两种天然抗氧化剂对铁离子诱导的羟自由基形成以及细胞毒性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然抗氧化物植酸和秦皮乙素用途广泛。本文以3-羧酸香豆素作为荧光探针研究了植酸、一磷酸腺苷(AMP)、三磷酸腺苷(ATP)、乙烯胺的乙酸衍生物EDTA、NTA和DTPA以及羟自由基清除剂如:二甲基亚砜(DMSO),甲酸(HCOOH)和乙醇(CH_3CH_2OH)对Fenton体系产生羟自由基的影响,同时选取HepG2细胞作为模型,探讨了秦皮乙素对铁参与的生物反应体系的影响,8HQ-Fe与细胞作用30分钟后加入秦皮乙素。
     研究结果表明:植酸可促使Fenton体系产生羟自由基(·OH);AMP和ATP对Fenton体系具有同样的促进作用;乙烯胺的乙酸衍生物EDTA、NTA和DTPA也能够促进·OH的产生;DMSO,HCOOH和CH_3CH_2OH可清除植酸-Fenton体系产生的·OH;同样,植酸可促使VO(Ⅱ)-H_2O_2反应(类Fenton体系)产生·OH;0.1 mM的8-羟基喹啉-铁(1:1)复合物对细胞有较大毒性;秦皮乙素本身对细胞不产生毒性,可保护细胞免受铁离子诱导的毒性,二者呈现一定的剂量-效应关系;秦皮乙素类似物4-甲基七叶苷原和秦皮素也具有相似的剂量-效应关系。
     其机理与铁的络合作用有关。该结果为进一步认识天然抗氧化物植酸和秦皮乙素提供参考。
Phytic acid and esculetin has been widely used as antioxidant. In this study, coumarin-3-caroxylic acid was used as fluorescent probe to detect hydroxyl radical; meanwhile, the effect of esculetin on 8HQ-Fe-induced cell viability was investigated in HepG2 cells. Esculetin was added to the cells 30 min before the addition of 8HQ-Fe.
     The results indicated that: Phytic acid could markedly enhance·OH produced by ferrous iron and hydrogen peroxide; similar enhancing effects were also observed for AMP and ATP;·OH formation could be enhanced by aminoacetic chelating agents such as ethyleneamine ethylenediaminetetraacetic acid (EDTA), diethylenetriamine-penta acetic acid (DTPA) and nitrilotriacetic acid (NTA);·OH produced by Fe/ H_2O_2/phytic acid were markedly inhibited by·OH scanvenging agents such as dimethyl sulfoxide(DMSO), ethanol (CH_3CH_2OH) and formate(HCOOH); similar enhancing effect by phytic acid was observed in the reaction of vanadyl and H_2O_2 (Fenton-like reaction). Esculetin exhibited a dose dependent protection against iron-induced cell toxicity; similar dose-dependent protection was also observed with two other esculetin derivatives such as 6,7-dihydroxy-4-methylcoumarin and 7,8-dihydroxy-6-methoxycoumarin; in the absence of non-toxic esculetin but in the presence of concentrations of 8-hydroxyquinoline-Fe(II) complex (100μM 8-hydroxyquinoline, 100μM ferrous), cell toxicity was observed.
     The results are quite related to the mechanism of iron chelation, which help us know more about the property of these two antioxidants
引文
1.陈瑗,周玫.自由基医学基础与病理生理.北京:人民卫生出版社,2002
    2.陈红霞.植酸的生物学特性与应用.生物学通报,2006,41(2):14-16
    3.陈克然,杨毅军,曹道俊.氧自由基与临床.北京:中国医药出版社,2008
    4.从建波,孙存普.自旋捕集短寿命自由基的低温保存.生物化学与生物物理进展,1993,20(4):326-327
    5.丛玉隆.流式细胞仪及其临床应用.医学检验与临床,2006,17(4):1-2
    6.崔乃杰,崔乃强,傅强.维生素C抗氧化促氧化双向作用的研究.中国中西医结合外科杂志,2004,10(6):419
    7.丁克群.SOD应用研究集.北京:原子能出版社,1991
    8.方允中,李文杰.自由基与酶--基础理论及其在生物学和医学中的应用.北京:科学出版社,1989
    9.方光荣,刘丽明,李玲,刘丽虹,宋功武.羟自由基的流动注射荧光测定.分析科学学报,2004,20(1):63-65
    10.黄进,杨国宇,李宏基.抗氧化剂作用机制研究进展.自然杂志,2003,26(2):76
    11.霍惠敏,李亚洁.氧自由基对脑损伤的作用和维生素的防护作用.南方护理学报,2001,8(1):18
    12.刘向前,刘能保,张敏海.维生素C和维生素E对氢化可的松所致大鼠学习记忆功能损伤的保护作用.华中科技大学学报(医学版),2002,31:238
    13.刘立明,宋功武,刘丽虹,方光荣.流动注射荧光法测定羟自由基.分析化学研究简报,2003,6:723-725
    14.穆光照.自由基反应.北京:高等教育出版社,1985
    15.庞战军,周玫,陈瑗.自由基医学研究方法.北京:人民卫生出版社,2000
    16.任凤莲,吴南,吴心传.茜素紫光度法检测H_2O_2/Co~(2+)产生的羟自由基.中南工业大学学报,2003,3l(6):514-517
    17.宋军,丁映.植酸的提取方法及其应用.贵州农业科学,1995,4:36
    18.王仕良,张曾,黄干强.羟基自由基的产生与测定.造纸科学与技术,2003,22(6):45
    19.徐向荣,王文华,李华斌.化学发光法测定Fenton反应中的羟自由基及其应用.环境科学,1983,19(2):51-54
    20.杨小峰.生物活性氧的荧光表征及新型螺环型荧光探针的研究.[博士学位论文].厦门:厦门大学图书馆,2002
    21.袁倬斌,邹洪.电化学方法测定羟自由基反应速度常数.中国科学技术大学学报,2002,32(3):288-292
    22.曾令武.流式细胞术.微生物与感染,2008,3(2):125-126
    23.张建中.自旋标记ESR波谱的基本理论和应用.北京:科学出版社,1987
    24.张健,秦静芬,曹恩华.DNA损伤的化学发光法测定和茶多酚对它的保护作用.生物物理学报,1996,12(4):691-695
    25.张江峰,任凤莲,王磊.水杨基荧光酮荧光法测定羟自由基的探讨.湖南有色金属,2001,17(3):32-34
    26.张乃东,郑威,郑永臻.褪色光度法测定芬顿体系中产生的羟自由基.分析化学,2003,31(6):723-725
    27.赵士豪,路新利,郭会灿.维生素E保健作用的研究进展.山西食品工业,2005,1:32
    28.赵扬帆,郑宝东.植物多酚类物质及其功能学研究进展.福建轻纺,2006,11:106-110
    29.Barry H,John G.Free radicals in biology and medicine(Third edition).Oxford science publications.1999
    30.Bay B H,Sit K H,Paramanantham R,Chan Y G.Hydroxyl free radicals generated by vanady[Ⅳ]induce cell blebbing in mitotic human Chang liver cells.Bio Metals.,1997,10:119-122
    31.Bendich A.The antioxidant role of vitamine C.Adv.Free Radic.Biol.Med.,1986,16(2):419-423
    32.Biaglow J E,Kachur A V.The generation of hydroxyl radicals in the reaction of molecular oxygen with polyphosphate complexes of ferrous ion.Radiat Res.,1997,148(2):181-187
    33.Blackburn A C,Doe W F,Buffinton G D.Salicylate hydroxylation as an indicator of hydroxyl radical generation in dextran sulfate-induced colitis.Free Radic Biol Med.,1998,25(3):305-313
    34.Boxin O,Maureen H W,Judith F.Novel fluorometric assay for hydroxyl radical prevention capacity.J Agric Food Chem.,2002,50:2772-2777
    35.Cavern C M,Alexander J,Eldridge M,Kushner J P,Bernstein S,Kaplan J.Tissue distribution and clearance kinetics of non-transferrin bound iron in the hypotransferrinnemic mouse:a rodent model of hemachromatosis.Proc.Nat.Acad.Sci.,1987,84:3457-3461
    36.Chen Z L Naidu R.On-column complexation and simultaneous separation of vanadium(Ⅳ) and vanadium(Ⅴ) by capillary electrophoresis with direct UV detection.Anal Bioanal Chem.,2002,374:520-525
    37.Cheng S A,Fung W K,Chan KY.Optimizing electron spin resonance detection of hydroxyl radical in water.Chemosphere.,2003,52:1797-1805
    38.Egan D,O'Kennedy R,Moran E,Cox D,Prosser E,Thomes R D.The pharmacology,metabolism,analysis,and applications of coumarin and coumarin-related compounds.Drug Metab Rev.,1990,22(5):503-529.Review
    39.Fang X W,Mark G,Songntag C V.·OH radical formation by ultrasound in aqueous solutions Part Ⅰ:the chemistry underlying the terephthalate dosimeter.Ultrasonics Sonochemistry.,1996,3:57-63
    40.Floyd R A.Direct demonstration that ferrous ion complexes of di- and triphosphate nucleotides catalyze hydroxyl free radical formation from hydrogen peroxide.Arch Biochem Biophys.,1983,225:263-270
    41.Fukui S,Hanasaki Y,Ogawa S.High-performance liquid chromatographic determination of met hanesulphinic acid as a method for the determination of hydroxyl radicals.J Chromatography.,1993,630:187-193
    42.Glahn R P,Wortley G M,South P K and Miller D D.Inhibition of iron uptake by phytic acid,tannic acid,and ZnCl2:studies using an in vitro digestion/Caco-2cell model.J Agric Food Chem.,2002,50:390-395
    43.Graf E,Mahoney JR,Bryant RG,Eaton JW.Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J Biol Chem., 1984, 259: 3620-3624
    
    44. Graf E, Empson K L, Eaton J W. Phytic acid. A natural antioxidant. J Biol Chem., 1987,262:11647-11650
    
    45. Harrison P M, Hoy T G Ferritin. In: Inoranic Biochemistry., 1973,1(8): 253-279
    
    46. Huigsloot M, Tijdens I B, Mulder G J. Differential regulation of doxorubicin-induced mitochondrialdys function and apoptosis by Bcl-2 in mammary adenocarcinoma(MTLn3) cells. J Biol Chem., 2002, 277(39): 35869
    
    47. Jiang J, Bank J F, Scholes C. Subsecond timeresolved spin trapping followed by stopped-flow EPR of Fenton reaction products. J. Am. Chem. Soc, 1993, 115(11): 4742-4746
    
    48. Jonas S K, Riley P A. The effect of ligands on the uptake of iron by cells in culture. Cell Biochem Fuct., 1991, 9(4): 245-253
    
    49. Kachur A V, Turtle S W, Biaglow J E. Autoxidation of ferrous ion complexes: a method for the generation of hydroxyl radicals. Radiat Res., 1998, 150(4): 475-482
    
    50. Kemal C, Louis-Flamberg P, Krupinski-Olsen R, Shorter A L. Reductive inactivation of soybean lipoxygenase 1 by catechols: a possible mechanism for regulation of lipoxygenase activity. Biochemistry., 1987,26(22): 7064-7072
    
    51. Knecht K T, Mason R P. In vivo spin trapping xenobiotic free radical metabolites. Arch Biochem Biophys., 1993, 303(2): 185-194
    
    52. Knight J A. Diseases related to oxygen-derived free radicals. Ann Clin Lab Sci., 1995,25:111-121
    
    53. Kontoghiorghes G J, Piga A, Hoffbrand A V. Cytotoxic and DNA-inhibitory effects of iron chelators on human leukaemic cell lines. Hematol Oncol., 1986, 4(3): 195-204
    
    54. Li L, Abe Y, Kanagawa K, Shoji T, Mashino T, Mochizuki M, Tanaka M, Miyata N. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals. Anal Chim Acta., 2007, 599(2): 315-319
    
    55. Liebler D C, Kling D S, Reed D J. Antioxidant protection of phospholip bilayers by alpha-tocopherol status and lipid peroxidation by ascorbic acid and glutathione. J Bio Chem., 1986,261: 12114
    
    56. Matt K, Raoul K. Development of a hydroxyl radical ratiometric nanoprobe. Sensors and Actuators B chemical., 2003, 90: 76-81
    
    57. Manevich Y, Held K D, Biaglow J E. Coumarin-3-carboxylic acid as a detector for hydroxyl radicals generated chemically and by gamma radication. Radiation Research., 1997, 148: 580-591
    
    58. Moguilevsky N, Masson P L, Courtoy P L. Lactoferrin uptake and iron processing into macrophages: a study in familial heamachromatosis. Br. J. Haematol., 1987,66: 129-136
    
    59. Okada Y, Miyauchi N, Suzuki K, Kobayashi T, Tsutsui C, Mayuzumi K, Nishibe S, Okuyama T. Search for naturally occurring substances to prevent the complications of diabetes. II. Inhibitory effect of coumarin and flavonoid derivatives on bovine lens aldose reductase and rabbit platelet aggregation. Chem Pharm Bull., 1995,43(8):1385-1387
    
    60. Oubidar M, Boquillon M, Marie C, Bouvier C, Beley A, Bralet J. Effect of intracellular iron loading on lipid peroxidation of brain slices. Free Radic Biol Med., 1996, 21(6): 763-769
    
    61. Phillips J P. The reactions of 8-quinolinol. Chem. Rev., 1956, 56: 271-297
    
    62. Pierre J L, Baret P, Serratrice G Hydroxyquinolines as iron chelators. Curr Med Chem., 2003, 10(12): 1077-1084. Review
    
    63. Pyrzynska K, Wierzbicki T. Determination of vanadium species in environmental samples. Talanta., 2004, 64: 823-829. Review
    
    64. Sekiya K, Okuda H, Arichi S. Selective inhibition of platelet lipoxygenase by esculetin. Biochim Biophys Acta., 1982, 713: 68-72
    
    65. Simionato A V, de Souza G D, Rodrigues-Filho E, Glick J, Vouros P, Carrilho E. Tandem mass spectrometry of coprogen and deferoxamine hydroxamic siderophores. Rapid Commun Mass Spectrom., 2006, 20(2): 193-199
    
    66. Stary J. Systematic study of the solvent extraction of metal 8-Hydroxyquinolinates. Anal. Chim.Acta., 1963,28:132-149
    
    67. Stookey L L. Ferrozine - a new spectrophotometric reagent for iron. Anal Chem., 1970,42:779-782
    
    68. Tai C, Gu X X, Zou H, Guo Q H. A new simple and sensitive fluorometric method for the determination of hydroxyl radical and its application. Talanta., 2002, 58: 661-667
    
    69. Tai C, Peng J F, Liu J F, Jiang G B, Zou H. Determination of hydroxyl radicals in advanced oxidantion processes with dimethyl sulfoxide trapping and liquid chromatography. Analytica Chimica Acta, 2004, 527: 73-80
    
    70. Van Dyke BR, Saltman P. Hemoglobin: a mechanism for the generation of hydroxyl radicals. Free Radic Biol Med., 1996, 20(7): 985-989
    
    71. Vermes J, Haanen C, Steffens N. A novel assay for apoptosis: Flow cytometric detection of phosphatidy lserineex pression on early apoptic cells using fluorescine labeled Annexin V.J Immunol Methods., 1999,184(1): 39-42
    
    72. Yamazaki I, Piette H. EPR pin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide. J. Am. Chem. Soc., 1991, 113:7588-7593
    
    73. Zai D D, Chen S H, Feng Y. Tea polyphenols and quereetin preventing the heart, brain and liver from the injury by free radicals in comparison with ascorbic acid. Chin J Nat Med., 2004,2(4): 223
    
    74. Zhang C A, Zhao B L, Hou J W, Masuyama R T, Masuyama J Y and Xin W J. Beijing : Scavenging and inhibition effect of shark cartilage and super tohgen SOD on oxygen free radicals and cancer. International Symposium on Natural Antioxidants: Molecular Mechanism and Health effects. 1995,196
    
    75. Zhang L, Dong S, Zhu L. Fluorescent dyes of the esculetin and alizarin families respond to zinc ions ratiometrically. ChemCommun(Camb)., 2007,19: 1891-1893
    
    76. Zhu B Z, Zhao H T, Kalyanaraman B, Liu J, Shan G Q, Du Y G, Frei B. Mechanism of metal-independent decomposition of organic hydroperoxides and formation of alkoxyl radicals by halogenated quinones. Proc Natl Acad Sci USA., 2007, 104(10): 3698-3702
    
    77. Zhu B Z, Kalyanaraman B, Jiang G B. Molecular mechanism for metal-independent production of hydroxyl radicals by hydrogen peroxide and halogenated quinones. Proc Natl Acad Sci USA., 2007,104(45): 17575-17578
    
    78. Zhao Y P, Yu W L, Wang D P. Chemiluminescence determination of free radical scavenging abilities of 'tea pigment' and comparison with 'tea polyphenols'. Food Chemistry., 2003, 80: 115-118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700