新型镁质功能材料制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高品质镁质功能材料是材料领域的研究热点之一,在环保、阻燃、医药、催化等领域都有着重要应用,镁质功能材料的性能与其粒径大小、形貌等因素密切相关,因此镁质功能材料的形貌、尺寸调控一直是材料制备领域中的重要研究课题。本论文选取碱式硫酸镁、氢氧化镁和氧化镁作为研究对象,开发了一系列新型制备工艺,成功地调控了这几种材料的形貌和尺寸。
     本文设计了一个包含Mg~(2+)、SO_4~(2-)、NH_4~+和二乙醇胺的新碱性缓冲溶液体系,在水热条件下,氢氧化镁纳米粒子可以从该体系中均匀沉淀出来,在溶液中SO_4~(2-)的引导下,这些氢氧化镁纳米粒子可以转化为长径比大于100、具有均一形貌和尺寸的512型碱式硫酸镁晶须。在保持其他条件不变的情况下,简单地增大反应物浓度,晶须的平均直径从4μm至50 mn之间可调可控,能够适应各种具体应用的要求。在对实验结果进行深入分析的基础上,对该体系下碱式硫酸镁晶须的生长机理进行了初步探讨,有助于人们对碱式硫酸镁晶须结晶习性的理解。为了提高晶须材料与聚合物的相容性,使用硬脂酸钠对晶须进行了表面疏水改性处理。
     以制备出的碱式硫酸镁晶须为原料,设计了一个包含丙三醇和氢氧化钠的可控阴离子交换反应体系,来控制碱式硫酸镁晶须中SO_4~(2-)和溶液中OH~-的交换反应,在常压80℃水浴条件下转化,得到的氢氧化镁晶须几乎能够完美保持前驱物的形貌,对于这样一个可控的阴离子交换体系,少量丙三醇的添加对于形貌保持和转化效率来说都是至关重要的。基于理论和实验的分析,这种可控的离子交换机理被简单讨论。
     以直接沉淀的氢氧化镁为前驱物,利用添加柠檬酸盐的氢氧化钠溶液这一复合水热改性剂水热改性,合成了结晶度高、粒径均一、分散性好的完美六方片状氢氧化镁功能粉体产品,并对该粉体产品的表面进行了疏水性处理,同时对氢氧化镁在水热条件下的结晶生长机理进行了简单讨论。以六方片状氢氧化镁为前驱物,通过热处理制备了具有相同形貌的氧化镁功能粉体,明显增加了具有高催化活性晶面的暴露。
     本文制备的具有可控直径的碱式硫酸镁和氢氧化镁晶须产品兼具阻燃和补强双重功能,是高聚物理想的环保型添加剂;制备的氢氧化镁功能粉体产品除可作为高品质阻燃剂使用外,还可以被应用于催化、医药、环保等诸多领域;具有高活性面的氧化镁功能粉体将是性能优良的催化材料。另外,本文所设计一些材料制备的新工艺以及所提出的生长机理也为其他微纳米材料的合成提供了有益的参考。
The study of high-quality magnesium functional materials is one of the most interesting topics in the field of materials due to their important applications in environmental protection, flame retarding,medicine and catalysts The performance of these materials is closely related to their size and morphology.Accordingly,the morphology and size control of magnesium functional materials is one of the most important research subjects.We developed some new preparation technologies for magnesium hydroxide sulfate hydrate,magnesium hydroxide and magnesium oxide,and their morphologies and sizes were successfully controlled.
     A new alkaline buffer solution system including Mg~(2+)、SO_4~(2-)、NH_4~+ and diethanolamine was designed,in which Mg(OH)_2 nanoparticles can be homogeneously precipitated under a hydrothermal condition.These Mg(OH)_2 nanoparticles can be converted into 5Mg(OH)_2·MgSO_4·2H_2O(512MHSH) whiskers with uniform size and shape,an aspect ratio no less than 100 by the direction of SO_4~(2-) ions.The average diameter of whiskers can be facilely controlled from 4μm to 50 nm only by adjusting the concentration of reactants and without varying any other experimental parameters.The growth mechanism of 512MHSH was discussed by analyzing the experimental results,which contributes to more profound understanding of 512MHSH growth habit.In order to improve the compatibility between inorganic materials and polymer,the surface of as-prepared whiskers was modified by using sodium stearate.
     A controllable system of anion exchange between SO_4~(2-) and OH~- ions,which includes glycerol and NaOH,was designed to fabricate Mg(OH)_2 whiskers in a normal atmosphere at 80℃using 512MHSH obtained above as precursors.The morphology of as-synthesized Mg(OH)_2 whiskers is similar to that of precursors.The addition of a little glycerol is vital not only to perfectly maintain the morphology of precursors but also to ensure conversion efficiency in this system.The controllable anion exchange mechanism was discussed on the basis of the theoretical and experimental analysis.
     The functional Mg(OH)_2 powder with high crystallinity,good dispersibility, homogeneous granularity and hexagonal shape was successfully synthesized by using a new compound hydrothermal modifying agent including citrate and NaOH.The Mg(OH)_2 powder was modified by using sodium stearate,and its surface became hydrophobic.The growth mechanism of Mg(OH)_2 crystal in hydrothermal condition was also discussed.The functional MgO powder with the same morphology was prepared by hot-treatment of Mg(OH)_2 powder. The exposure of crystal surface with high catalysis activity is distinctly enhanced.
     The as-prepared 512MHSH and Mg(OH)_2 whiskers with controllable diameter,which have dual functions as flame retardant and reinforcing materials,are the perfect additive for polymer.The functional Mg(OH)_2 powder is a kind of high-quality flame retardant,which can also find application in catalysis,medicament,environmental protection,etc.The functional MgO powder with high activity crystal plane may be an excellent catalytic material. In addition,both new preparation technologies and growth mechanisms mentioned in this paper can provide useful references for fabrication of other micro/nano-materials.
引文
[1]全跃.镁质材料生产与应用[M].北京:冶金工业出版社,2008.
    [2]胡庆福.镁化合物生产与应用[M].北京:化学工业出版社,2004.
    [3]杨延飞.欧盟《关于在电子电气设备中限制使用某些有害物质指令》及《废弃电子电气设备指令》简介[J].节能与环保,2004,(2):7-8.
    [4]王晓丽,薛冬峰,晏成林.镁系微纳结构产品的制备技术及应用[J].化工科技市场,2006,29(1):28-31.
    [5]DING Y,ZHANG G T,ZHANG S Y,et al.Preparation and characterization of magnesium hydroxide sulfate hydrate whiskers[J].Chem.Mater.,2000,12(10):2845-2852.
    [6]YAN X,XU D,XUE D.SO_4~(2-) ions direct the one-dimensional growth of 5Mg(OH)_2·MgSO_4·2H_2O[J].Acta Mater.,2007,55(17):5747-5757.
    [7]XIANG L,LIU F,LI J,et al.Hydrothermal formation and characterization of magnesium oxysulfate whiskers[J].Mater.Chem.Phys.,2004,87(2-3):424-429.
    [8]MA P H,WEI Z Q,XU G,et al.Dehydration and desulfuration of magnesium oxysulfate whisker[J].J.Mater.Sci.Lett.,2000,19(3):257-258.
    [9]韩跃新,陈旭,印万忠.碱式硫酸镁晶须填充聚丙烯的研究[J].有色矿冶,2007,23(5):42-45.
    [10]韩跃新,李丽匣,印万忠,等.碱式硫酸镁晶须的表面改性[J].东北大学学报(自然科学版),2009,30(1):133-136.
    [11]LIU B,ZHANG Y,WAN C Y,et al.Thermal stability,flame retardancy and rheological behavior of ABS filled with magnesium hydroxide sulfate hydrate whisker[J].Polym.Bull.,2007,58(4):747-755.
    [123 FANG S L,HU Y,SONG L,et al.Mechanical properties,fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber [J].J.Mater.Sci.,2008,43(3):1057-1062.
    [13]LU H D,HU Y A,YANG L,et al.Study of the fire performance of magnesium hydroxide sulfate hydrate whisker flame retardant polyethylene[J].Macromol.Mater.Eng.,2004,289(11):984-989.
    [14]LU H D,HU Y,XIAO J F,et al.Magnesium hydroxide sulfate hydrate whisker flame retardant polyethylene/montmorillonite nanocomposites[J].J.Mater.Sci.,2006,41(2):363-367.
    [15]吴强华.可膨胀石墨增效碱式硫酸镁晶须无卤阻燃EVA的研究[J].中国塑料,2005,19(7):75-77.
    [16]DING Y,ZHAO H Z,SUN Y G,et al.Superstructured magnesium hydroxide sulfate hydrate fibres-Photoluminescence study[J].Int.J.Inorg.Mater.,2001,3(2):151-156.
    [17]WEI Z Q,QI H,MA P H,et al.A new route to prepare magnesium oxide whisker[J].Inorg.Chem.Commun.,2002,5(2):147-149.
    [18]LI J,XIANG L,JIN Y.Hydrothermal formation of magnesium oxysulfate whiskers in the presence of ethylenediaminetetraacetic acid[J].J.Mater.Sci.,2006,41(5):1345-1348.
    [19]SUN X T,XIANG L.Synthesis of magnesium oxysulfate whiskers in the presence of sodium dodecyl benzene sulfonate[J].Cryst.Res.Technol.,2008,43(5):479-482.
    [20]ZHOU Z Z,SUN Q H,HU Z S,et al.Nanobelt formation of magnesium hydroxide sulfate hydrate via a soft chemistry process[J].J.Phys.Chem.B,2006,110(27):13387-13392.
    [21]ZHOU Z Z,DENG Y L.Solution synthesis of magnesium hydroxide sulfate hydrate nanobelts using sparingly soluble carbonate salts as supersaturation control agents[J].J.Colloid Interf.Sci.,2007,316(1):183-188.
    [22]YANG D N,ZHANG J,WANG R M,et al.Solution phase synthesis of magnesium hydroxide sulfate hydrate nanoribbons[J].Nanotechnology,2004,15(11):1625-1627.
    [23]DELFOSSE L,BAILLET C,BRAULT A,et al.Combustion of ethylene-vinyl acetate copolymer filled with aluminium and magnesium hydroxides[J].Polym.Degrad.Stabil.,1989,23(4):337-347.
    [24]HORNSBY P R,WATSON C L.A study of the mechanism of flame retardance and smoke suppression in polymers filled with magnesium hydroxide[J].Polym.Degrad.Stabil.,1990,30(1):73-87.
    [25]ROTHON R N,HORNSBY P R.Flame retardant effects of magnesium hydroxide[J].Polym.Degrad.Stabil.,1996,54(2-3):383-385.
    [26]LAOUTID F,BONNAUD L,ALEXANDRE M,et al.New prospects in flame retardant polymer materials:From fundamentals to nanocomposites[J].Mater.Sci.Eng.R,2009,63(3):100-125.
    [27]王建祺.无卤阻燃聚合物基础与应用[M].北京:科学出版社,2005.
    [28]CHEN XL,YUJ,GUOSY,et al.Surfacemodification of magnesium hydroxide and its application in flame retardant polypropylene composites[J].J.Mater.Sci.,2009,44(5):1324-1332.
    [29]COOK M,HARPER J F.The influence of magnesium hydroxide morphology on the crystallinity and properties of filled polypropylene[J].Adv.Polym.Technol.,1998,17(1):53-62.
    [30]CAMINO G,MAFFEZZOLI A,BRAGLIA M,et al.Effect of hydroxides and hydroxycarbonate structure on fire retardant effectiveness and mechanical properties in ethylene-vinyl acetate copolymer[J].Polym.Degrad.Stabil.,2001,74(3):457-464.
    [31]LV J P,LIU W H.Flame retardancy and mechanical properties of EVA nanocomposites based on magnesium hydroxide nanoparticles/microcapsulated red phosphorus[J].J.Appl.Polym.Sci.,2007,105(2):333-340.
    [32]LV J,QIU L Z,QU B J.Controlled synthesis of magnesium hydroxide nanoparticles with different morphological structures and related properties in flame retardant ethylene-vinyl acetate blends[J].Nanotechnology,2004,15(11):1576-1581.
    [33]GUI H,ZHANG X H,LIU Y Q,et al.Effect of dispersion of nano-magnesium hydroxide on the flammability of flame retardant ternary composites[J].Compos.Sci.Technol.,2007,67(6):974-980.
    [34]LIB J,ZHANG Y D,ZHAO Y B,et al.A novel method for preparing surface-modified Mg(OH)_2nanocrystallines[J].Mat.Sci.Eng.A-Struct,2007,452302-305.
    [35]SHEN H,WANG Y H,MAI K C.Effect of compatibilizers on thermal stability and mechanical properties of magnesium hydroxide filled polypropylene composites[J].Thermochim.Acta,2009,483(1-2):36-40.
    [36]CARPENTIER F,BOURBIGOT S,LE BRAS M,et al.Charring of fire retarded ethylene vinyl acetate copolymer-magnesium hydroxide/zinc borate formulations[J].Polym.Degrad.Stabil.,2000,69(1):83-92.
    [37]BOURBIGOT S,LE BRAS M,LEEUWENDAL R,et al.Recent advances in the use of zinc borates in flame retardancy of EVA[J].Polym.Degrad.Stabil.,1999,64(3):419-425.
    [38]IMAHASHI T,OKADA A,ABE T.Flame retardant aid comprising cpds.of nickel-used with reduced amt.of metal hydroxide flame retardant in polymer compsns[P].EP561547-A.1993.
    [39]KURISI H,KODANI T,KAWASE A,et al.Method for prepn,of metal hydroxide used in flame retardant compsn.-comprises reacting magnesium contg,aq.soln.contg,soluble zinc cpd.with alkaline cpd.,pref.followed by hydrothermal treatment[P].EP757015-A.1997.
    [40]SHEHATA A B.A new cobalt chelate as flame retardant for polypropylene filled with magnesium hydroxide[J].Polym.Degrad.Stabil.,2004,85(1):577-582.
    [41]CHEN X L,WU H,LUO Z,et al.Synergistic effects of expandable graphite with magnesium hydroxide on the flame retardancy and thermal properties of polypropylene[J].Polym.Eng.Sci.,2007,47(11):1756-1760.
    [42]胡源,宋磊.阻燃聚合物纳米复合材料[M].北京:化学工业出版社,2008.
    [43]FU M Z,QU B J.Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends[J].Polym.Degrad.Stabil.,2004,85(1):633-639.
    [44]MIYATA S,IMAHASHI T.Fire-retardant resin compsn.-has metal hydroxide and acrylic fibre to give improved fire retardancy,mechanical strength and water resistance without toxicity[P].EP391605-A2.1990.
    [45]CAI Y B,WEI Q F,SHAO D F,et al.Magnesium hydroxide and microencapsulated red phosphorus synergistic flame retardant form stable phase change materials based on HDPE/EVA/OMT nanocomposites/paraffin compounds[J].J.Energy Inst.,2009,82(1):28-36.
    [46]LEI S,YUANH,LIN Z H,et al.Preparation and properties of halogen-free flame-retarded polyamide 6/organoclay nanocomposite[J].Polym.Degrad.Stabil.,2004,86(3):535-540.
    [47]KIM S.Flame retardancy and smoke suppression of magnesium hydroxide filled polyethylene[J].J.Polym.Sci.Pol.Phys.,2003,41(9):936-944.
    [48]马颖颖,衣守志.氢氧化镁在水处理中应用研究新进展[J].盐业与化工,2007,36(2):39-42.
    [49]LIU W Z,HUANG F,LIAO Y Q,et al.Treatment of Cr-Ⅵ-containing Mg(OH)_2 nanowaste[J].Angew.Chem.Int.Edit.,2008,47(30):5619-5622.
    [50]陈向锋,刘晓慧.氢氧化镁在烟气脱硫中的应用[J].海湖盐与化工,2005,35(3):34-36.
    [51]OZYUGURAN A,ALTUN-CIFTCIOGLU G,KARATEPE N,et al.Effect of magnesium salts on the sulphation capacity of limestone slurry[J].J.Environ.Sci.Heal.A,2006,41(9):1955-1965.
    [52]BEARAT H,MCKELVY M J,CHIZMESHYA A V G,et al.Magnesium hydroxide dehydroxylation/carbonation reaction processes:Implications for carbon dioxide mineral sequestration[J].J.Am.Ceram.Soc.,2002,85(4):742-748.
    [53]SIRIWARDANE R V,STEVENS R W.Novel Regenerable Magnesium Hydroxide Sorbents for CO_2Capture at Warm Gas Temperatures[J].Ind.Eng.Chem.Res.,2009,48(4):2135-2141.
    [54]郭如新.氢氧化镁应用近期进展[J].海湖盐与化工,2001,30(4):25-27.
    [55]宋丽英,刘宝树,胡庆福.医药用镁化合物生产现状及其发展浅析[J].海湖盐与化工,2001,30(4):19-21.
    [56]KANG J C,SCHWENDEMAN S P.Comparison of the effects of Mg(OH)_2 and sucrose on the stability of bovine serum albumin encapsulated in injectable poly(D,L-lactide-co-glycolide)implants[J].Biomaterials,2002,23(1):239-245.
    [57]BAGLIONI P,GIORGI R.Soft and hard nanomaterials for restoration and conservation of cultural heritage[J].Soft Matter,2006,2(4):293-303.
    [58]GIORGI R,BOZZI C,DEI L G,et al.Nanoparticles of Mg(OH)_2:Synthesis and application to paper conservation[J].Langmuir,2005,21(18):8495-8501.
    [59]CUNNINGHAM D A H,VOGEL W,KAGEYAMA H,et al.The relationship between the structure and activity of nanometer size gold when supported on Mg(OH)_2[J].J.Catal.,1998,177(1):1-10.
    [60]CUNNINGHAM D A H,VOGEL W,HARUTA M.Negative activation energies in CO oxidation over an icosahedral Au/Mg(OH)_2 catalyst[J].Catal.Lett.,1999,63(1-2):43-47.
    [61]YUM J H,NAKADE S,KIM D Y,et al.Improved performance in dye-sensitized solar cells employing TiO_2 photoelectrodes coated with metal hydroxides[J].J.Phys.Chem.B,2006,110(7):3215-3219.
    [62]张秋艳,郭如新.国内从水镁石制取氢氧化镁阻燃剂近况[J].海湖盐与化工,2002,31(6):34-37.
    [63]刘晓峰.利用水镁石粉矿废物生产氢氧化镁无机阻燃剂的工艺技术[J].耐火与石灰,2008,33(1):11-14.
    [64]杜高翔,郑水林,李杨,等.助磨剂在水镁石超细研磨中应用的试验研究[J].非金属矿,2003,26(4):31-32.
    [65]郑水林,杜高翔,李杨,等.用水镁石制备超细氢氧化镁的研究[J].矿冶,2004,13(2):43-46.
    [66]杜高翔,郑水林,李杨.阻燃用氢氧化镁及水镁石粉体的表面改性研究现状[J].非金属矿,2002,25(增刊):10-13.
    [67]张治华.改性水镁石微粉的制备及其在阻燃聚丙烯中的应用[J].塑料助剂,2008,(1):30-32.
    [68]马志领,王景辉,马春雨,等.水镁石的硅烷偶联剂表面改性[J].河北大学学报(自然科学版),2007,27(3):283-287,299.
    [69]徐日瑶.金属镁生产工艺学[M].长沙:中南大学出版社2003.
    [70]王雷,薛冬峰.无机镁盐阻燃剂的发展现状与展望[J].镁矿与镁质材料,2007,(6):10-13.
    [71]PHILLIPS V A,KOLBE J L,OPPERHAUSER H.Effect of pH on the growth of Mg(OH)_2 crystals in an aqueous environment at 60℃[J].J.Cryst.Growth,1977,41(2):228-234.
    [72]PHILLIPS V A,KOLBE J L,OPPERHAUSER H.The growth of Mg(OH)_2 crystals from MgCl_2 and Ca(OH)_2 in a brine environment[J].J.Cryst.Growth,1977,41(2):235-244.
    [73]HENRIST C,MATHIEU J P,VOGELS C,et al.Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution[J].J.Cryst.Growth,2003,249(1-2):321—330.
    [74]HSU J P,NACU A.Preparation of submicron-sized Mg(OH)_2 particles through precipitation[J].Colloid.Surface.A,2005,262(1-3):220-231.
    [75]GAO Y Y,WANG H H,SU Y L,et al.Influence of magnesium source on the crystallization behaviors of magnesium hydroxide[J].J.Cryst.Growth,2008,310(16):3771-3778.
    [76]LV J,QU L Z,QU B J.Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method[J].J.Cryst.Growth,2004,267(3-4):676-684.
    [77]WU X F,HU G S,WANG B B,et al.Synthesis and characterization of superfine magnesium hydroxide with monodispersity[J].J.Cryst.Growth,2008,310(2):457-461.
    [78]JIANG W J,HUA X,HAN Q F,et al.Preparation of lamellar magnesium hydroxide nanoparticles via precipitation method[J].Powder Technol.,2009,191(3):227-230.
    [79]CHEN D H,ZHU L Y,ZHANG H P,et al.Magnesium hydroxide nanoparticles with controlled morphologies via wet coprecipitation[J].Mater.Chem.Phys.,2008,109(2-3):224-229.
    [80]CHEN D H,ZHU L Y,LIU P,et al.Rod-like morphological magnesium hydroxide and magnesium oxide via a wet coprecipitation process[J].J.Porous Mat.,2009,16(1):13-18.
    [81]LI X,MA G B,LIU Y Y.Synthesis and Characterization of Magnesium Hydroxide Using a Bubbling Setup[J].Ind.Eng.Chem.Res.,2009,48(2):763-768.
    [82]JIA B P,GAO L.Morphology transformation of nanoscale magnesium hydroxide:from nanosheets to nanodisks[J].J.Am.Ceram.Soc.,2006,89(12):3881-3884.
    [83]XIANG L,JIN Y C,JIN Y.Hydrothermal formation of dispersive Mg(OH)_2 particles in NaOH solution[J].T Nonferr.Metal.Soc.,2004,14(2):370-375.
    [84]WU Q L,XIANG L,JIN Y.Influence of CaCl_2 on the hydrothermal modification of Mg(OH)_2[J].Powder Technol.,2006,165(2):100-104.
    [85]YAN H,ZHANG X H,WU J M,et al.The use of CTAB to improve the crystallinity and dispersibility of ultraf ine magnesium hydroxide by hydrothermal route[J].Powder Technol.,2008,188(2):128-132.
    [86]JIN D L,GU X Y,YU X J,et al.Hydrothermal synthesis and characterization of hexagonal Mg(OH)_2 nano-flake as a flame retardant[J].Mater.Chem.Phys.,2008,112(3):962-965.
    [87]ZHUO L H,GE J C,CAO L H,et al.Solvothermal Synthesis of CoO,Co_3O_4,Ni(OH)_2 and Mg(OH)_2 Nanotubes[J].Cryst.Growth Des.,2009,9(1):1-6.
    [88]吴敬元,王雷,薛冬峰.高品质氢氧化镁阻燃剂的制备工艺研究[J].人工晶体学报,2008,37(增刊):16.
    [89]XUE D,YAN X,WANG L.Production of specific Mg(OH)_2 granules by modifying crystallization conditions[J].Powder Technol.,2009,191(1-2):98-106.
    [90]SUN X T,XIANG L.Hydrothermal conversion of magnesium oxysulfate whiskers to magnesium hydroxide nanobelts[J].Mater.Chem.Phys.,2008,109(2-3):381-385.
    [91]SUN X T,XIANG L,ZHU W C,et al.Influence of solvents on the hydrothermal formation of one-dimensional magnesium hydroxide[J].Cryst.Res.Technol.,2008,43(10):1057-1061.
    [92]FAN W L,SUN S X,YOU L P,et al.Solvothermal synthesis of Mg(OH)_2 nanotubes using Mg_(10)(OH)_(18)Cl_2·5H_2O nanowires as precursors[J].J.Mater.Chem.,2003,13(12):3062-3065.
    [93]FANWL,SUNSX,SONGXY,et al.Controlled synthesis of single-crystalline Mg(OH)_2 nanotubes and nanorods via a solvothermal process[J].J.Solid State Chem.,2004,177(7):2329-2338.
    [94]YAN C,XUE D,ZOU L,et al.Preparation of magnesium hydroxide nanof lowers[J].J.Cryst.Growth,2005,282(3-4):448-454.
    [95]LI Y D,SUI M,DING Y,et al.Preparation of Mg(OH)_2 nanorods[J].Adv.Mater.,2000,12(11):818-821.
    [96]DING Y,ZHANG G T,WU H,et al.Nanoscale magnesium hydroxide and magnesium oxide powders:Control over size,shape,and structure via hydrothermal synthesis[J].Chem.Mater.,2001,13(2):435-440.
    [97]QIAN H Y,DENG M,ZHANG S M,et al.Synthesis of superfine Mg(OH)_2 particles by magnesite[J].Mat.Sci.Eng.A-Struct,2007,445600-603.
    [98]YU J C,XU A W,ZHANG L Z,et al.Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates[J].J.Phys.Chem.B,2004,108(1):64-70.
    [99]RANJIT K T,KLABUNDE K J.Solvent effects in the hydrolysis of magnesium methoxide,and the production of nanocrystalline magnesium hydroxide.An aid in understanding the formation of porous inorganic materials[J].Chem.Mater.,2005,17(1):65-73.
    [100]HAO L Y,ZHU C L,MO X,et al.Preparation and characterization of Mg(OH)_2 nanorods by liquid-solid arc discharge technique[J].Inorg.Chem.Commun.,2003,6(3):229-232.
    [101]WU J M,YAN H,ZHANG X H,et al.Magnesium hydroxide nanoparticles synthesized in water-in-oil microemulsions[J].J.Colloid Interf.Sci.,2008,324(1-2):167-171.
    [102]WU H Q,SHAO M W,GU J S,et al.Microwave-assisted synthesis of fibre-like Mg(OH)_2 nanoparticles in aqueous solution at room temperature[J].Mater.Lett.,2004,58(16):2166-2169.
    [103]PHUOC T X,HOWARD B H,MARTELLO D V,et al.Synthesis of Mg(OH)_2,MgO,and Mg nanoparticles using laser ablation of magnesium in water and solvents[J].Opt.Laser.Eng.,2008,46(11):829-834.
    [104]LIANG C H,SASAKI T,SHIMIZU Y,et al.Pulsed-laser ablation of Mg in liquids:surfactant-directing nanoparticle assembly for magnesium hydroxide nanostructures[J].Chem.Phys.Lett.,2004,389(1-3):58-63.
    [105]ZOU G L,LIU R,CHEN W X,et al.Preparation and characterization of lamellar-like Mg(OH)_2 nanostructures via natural oxidation of Mg metal in formamide/water mixture[J].Mater.Res.Bull.,2007,42(6):1153-1158.
    [106]ZOU G L,CHEN W X,LIU R,et al.Morphology-tunable synthesis and characterizations of Mg(OH)_2 films via a cathodic electrochemical process[J].Mater.Chem.Phys.,2008,107(1):85-90.
    [107]WANG X,XUE D.Direct observation of the shape evolution of MgO whiskers in a solution system[J].Mater.Lett.,2006,60(25-26):3160-3164.
    [108]王晓丽,薛冬峰.不同镁盐对氧化镁晶须形貌的影响[J].无机盐工业,2006,38(2):16-18.
    [109]王晓丽,薛冬峰.利用菱镁矿制备氧化镁晶须[J].无机盐工业,2005,37(10):16-17,27.
    [110]MAKHLUF S,DROR R,NITZANY,et al.Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide[J].Adv.Funct.Mater.,2005,15(lO):1708-1715.
    [111]NING G Q,LIU Y,WEI F,et al.Porous and lamella-like Fe/MgO catalysts prepared under hydrothermal conditions for high-yield synthesis of double-walled carbon nanotubes[J].J.Phys.Chem.C,2007,111(5):1969-1975.
    [112]VERZIU M,COJOCARU B,HU J C,et al.Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts[J].Green Chem.,2008,10(4):373-381.
    [113]YANG P D,LIEBER C M.Nanorod-superconductor composites:A pathway to materials with high critical current densities[J].Science,1996,273(5283):1836-1840.
    [114]YIN Y D,ZHANGG T,XIA Y N.Synthesis and characterization of MgO nanowires through a vapor-phase precursor method[J].Adv.Funct.Mater.,2002,12(4):293-298.
    [115]JUNG H S,LEE J K,KIM J Y,et al.Synthesis of nano-sized MgO particleand thin film from diethanolamine-stabilized magnesium-methoxide[J].J.Solid State Chem.,2003,175(2):278-283.
    [116]薛冬峰,邹龙江,闫小星,等.氧化镁晶须制备及影响因素考查[J].大连理工大学学报,2007,47(4):488-493.
    [117]YAN C L,XUE D F.Novel self-assembled MgO nanosheet and its precursors[J].J.Phys.Chem.B,2005,109(25):12358-12361.
    [118]YAN C L,XUE D F,ZOU L J.Fabrication of hexagonal MgO and its precursors by a homogeneous precipitation method[J].Mater.Res.Bu11.,2006,41(12):2341-2348.
    [119]WANG W,QIAO X L,CHEN J G.The role of acetic acid in magnesium oxide preparation via chemical precipitation[J].J.Am.Ceram.Soc.,2008,91(5):1697-1699.
    [120]武汉大学化学与分子科学学院实验中心.分析化学实验[M].武汉:武汉大学出版社,2002.
    [121]杨梅,梁信源,黄富嵘.分析化学实验[M].上海:华东理工大学出版社,2005.
    [122]UTAMAPANYA S,KLABUNDE K J,SCHLUP J R.Nanoscale metal oxide particles/clusters as chemical reagents.Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide[J].Chem.Mater.,1991,3(1):175-181.
    [123]张华主编.现代有机波谱分析[M].北京:化学工业出版社,2005.
    [124]YAN C,XUE D.General,spontaneous ion replacement reaction for the synthesis of microand nanostructured metal oxides[J].J.Phys.Chem.B,2006,110(4):1581-1586.
    [125]LIU J,XUE D.Thermal oxidation strategy towards porous metal oxide hollow architectures[J].Adv.Mater.,2008,20(13):2622-2627.
    [126]LIU M,XUE D.Amine-assisted route to fabricate LiNbO_3 particles with a tunable shape[J].J.Phys.Chem.C,2008,112(16):6346-6351.
    [127]YAN C,XUE D.Novel self-assembled MgG nanosheet and its precursors[J].J.Phys.Chem.B,2005,109(25):12358-12361.
    [128]ZHUKK,HUJC,KUBEL C,et al.Efficient preparation and catalytic activity of MgO(111) nanosheets[J].Angew.Chem.Int.Edit.,2006,45(43):7277-7281.
    [129]HUJC,ZHUK,CHEN L F,et al.MgO(lll) nanosheets with unusual surface activity[J].J.Phys.Chem.C,2007,111(32):12038-12044.
    [130]MCKELVY M J,SHARMA R,CHIZMESHYA A V G,et al.Magnesium hydroxide dehydroxylation:In situ nanoscale observations of lamellar nucleation and growth[J].Chem.Mater.,2001,13(3):921-926.
    [131]YANG H G,SUN C H,QIAO S Z,et al.Anatase TiO_2 single crystals with a large percentage of reactive facets[J].Nature,2008,453(7195):638-U634.
    [132]TIAN Z R R,VOIGT J A,LIU J,et al.Complex and oriented ZnO nanostructures[J].Nat.Mater.,2003,2(12):821-826.
    [133]MELGUNOVMS,FENEL0N0V V B,MELGUNOVAEA,et al.Textural changes during topochemical decomposition of nanocrystalline Mg(OH)_2 to MgO[J].J.Phys.Chem.B,2003,107(11):2427-2434.
    [134]FROST R L,KLOPROGGE J T.Infrared emission spectroscopic study of brucite[J].Spectrochim.Acta A,1999,55(11):2195-2205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700