超临界水氧化技术处理焦化废水的工艺优化及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦化废水是在生产煤气、焦油、焦炭以及其它一些焦化产品的过程中产生的,它主要含有氨氮、酚类、氰化物、硫化物、油份等,属有毒有害难降解的有机工业废水,处理难度很大,焦化废水的处理问题已成为现阶段环境保护领域急需解决的一个难题。
     目前,我国在焦化废水处理方面普遍采用的方法是:首先对高浓度的焦化废水采用溶剂萃取脱酚和蒸氨,经过预处理的出水与其他废水混合后进入废水处理设施,经调节、隔油沉淀、生物处理等过程后排放。这些工艺对酚类、氰化物等易降解有机物有很好的处理效果,但是对于多环芳烃和杂环化合物等难降解有机物的处理效果并不理想,出水COD和氨氮的浓度较高,无法满足废水排放标准的控制要求,给环境和人体带来危害。
     针对目前焦化废水处理效果不理想的情况,本课题研究采用了超临界水氧化法(SCWO)处理的新工艺。超临界水氧化法在处理高浓度难降解废水方面有独特优势,是近年发展起来的一项绿色环保处理技术。本文以超临界水的特性为出发点,详细阐述了SCWO技术的特点,并对国内外在SCWO技术上的研究进展进行了较全面的综述。以此为基础,利用自行设计的SCWO处理装置,以焦化废水中COD、氰化物及硫氰化物为主要研究对象,对其反应规律进行了较深入的研究,得出以下实验结论:
     1、焦化废水的SCWO处理效果较好,在最佳试验条件下,三项指标去除率均可高达95%以上,说明SCWO技术是一种高效水处理技术;
     2、单因素试验结合正交试验结果表明,单因素对于SCWO处理焦化废水中COD去除率影响的大小顺序为:停留时间>过氧倍数>系统温度>系统压力,并得出SCWO技术处理焦化废水的最佳工艺:N=2.5、t=56.34s、T=480℃、P=26MPa;
     3、以双氧水为氧化剂时,在系统温度460℃,反应压力26MPa,停留时间34.16s的条件下,水中COD的去除率与过氧倍数的增加几乎呈线性关系,所拟合方程为:y=21.724+17.726, R2=0.8663,相关系数R较高超过0.9,但当过氧倍数增加到2.5时,它的再增加对于三项指标去除率的影响不大;
     4、对于SCWO处理焦化废水的动力学方面,本实验采用了幂指数方程法,在过氧2.5倍,反应压力26MPa条件下,根据实验所得数据,得出了动力学方程的参数,如下表:
     最后计算得到动力学反应方程的活化能En=37.993KJ/mol,指前因子k0=21.97;
     5、分析阐述了SCWO技术的应用前景,为实现绿色水处理的应用提供了进一步的理论依据,最后总结了SCWO技术工程应用中出现的问题。
Coking wastewater is in the production of gas, tar, coke and other products generated in the process of coking, which contains mostly nitrogen, phenols, cyanide, sulfide, oil, etc, are toxic refractory organic industrial wastewater treatment very difficult problem of coking wastewater treatment has become the field of environmental protection need to be resolved at this stage is a difficult problem.
     At present, the widespread using method of coking wastewater treatment in our country is:First, high concentrations of coking wastewater by solvent extraction from phenol and ammonia, after pretreatment of the water mixed with other waste water into the wastewater treatment facilities, by regulation, grease sedimentation, biological treatment processes before being discharged. The process for phenol, cyanide and other easily biodegradable organic compounds have a good treatment effect, but polycyclic aromatic hydrocarbons and heterocyclic compounds such as the treatment effect of refractory organic matter is not ideal, the effluent COD and ammonia nitrogen high concentration, can not meet control requirements of wastewater discharge standards, bring harm to the environment and the human body.
     In view of the present coking wastewater treatment effect is not the ideal situation, the research uses supercritical water oxidation (SCWO) processing of new technology. Supercritical water oxidation in dealing with high concentrations and hard-degradation waste water has unique advantages, is developed in recent years as a green environmental protection treatment technology. Based on the characteristics of supercritical water as the starting point, this paper expounds the characteristics of SCWO technology at home and abroad, and the research on technology in SCWO reviewed comprehensively reviewed. Based on this, using self-designed SCWO system in coking wastewater treatment plant, COD, cyanide and sulfur in as the main research object, cyanide to its reaction rules were more detailed study, draw the following conclusion:
     1. SCWO treatment of coking wastewater is better, in the experimental condition, three indicators can be as high as 95% removal rate, indicating that SCWO technology is a highly efficient water treatment technology;
     2. The single factor experiment, combined with orthogonal test results show that the single factor for SCWO processing coking wastewater in the size of the CODremoval would affect order:retention time> crosses oxygen multiples> system temperature> system pressure, and draw the SCWO technology for the treatment of the coking wastewater optimal process:N=2.5, t=56.34 s, T= 480℃,P=26MPa;
     3. With hydrogen peroxide as the oxidant, in the system temperature 460℃, reaction pressure of 26MPa, under the conditions of retention time of 34.16s, water under the condition, The removal rate of COD in water increases with the peroxide multiples almost linear relationship.fitting equation is y=21.724+17.726, R2=0.8663,Correlation coefficient R is higher, more than 0.9, but when crosses oxygen increased to 2.5, multiple add to it is little affected removal three indexes;
     4. For the dynamics of SCWO processing coking wastewater, this experiment used the power exponent equation method,under the conditions of 2.5 times in oxygen、reaction pressure 26MPa,according to the experimental data, it is concluded that the dynamic equation of parameters, the list below:
     Finally calculated the activation energy dynamic response equation En= 37.993 KJ/mol, refers to the former factor ko= 21.97;
     5. Analyses the technical application prospect, SCWO for realizing green water processing the application to provide further theoretical basis, finally summarized the SCWO technical engineering application problems, puts forward the corresponding solutions.
引文
[1]王绍文,钱雷,秦华等.焦化废水无害化处理与回用技术[M].北京;冶金工业出版社,2005.
    [2]国家发展改革委.发改委有关负责人就加快焦化行业结构调整答记者问[J/OL].2006.04.27,http://www.chinanews.com.cn//news/2006/2006-04-27/8/723505.shtml.
    [3]陈新宇.催化超临界水氧化技术处理焦化废水的应用研究[D]..天津.天津大学,2007.
    [4]马卫超.浅谈几种焦化废水处理技术[J].科学大众·科学教育,2009,(9):156.
    [5]张昌鸣.李爱英粉煤灰处理焦化废水的研究[J].1998,(6)
    [6]程志久,殷广瑾,杨丽琴等.烟道气处理焦化剩余氨水的研究[J].环境科学学报.2000(5)
    [7]高华.刘坤.紫外光催化氧化处理焦化废水中有机毒物的研究[J].1996(3).
    [8]潘霞霞.硫氰化物对焦化废水稳定达标控制的敏感性分析[D]..广东.华南理工大学,2010.
    [9]钱明.硫氰化物与地方性甲状腺肿[J].中国公共卫生,1994,10(8):379-381.
    [10]冯海兵,杨明德,胡湖生等.硫氰根的γ射线辐照降解研究[J].环境科学,2008,29(6):1578-1581.
    [11]韦朝海,贺明和,任源等.焦化废水污染特征及其控制过程与策略分析[J].环境科学学报,2007,27(7):1083~1093.
    [12]Molonobu Golo,Takatsugu Nada,Satoshi Kawajiri.et.al. Decomposition of municipal sludge by supercritical water oxidation Journal of Chemical Engineering of Japan,1997,30(5):813~818.
    [13]Walrafen G E, Cbu Y C. Ralnan Spectra from Water Vapor to the Supercritical Fluild[J]. Phys Chem B,1999,103:1332-1338.
    [14]周健,陆晓华,王延儒.超临界水的分子动力学模拟.物理化学学报,1999.11(15):1017~1022.
    [15]雷乐成,汪大翠.水处理高级氧化技术[M].北京:化学工业出版社,2002.67-88
    [16]Li L, Chen P, Oloyna E. F. Generalized Kinetic Model for Wet Oxidation of Organic Compounds[J]. AIChE J,1991,37(11):1687~1697.
    [17]Webley P A, Tester J W. Fundamental Kinetics of Methane Oxidation in Supercritical Water. Energy and fuels,1991,5:411~419.
    [18]Rice S F, Croiset E. Oxidation of Simple Alcohols in Supercritical Water 111. Formation.of Intermediates from Ethan01. Ind. Eng. Chem. Res.,2001,40(1): 86~92.
    [19]Li L, Gloyna E. F, Savacki J. E. Treatability of DNT Process Wastewater by Suoercritical Water Oxidation[Jl. Water Env Res,1993a,65(3):250~257.
    [20]Xiang Zhang, Phillp E.Savage. Fast catalytic oxidation of phenol in supercritical water. Catalysis Today,1998,40:333~342.
    [21]Thomason T B.Supercritical water destruction of aqueuous wastes.Hazardous wasters,1984,1(4):453.
    [22]杨志军,梁鑫淼,吴文忠等.含酚废水的超临界水氧化研究进展[J].环境污染治理技术与设备,2002,(11):50-54.
    [23]向波涛,王涛,刘军等.超临界水氧化法处理含硫废水研究[J].化工环保,1999,19(2):75~79.
    [24]Shanableh A.Eattest F.Gloyna,Supercritical water oxidation-wastewaters and sludges,Wat.Sci.Tech,1991,23:389.
    [25]李辉,庄源益,杨克莲,等,超临界水氧化法去除含酚废水TOC的动力学研究,城市环境与城市生态,1999,12(4):1-3.
    [26]M.Jose Cocerro,et al.Study of alternatatives for the design of amobile unit for wastewater treatment by supercritical water oxidation. Journal of Chemical Technology and Biotachnology,2001,76:257~264.
    [27]Thorton T D, Savage P E.Kineties of Phenol Oxidation in SCW[J].AIChEJ,1992,38(2):321~327.
    [28]Li R, Savage P E, et al.2-chloroPhenol Oxidation in SCW:Global Kinetic and Reaction Products[J].AIChE J,1993,39(1):178~187.
    [29]Koo M, Lee W K, Lee C H.New Reactor System for Supercritical Water Oxidation and its Application on Phenol Destruction[J].Chem Eng Sci,1997,52(7):1201~1214.
    [30]Helen H Yang, Charles A.Eckert.Homogeneous catlysis in the oxidation of p—chlorophenol in supercritical water. Ind.Eng. Chem.Res.1988,27:2009~2014.
    [31]Hyeon-Cheol Lee.Decomposition of Ethylenediaminetetra acetic Acid by Superecitical Water Oxidation [J].Industrial & Engineering Chemistry Research,2004,43(13):57-59.
    [32]Dioxin C N, Abraham M A.Conversion of Methane to Methanol by Catalytic Superecitical Water Oxidation [J].Supereritical Fluids,1992,10(5):269~273.
    [33]漆新华,庄源益,袁有才等,超临界水氧化法处理苯胺废水[J].环境污染与防治,2001,23(2):56~58.
    [34]林春绵,袁细宁,沈雁等,e酸在超临界水中的氧化降解[J].高校化学工程学报,2000,14(5):482~483.
    [35]向波涛,陈拓,王涛,沈忠耀.硫酸钠在超临界水中的溶解度的研究.第二届全国超临界流体技术学术及应用研讨会,168-172.
    [36]王亮,王树众,张钦明,等.含油废水的超临界水氧化反应机理及动力学特征[J].西安交通大学学报,2006,40(1),115~119.
    [37]王保峰,卢建树,张九渊等.不锈钢及镍基合金在高温水中的腐蚀研究[J].腐蚀与防护,2001,22(5):187~190.
    [38]Bramlette T T, MillS B E. Hencken K R et al. Destruction of DOE/DP surrogate wastes with supercritical water oxidation technology. Technical Report SAND90— 8229. Sandia National Laboratory,1990.
    [39]咎元峰,王树众,段百齐,等.超临界水氧化技术的研究进展[J].石油化工,2004.33(2):184~189.
    [40]D B Mitton, Han E H, Zhang S H et al.ACS Symposium Series665[M].Washington.DC:SupercriticalFluid,1996.242.
    [41]P Kritzer, N Boukis, E Dinjus, Investigations of the corrosion of reactor materials during the process of supercritical water oxidation(SCWO)[A].In:Goi A.Proceedings of the Sixth Meeting on Supercritical Fluids[C].Nottingham,UK,1999.433-438.
    [42]N. Bonkis, N. Clausseno K.Ebert, R.Janssen, and M. Schacht Corrosion screening tests of high—performance ceramics in supercritical water containing oxygen and hydrochloric acid. Journal of the European Ceramic Society,1997,17(1):71-76.
    [43]M. Schacht, N. Boukis, and E. Dinjus. Corrosion of alumina Ceramics in acidic aqueous solutions at high temperatures and pressures. Journal of Materials Science,2000,35(24): 6251~6258.
    [44]Jianli Yu, Phillip E. Savage. Catalyst activity,stability,and transformations during oxidation in supercritical water[J]. Applied Catalysis B:Envimnmental, 2001,31:123~ 132.
    [45]向波涛,王涛,杨基础.催化超临界水氧化反应研究进展.化工进展,1999,18(6):19-22.
    [46]何磊.高浓度苯胺废水的超临界水氧化降解研究[D].甘肃.兰州理工大学,2010.
    [47]徐玥.超临界水氧化处理模拟染料废水的研究[D].上海.东华大学,2007.
    [48]龚为进.蒸发壁式超临界水氧化反应器处理高浓度有机废水实验研究[D].上海.东华大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700