依地酸对黏液型铜绿假单胞菌生物被膜干预作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:依地酸与抗菌药联合应用对粘液型铜绿假单胞菌生物被膜的作用
     目的研究金属离子螯合剂依地酸(ethylenediaminotetraacetic acid,EDTA)联合三种抗菌药对黏液型铜绿假单胞菌(Pseudomonas aeruginosa,PA)生物被膜(biofilm,BF)结构的影响和对其杀菌作用。
     方法平板法培养铜绿假单胞菌生物被膜,微量肉汤稀释法测量环丙沙星、庆大霉素、氨苄西林单独及与EDTA联合对铜绿假单胞菌的最低抑菌浓度(minimal inhibitory concentration,MIC)。生物被膜中单独或联合加入抗菌药与EDTA作用24小时后,超声清洗,琼脂板计数生物被膜内菌量。荧光探针异硫氰酸荧光素-刀豆凝集素A (Fluorescein isothiocyanate concanavalin A , FITC-ConA)染生物被膜细菌胞外多糖(Extracellular Polymeric Substances,EPS)、荧光显微镜下观察EDTA作用前后生物被膜多糖差别;荧光探针PI/SYTO9标记生物被膜内细菌、激光共聚焦显微镜(Confocal Laser Scanning Microscopy,CLSM)观察药物作用前后生物被膜的结构变化,结合BF图象结构分析软件(Image Structure Analyzer ,ISA)对EDTA作用前后的生物被膜结构参数进行定量分析。
     结果0.5mg/ml EDTA与抗菌药联合可使环丙沙星和氨苄西林对浮游菌PA的MIC降低约30倍、庆大霉素的MIC降低2倍。当EDTA浓度为5MIC时达到对PA生物被膜的最大杀菌效应,可使菌落数由107 CFU/ml降至104 CFU/ml(P<0.05),0.1MIC的EDTA则对BF菌落数没有影响。然而0.1MIC、5MIC的EDTA均与环丙沙星对生物被膜有协同杀菌效应。5MIC的EDTA与三种抗菌药联合用后于BF后,空白组和联合作用组的菌落数分别为107CFU/ml和103CFU/ml(P<0.05)。荧光显微镜和激光共聚焦显微镜下可见:EDTA作用后生物被膜多糖减少、BF厚度降低、死菌比例增加、菌落变的稀疏,ISA软件分析结果显示:EDTA作用后BF厚度、平均扩散距离(Average Diffusion Distance,ADD)和结构熵(Textual Entropy,TE)均减少(P<0.05);区域孔率(areal porosity,AP)增加(P<0.05)。
     结论EDTA与三种抗菌药联合对浮游状态下的铜绿假单胞菌均有协同杀菌效应。EDTA可以破坏粘液型铜绿假单胞菌生物被膜结构,与三种抗菌药联合对生物被膜均有显著的清除作用。
     第二部分:镁离子对粘液型铜绿假单胞菌生物被膜形成过程的影响
     目的探讨镁离子对黏液型铜绿假单胞菌早期黏附和生物被膜形成生过程的影响。
     方法荧光多功能酶标仪检测各组不同时间点96孔板底部黏附细菌的荧光强度,荧光探针FITC-ConA染细菌胞外多糖(EPS)、荧光显微镜下观察各组多糖差别;SYTO9/PI染生物被膜内细菌、激光共聚焦显微镜观察结合BF图象结构分析软件(ISA)对各组生物被膜结构参数进行定量分析。
     结果2天时,空白组和1mM镁组的黏附细菌的荧光强度分别为1845.67±45.39和2254.78±42.45,t=–9.96 , P <0.05; 0.1mM的镁浓度下荧光强度也有增加,其余各时间组趋势与2天组相似;在荧光显微镜下观察可见随着镁浓度增加,EPS增多;激光共聚焦显微镜下可见随着镁浓度增加,生物被膜活菌增加、菌落变密集;ISA软件分析结果示:空白组和1mM镁组的6天生物被膜厚度(d)分别为(25.80±1.16)um和(34.87±1.59)um,t=–13.85, P<0.05;区域孔率(AP)分别为0.96±0.05和0.90±0.04,t=2.48, P<0.05;平均扩散距离(ADD)分别为1.54±0.15和1.92±0.16,t=5.23 ,P<0.05;结构熵(TE)分别为3.64±0.57和4.70±1.09,t=–2.6, P<0.05,3天组BF也有相同的趋势。
     结论镁离子可以增强黏液型铜绿假单胞菌的早期黏附,影响随后生物被膜的形成及结构。
     第三部分:依地酸与环丙沙星联合应用对豚鼠铜绿假单胞菌生物被膜感染模型的作用
     目的探讨EDTA与环丙沙星联合应用对豚鼠肺部黏液型铜绿假单胞菌生物被膜感染的清除作用。
     方法吸入法建立豚鼠肺部铜绿假单胞菌生物被膜感染模型;EDTA(30mg/kg.d×7天)腹腔注射、环丙沙星(4ug/ml×15分钟×7天)雾化吸入,单独及联合作用于感染后豚鼠;平板计数法对比药物作用前后豚鼠肺部生物被膜菌落数变化,苏木素/伊红(hematoxylin and eosin,HE)染色及扫描电镜观察肺部病理变化。
     结果空白对照组、EDTA组、环丙沙星组和联合用药组的肺部BF菌落计数分别为5.4±0.43 (lgCFU/g)、4.4±0.57 (lgCFU/g)、4.2±0.47 (lgCFU/g )和1.3±0.19 (lgCFU/g ),联合组与各单独用药组比较差异有统计学意义,P<0.05。且联合用药组肺部组织病理改变明显减轻。
     结论EDTA与环丙沙星联合应用对豚鼠肺部黏液型铜绿假单胞菌生物被膜感染有显著清除作用。
PartⅠ: Effects of ethylenediaminotetraacetic acid combining with three kinds of antibacterial agents on mucoid Pseudomonas aeruginosa biofilm in vitro
     Objective To investigate the effects of metal-chelator ethylenediamine tetraacetic acid (EDTA) combination with three kinds of antibacterial agents on mucoid Pseudomonas aeruginosa (PA) biofilm(BF).
     Methods Plate culture method was used to establish mature bioflim. Mini broth dilution method to measure the minimal inhibitory concentration (MIC) of antibacterial agents and EDTA. The biofilms were treated by EDTA, ciprofloxacin, gentamicin, ampicillin alone or symphysisly for 24 hours, the number of the bacteria colony in biofilm was measured by agar plate method. The EPS in biofilm was stained with FITC-ConA, observed by fluorescence microscope;stained with SYTO9/PI, monitored by Confocal Laser Scanning Microscope (CLSM), quantification of the effect was calculated by Image Structor Analyzer(ISA) software .
     Results 0.5mg/ml EDTA can reduce the MIC of antibacterial agents against planktonic PA, the MIC of ciprofloxacin and ampicillin were reduced by 30 times. 5MIC EDTA can exerst the best effect against PA biofilm , the number of colonies in biofilm was reduced from 107CFU/ml to 104CFU/ml (p<0.05). 0.1MIC and 5MIC EDTA can enhance the bactericidal activity of ciprofloxacin. EDTA of 5MIC combined with three antibacterial agents make the number of colonies in biofilm reduce from 107 CFU/ml to 103 CFU/ml (P<0.05). Fluorescence microscope and CLSM show: EDTA can reduce the content of extracellular polymeric substances (EPS) and the thickness of the biofilm, raise the ratio of dead bacteria. The result of ISA show that after the administration of EDTA, BF thickness, Average Diffusion Distance (ADD), and Textual Entropy (TE) decreased (P<0.05), while areal porosity (AP) increased(P<0.05).
     Conclusions EDTA could enhance the activity of antibacterial agents against planktonic PA, and destroy the structure of BF. The combination of EDTA with antibacterial agents has significant activity to remove mucoid PA biofilm.
     PartⅡ: Effects of Magnesium ions on the mucoid pseudomonas aeruginosa biofilm
     Objective To investigate the influence of different Mg2+ concentration on biofilm formation by mucoid Pseudomonas aeruginosa.
     Methods Multifunction fluorometer was used to measure fluorescence of PA at the bottom of 96-well plate. The EPS of PA was stained with FITC-ConA and detected by fluorescence microscope. The biofilm was stained with SYTO9/PI, monitored by Confocal Laser Scanning Microscope(CLSM),quantification of the effect was calculated by Image Structor Analyzer(ISA) sofeware.
     Results Two days group: after intervention with 1mM mg2+, the fluorescence intensity was increased from 1845.67±45.39 to 2254.78±42.45 ,t=?9.96 ,P<0.05 ; 0.1mM mg2+ could also increase the fluorescence intensity; Other time groups have the approximate tendency as two days group; the EPS in biofilm was significantly increased after intervention with mg2+, which was visualized by fluorescence microscope, based on the FITC-ConA stained . The live bacteria in the biofilm increase, the colony close-up after administration of Mg2+, when observed by CLSM, based on the SYTO9/PI stained. The quantitative data from ISA software showed: after administration of 1 mM Mg2+, for 6 day biofilm ,the depth increase from (25.80±1.16)um to (34.87±1.59)um , t=?13.85 ,P<0.05 , Areal porosity (AP) decrease from 0.96±0.05 to 0.90±0.04,t=2.48, P<0.05 , Average Diffusion Distance (ADD) increase from 1.54±0.15 to 1.92±0.16,t=5.23 ,P<0.05 , Textual Entropy (TE) increase from 3.64±0.57 to 4.70±1.09,t=?2.6 ,P<0.05. The 3 day biofilm have the same tendency.
     Conclusions Magnesium can increase the initial attachment of PA and alter the subsequent biofilm formation and structure.
     PartⅢ: Effects of ethylenediaminotetraacetic acid combining with ciprofloxacin on Pseudomonas aeruginosa biofilm in vivo
     Objective to investigate the effect of EDTA combined with ciprofloxacin on Pseudomonas aeruginose biofilm in vivo.
     Methods Pseudomonas aeruginosa was inhaled into the lung of guinea pigs and colonized , formed biofilm. After 7 days, the model was treated with ciprofloxacin, EDTA alone , or a combination of them for 7 days. The number of colony in the lungs is measured by agar plate. The pathological change of the lung is observed by hematoxylin and eosin(HE) staining and scanning electron microscope.
     Results EDTA combined with ciprofloxacin make the number of bacteria colony in the lung reduced from 105CFU/g to 10CFU/g, (t=24.67, P<0.05) , the lung lesion was less-sever histophathologically.
     Conclusions The combination of EDTA with ciprofloxacin has significant activity to remove mucoid PA biofilm in vivo.
引文
[1] pedersen SS. Lung infection with alginate-producing mucoid Pseudomonas aeruginosa in cystic fibrosis[J]. APMIS Suppl, 1992,28(1):1-79
    [2] N Ohgaki .Bacterial biofilm in chronic airway infection[J]. Kansenshogaku Zasshi,1994; 68(1): 138-151.
    [3] Stiver. Inhibition of polymorphonuclear leukocyte chemotaxis by the mucoid exopolysaccharide of Pseudomonas aeruginosa[J]. Clin Invest Med. 1988.11(4):247-52.
    [4] Prince AS. Biofilms, antimicrobial resistance, and airway infection.[J]. N Engl J Med 2002;347:1110–1111.
    [5] Daniel Lattner , Hans-Curt Flemmingb, Christian Mayer. 13C-NMR study of the interaction of bacterial alginate with bivalent cations[J]. Biological Macromolecules,2003,33(1-3):81-88.
    [6]戴自英,主编.临床抗菌药物学[M].北京:人民卫生出版社.1985:7-9.
    [7]陈迁,王睿.细菌生物膜实验方法的研究进展[J].中国临床药理学与治疗学杂志, 1997,2(4):295-298.
    [8] Martin Strathmann , Jost Wingender, Hans-Curt Flemming . Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa[J]. Microbiological Methods 2002,50(3): 237– 248
    [9]陈波曼,余加林.绿色荧光蛋白标记铜绿假单胞菌生物膜形成的动态观察及结构定量分析[J].中国抗生素杂志,2008,33(9):540-543
    [10] Beyenal H,Lewandowski Z,Harkin G. Quantifying biofilm structure:facts and fiction[J]. Biofouling, 2004,20(1):1-23.
    [11] W Sutherland .The biofilm matrix--an immobilized but dynamic microbial environment [J]. Trends Microbiol, 2001, 9(5): 222-227.
    [12] Donald R. VanDevanter. How Much Do Pseudomonas Biofilms Contribute to Symptoms of Pulmonary Exacerbation in Cystic Fibrosis[J]. Pediatric Pulmonology, 2005:39:504–506
    [13] Hancock R.E. Alterations in outer membrane permeability[J].Ann.Rev.Microbiol. 1984,38:237–264.
    [14]张芳,尹德明.呼吸道感染铜绿假单胞菌耐药特点分析[J].医药世界,2006,6:71-72
    [15] Sarkisova S, Patrauchan M.A, Berglund D, et al. Calcium-induced virulence factors associated with the extracelluar matrix of mucoid pseudomonas aeruginosa biofilms [J]. Bacteriology. 2005 ,187(13):4327-4377
    [16] Ehud Banin, Michael L.vasil, GreenbergIron E.peter. Iron and pseudomonas aeruginosa biofilm formation[J]. Microlbiol.2005,102(31):11076-11081
    [17] Caroline, Gordon. Use of Slime Dispersants To Promote Antibiotic Penetration through the Extracellular Polysaccharide of Mucoid Pseudomonas aeruginosa[J]. Antimicrob. Agents Chemother., 1991, 35(6): 1258-1260
    [18] Moller, S., Korber, D.R. Impact of nutrient composition on a degradative biofilm community[J]. Appl. Environ.1997,63:2432-2438
    [19] Geesey, G.G., Wigglesworth-Cooksey, B., et al. Influence of calcium and other cations on surface adhesion of bacteria and diatoms: a review[J]. Biofouling2000. 15:195–205.
    [20] Koerstgens, V., Flemming, H.C. In?uence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa[J]. Water Sci. Technol. 2001,43:49–57.
    [21] Ehud Banin, Keith M. Brady, and E. Peter Greenberg . Chelator-Induced Dispersal and Killing of Pseudomonas aeruginosa Cells in a Biofilm[J]. Microbiology, 2006, 72 (3):2064–2069
    [22]叶海云,侯树坤.细菌生物膜对导管相关性尿路感染的影响[J].中华泌尿外科杂志. 2006,27(2): 135-138
    [23] J.A. Bosch ,E.C.I. Veerman, M. A .Rapid solid-phase fluorimetric assay for measuring bacterialadherence, using DNA-binding stains[J]. Journal of Microbiological Methods,2003, 53 : 51– 56
    [24] Satu Vesterlunda, Johanna Paltta, Measurement of bacterial adhesion—in vitro evaluation of different methods[J]. Journal of Microbiological Methods, 2005,60:225– 233
    [25] Berkeley, R.C.W, Lynch. Microbial Adhesion to Surfaces[M]. London: Ellis Horwood Limited ,1980:79–91
    [26] Chen, X., Stewart, P.S. Role of electrostatic interactions in cohesion ofbacterial biofilms[J]. Appl. Microbiol. Biotechnol.. 2002,59:718–720.
    [27] Costerton, J.W., Lewandowske, Z., Caldwell, D.E. et al. Microbial biofilms[J]. Ann. Rev. Microbiol.1995, 49:711–745.
    [28]杨华,余加林,刘官信.氨溴索对铜绿假单胞菌生物膜早期黏附及胞外多糖的影响[J].中国微生态学杂志,2008,20(2):126-128
    [29] Karin Sauer, Anne K. Camper, Garth D. Ehrlich. Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm[J]. J Bacteriol, 2002,184(4): 1140–1154
    [30]李彤,庄辉.细菌生物膜的研究进展[J].中华微生物学和免疫学杂志.2002,23(3):343-346
    [31] Bauer TT, Torres A, Ferrer R, et al. Biofilm formation in endotracheal tubes.Association between pneumonia and the persistence of pathogens[J]. Monaldi Arch Chest Dis,2002,57(1): 84-87.
    [32] Kobayashi H. Biofilm disease.: its clinical manifestation and therapeutic possibilities using macrolides[J]. Am J Med, 1995,99(6A): 26S-30S.
    [33] Pradeep K. Singh, Amy L. Schaefer. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms [J]. Nature,2000 ,407 :762-764
    [34] Nickel JC, Costerton JW. Bacterial biofilms and catheters: A key to understanding bacterial strategies in catheterassociated urinary tract infections. [J]. J Infect Dis 1992,3:261-267.
    [35]白丹,余加林.铜绿假单胞菌与机体免疫的相互关系[J].中国微生态学杂志,2008,20(1):89-90
    [36]郭生玉,李胜歧.铜绿假单胞菌感染豚鼠后生物被膜形成的研究[J].中华微生物学和免疫学杂志2003,23(4):292-295
    [37]刘晓红,辛德莉.小鼠肺炎支原体肺炎模型的建立及组织病理学评分方法的应用[J].重庆医学,2004,33(90):1338-1340
    [38] N Cimolai, GP Taylor.Definition and application of a histopathological scoring scheme for an animal model of acute Mycoplasma pneumoniae pulmonary infection[J]. Microbiol Immunol, 1992; 36(5): 465-78
    [39] Andy Schaber, W. Jeffrey Triffo. Pseudomonas aeruginosa Forms Biofilms in Acute Infection Independent of Cell-to-Cell Signaling[J]. Infection andimmunity, 2007,75(8):3715–3721
    [40]陈一强闫萍大鼠铜绿假单胞菌慢性肺部感染生物被膜的致病作用研究[J].中华微生物学和免疫学杂志.2005,25(9):718-722
    [41] T Otani, K Katami et al . Nonbacteremic pseudomonas pneumonia in immunosuppressed guinea pigs[J]. Microbiol Immunol ,1982, 26(1): 67-76
    [42] peason JP,Feldman M. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection[J]. Infect Immun,2000,68:4331-4334
    [43]白丹,余加林.铜绿假单胞菌生物膜悬液和藻酸盐对小鼠巨噬细胞吞噬功能的影响[J].中国微生态学杂志.2008,20(4): 337-339
    [44] Ray Hachem, Paul Bshns , et al. EDTA as an adjunct antifungal agent for invasive pulmonary aspergillosis in a rodent model[J]. Animicrobial Agents And Chemotherapy.2006,50(5):1823-1827
    [45] AI Sanchez-Fructuoso, J Blanco. Experimental lead nephropathy: treatment with calcium disodium ethylenediaminetetraacetate[J]. Am J Kidney Dis.2002,40(1): 59-67.
    [46]李冬梅,杨丽莉.小剂量CaNa2EDTA静脉滴注在治疗儿童铅中毒中的应用[J].工业卫生与职业病. 2006, 32( 2):108-110.
    [1]. Karin Sauer, Anne K. Camper, Garth D. Ehrlich, J. William Costerton,1 and David G. Davies. Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm[J]. J Bacteriol, 2002,184(4): 1140–1154
    [2]. P. Stoodley, B. Purevdorj-Gage and J. W. Costerton. Clinical significance of seeding dispersal in biofilms[J]. Microbiology,2005,151:3452-3453
    [3]. Suzanne Wilson, Martin A. Hamilton, Gordon C. Hamilton, Margo R. Schumann, and Paul Stoodley. Statistical Quantification of Detachment Rates and Size Distributions of Cell Clumps from Wild-Type (PAO1) and Cell Signaling Mutant (JP1) Pseudomonas aeruginosa Biofilms[J]. Appl Environ Microbiology, 2004, 70(10):5847–5852
    [4]. C. A. Fux, S. Wilson, and P.Stoodley. Detachment Characteristics and Oxacillin Resistance of Staphyloccocus aureus Biofilm Emboli in an In Vitro Catheter Infection Model[J]. J Bacteriol, July 2004,186(14):4486–4491
    [5]. David A. D’Argenio and Samuel I. Miller. Cyclic di-GMP as a bacterial second messenger[J].microbiology,2004,150:2497-2502
    [6]. Kai M. Thormann, Stefanie Duttler, Renee M. Saville, Mamoru Hyodo, Soni Shukla, Yoshihiro Hayakawa, and Alfred M.Spormann. Control of Formation and Cellular Detachment from Shewanella oneidensis MR-1 Biofilms by Cyclic di-GMP[J]. J Bacteriol, 2006,188(7):2681–2691
    [7]. Ryan Morgan, Steven Kohn, Sung-Hei Hwang, Daniel J. Hassett, and KarinSauer. BdlA, a Chemotaxis Regulator Essential for Biofilm Dispersion in Pseudomonas aeruginosa[J]. J Bacteriol, 2006, 188(21):7335–7343
    [8]. Jeremy S. Webb, Lyndal S. Thompson, Sally James, Tim Charlton, Tim Tolker-Nielsen, Birgit Koch, Michael Givskov, and Staffan Kjelleberg . Cell Death in Pseudomonas aeruginosa Biofilm Development[J].J Bacteriol, 2003, 185(15):4585-4592
    [9]. B. Purevdorj-Gage,1 W. J. Costerton1 and P. Stoodley. Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms.[J]. Microbiology 2005, 151: 1569–1576
    [10]. Ehud Banin, Keith M. Brady, and E. Peter Greenberg . Chelator-Induced Dispersal and Killing of Pseudomonas aeruginosa Cells in a Biofilm[J]. Microbiology, 2006, 72(3):2064–2069
    [11]. Issam Raad, Antonio Buzaid . Minocycline and Ethylenediaminetetraacetate for the Prevention of Recurrent Vascular Catheter Infections[J]. Clin Infect Dis 1997,25(1):149–151
    [12]. Nicolas Barraud, Daniel J. Hassett, Sung-Hei Hwang, Scott A. Rice, Staffan Kjelleberg, and Jeremy S. Webb. Involvement of Nitric Oxide in Biofilm Dispersal of Pseudomonas aeruginosa[J]. J Bacteriol 2006,188(21): 7344–7353
    [13]. Yukihiro Kaneko, Matthew Thoendel, Oyebode Olakanmi, Bradley E. Britigan, and Pradeep K. Singh. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity[J]. J. Clin. Invest, 2007,117(4):877-888
    [14]. Joao B. Xavier, Cristian Picioreanu, Suriani Abdul Rani, Mark C. M. van Loosdrecht2 and Philip S. Stewart. Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix– a modelling study[J]. Microbiology ,2005 ,151: 3817–3832
    [15]. Luanne Hall-Stoodley and Paul Stoodley.Biofilm formation and dispersal and the transmission of human pathogens[J]. Trends M icrobiol 2005,13(1):7-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700