-761

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700