用户名: 密码: 验证码:
基于金属—有机骨架及其复合材料的液相色谱分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-有机骨架(metal-organic frameworks, MOFs),也称多孔配位聚合物(porous coordination polymers, PCPs),是由金属与有机配体通过配位作用自组装形成的网状骨架结构。因具有比表面积大、结构多样性、孔道尺寸可调、骨架可修饰、热稳定性和化学稳定性良好等优点而广泛应用于分离分析等领域。目前MOFs作为固定相用于气相色谱分离的研究较多,但是作为液相色谱分离介质的研究相对滞后。鉴于高效液相色谱强有力的分离分析能力,本文旨在拓展MOFs在高效液相色谱中的应用种类及分析范围,探索MOFs复合材料作为液相色谱分离介质的潜能。主要研究内容如下:
     (1)开展了通过调控固定相MIL-101(Cr)空配位点的配位状态,实现高效液相色谱分离极性化合物的工作。利用甲醇和MIL-101(Cr)中Cr空配位点的可逆配位能力,在高压匀浆法填充的MIL-101(Cr)色谱柱上,以含有甲醇调控分子的二氯甲烷作为流动相,实现了硝基苯胺、氨基苯酚、萘酚异构体以及磺胺和磺胺二甲基嘧啶的高效分离。将甲醇与具有调控能力的异丙醇及不具备调控能力的乙腈进行对比,证明了流动中甲醇在分离过程中的极性调节作用及配位点修饰作用;通过红外光谱和X-射线电子能谱表征,进一步证明了甲醇和Cr空配位点之间的配位作用。计算了硝基苯胺异构体在分离过程中的吉布斯自由能变化、焓变及熵变,从能量角度说明了流动相中甲醇含量对MIL-101(Cr)色谱柱分离分析物的影响。MIL-101(Cr)色谱柱具有较高的重现性,11次重复分离极性化合物的保留时间、峰高和峰面积的相对标准偏差分别是0.08-0.61%、0.65-2.4%和0.33-2.4%。此外,详细考察了流动相中甲醇含量对分离的影响,并将动态调控分离的模式拓展至另一含有空配位点MOF:MIL-100(Fe)的分离应用。
     (2)开展了MIL-100(Fe)作为色谱固定相,同时用于反相和正相高效液相色谱分离的研究。中性化合物:苯、甲苯、乙苯、萘和1-氯萘以及碱性化合物:苯胺、乙酰苯胺、2-硝基苯胺和1-萘胺作为分析物用于考察MIL-100(Fe)色谱柱的反相色谱分离能力;氯苯胺和甲苯胺异构体作为分析物用于考察MIL-100(Fe)色谱柱的正相色谱分离能力。所有分析物在MIL-100(Fe)色谱柱上都实现了高效和高选择性分离。MIL-100(Fe)色谱柱具有较高的重现性,11次重复进样分离分析物的保留时间、峰面积、峰高和半峰宽的相对标准偏差分别是0.2-0.7%、0.5-3.6%、0.6-2.3%和0.8-1.7%。此外,我们考察了流动相组成、进样量和温度对分离的影响。结果表明,MIL-100(Fe)是一种非常有应用前景并可同时用于反相和正相色谱分离的色谱固定相。
     (3)开展了MOF复合材料作为色谱固定相,用于反相高效液相色谱分离内分泌干扰物和杀虫剂的研究。以羧基修饰的硅球作核,ZIF-8纳米晶作壳,采用层层原位生长的方式制备了具有核-壳结构的SiO2@ZIF-8复合微球。通过控制ZIF-8生长的次数,可控的调节复合微球中ZIF-8的密度。FI-IR、XRD和SEM表征证明了单分散SiO2@ZIF-8复合微球的成功合成。进而考察了SiO2@ZIF-8复合微球作为色谱固定相的分离能力,结果表明SiO2@ZIF-8色谱柱具有较低的背压并能够快速、高效分离内分泌干扰物和杀虫剂。此外,还对比了硅球分离目标物的能力,考察了ZIF-8纳米晶的密度、流动相组成、进样量和温度对分离的影响。结果表明,SiO2@ZIF-8核-壳微球同时具备硅球良好的填充性能以及ZIF-8良好的分离能力,是一种稳定的、有应用前景的复合材料。
     (4)开展了有机聚合物整体柱中掺杂Ui0-66纳米颗粒,用于改善反相高效液相色谱等度分离小分子的研究。以经典甲基丙烯酸整体柱的前驱溶液作为基质,制备了不同Ui0-66掺杂量的整体柱。利用乙腈/水作流动相,在Ui0-66掺杂整体柱上实现了四组小分子分析物:中性多环芳烃(苯、萘、芴、芘、屈);碱性芳香胺类(乙酰苯胺、对氟苯胺、邻硝基苯胺、1-萘胺);酸性苯酚类(间苯二酚、间甲苯酚、2,6-二甲基苯酚、2,6-二氯苯酚)和萘取代物(1-萘酚、1-甲基萘、1-氯萘)的基线分离。通过和未掺杂Ui0-66的整体柱对比,体现了UiO-66的掺杂对小分子分离的改善。UiO-66掺杂整体柱具有较高的重现性,11次重复进样分离化合物的保留时间、峰面积、峰高和半峰宽的相对标准偏差分别是0.02-0.27%,0.33-1.49%,0.35-1.85%和0.19-1.09%。此外,考察了流动相组成、进样量和温度对分离的影响,并对比了Ui0-66掺杂整体柱和甲基丙烯酸整体柱的压力曲线。结果表明,UiO-66掺杂整体柱不仅显著改善了小分子的分离而且具有良好的渗透性,在分离分析领域有潜在的应用价值。
Metal-organic frameworks (MOFs), also called porous coordination polymers (PCPs), are a new class of hybrid inorganic-organic microporous crystalline materials self-assembled from metal ions with organic linkers via coordination bonds. Owing to their fascinating structures and unusual properties, such as large surface area, structural diversity, good thermal and chemical stability, uniform and regulatory pore size, and the availability of framework functionality, MOFs have great potential for separation applications. In the past decade, MOFs have been widely used as stationary phase for gas chromatography. However, researches on the application of MOFs as stationary phase for high performance liquid chromatography (HPLC) have lagged behind. This dissertation focused on the expanding the scope of MOF-based stationary phase and the analytes, and exploring the potential of MOFs composites as separation media for HPLC. The main contents are summarized as follows:
     (1) Metal-organic frameworks (MOFs) with open metal sites have great potential for enhancing adsorption separation of the molecules with different polarities. However, the elution and separation of polar compounds on such MOFs packed columns using nonpolar solvents is difficult due to too strong interaction between polar compounds and the open metal sites. Therefore, the coordination status of the open metal sites in MOFs was controlled by adjusting the content of methanol (MeOH) in the mobile phase for fast and high-resolution separation of polar compounds. To this end, HPLC separation of nitroaniline, aminophenol and naphthol isomers, sulfadimidine, and sulfanilamide on the column packed with MIL-101(Cr) possessing open metal sites was performed. The interaction between the open metal sites of MIL-101(Cr) and the polar analytes was adjusted by adding an appropriate amount of MeOH to the mobile phase to achieve the effective separation of the polar analytes due to the competition of MeOH with the analytes for the open metal sites. Fourier transform infrared spectra and X-ray photoelectron spectra confirmed the interaction between MeOH and the open metal sites of MIL-101(Cr). Thermodynamic parameters were measured to evaluate the effect of the content of MeOH in the mobile phase on the separation of polar analytes on MIL-101(Cr) packed column. The universality of the present approach for the control of the open metal sites of MOFs with MeOH was demonstrated using another MOF containing open metal sites, MIL-100(Fe). This approach provides reproducible and high performance separation of polar compounds on the open metal sites-containing MOFs.
     (2) Metal-organic framework MIL-100(Fe) was explored as a novel stationary phase for both normal-phase and reverse-phase HPLC. Two groups of analytes (benzene, toluene, ethylbenzene, naphthalene and1-chloronaphthalene; aniline, acetanilide,2-nitroaniline and1-naphthylamine) were used to test the separation performance of MIL-100(Fe) in the reverse-phase mode, while the isomers of chloroaniline or toluidine were employed to evaluate its performance in the normal-phase mode. The MIL-100(Fe) packed column gave a baseline separation of all the tested analytes with good precision. The separation was controlled by negative enthalpy change and entropy change in the reverse-phase mode, but positive enthalpy change and entropy change in the normal-phase mode. The relative standard deviations of retention time, peak area, peak height, and half peak width for eleven replicate separations of the tested analytes were0.2-0.7%,0.5-3.6%,0.6-2.3%and0.8-1.7%, respectively. The mesoporous cages, accessible windows, excellent chemical and solvent stability, metal active sites and aromatic pore walls make MIL-100(Fe) a good candidate as novel stationary phase for'both normal-phase and reverse-phase high performance liquid chromatography.
     (3) The unique features of high porosity, shape selectivity and multiple active sites make MOFs promising as novel stationary phases for HPLC. However, the wide particle size distribution and irregular shape of conventional MOFs lead to lower column efficiency of such MOFs-packed columns. Monodisperse SiO2@MOF core-shell microspheres were fabricated as the stationary phase for HPLC to overcome the above-mentioned problems. Zeolitic imidazolate framework-8(ZIF-8) was used as an example of MOFs due to its permanent porosity, uniform pore size, exceptional chemical stability. The unique carboxyl modified silica spheres were used as the support to grow ZIF-8shell. The fabricated monodisperse SiO2@ZIF-8packed columns (5cm long×4.6mm i.d.) show high column efficiency (23000plates m-1for bisphenol A) for the HPLC separation of the endocrine-disrupting chemicals (bisphenol A,β-estradiol and p-(tert-octyl)phenol) and the pesticides (thiamethoxam, hexaflumuron, chlorantraniliprole and pymetrozine) within7min with good relative standard deviations for eleven replicate separations of the analytes (0.01-0.39%,0.65-1.7%,0.70-1.3%and0.17-0.91%for retention time, peak area, peak height, and half peak width, respectively). The SiO2@ZIF-8microspheres combine the advantages of the good column packing properties of the uniform monodisperse silica microspheres and the separation ability of the ZIF-8crystals.
     (4) Metal-organic framework UiO-66has been incorporated into porous poly methylarylic acid-co-ethylene dimetharylate (MAA-co-EDMA) monolith to enhance HPLC separation of small molecules in an isocratic mode. Four groups of small molecules:neutral polycyclic aromatic hydrocarbons (benzene, naphthalene, fluorene, pyrene, chrysene), basic aniline series (acetanilide,4-fluoroaniline,2-nitroaniline,1-naphthylamine), acid phenol series (resorcinol, m-cresol,2,6-dimethylphenol,2,6-dichlorophenol) and naphthyl substitutes (1-naphthol,1-methylnaphthalene,1-chloronaphthalene) were used to test the chromatography separation enhancement on the prepared monolith. Baseline separations of all the tested analytes on UiO-66incorporated monolith were achieved with improved column efficiency compared with the parent monolith. The relative standard deviations of retention time, peak area, peak height, and half peak width for eleven replicate separations of the tested analytes were0.02-0.27%,0.33-1.49%,0.35-1.85%, and0.19-1.09%, respectively. The intrinsic characteristics such as aromatic rings-based structures, carboxylate functional groups and Zr active sites make UiO-66a good candidate as a novel nanomaterial to afford monolithic column for enhancing chromatographic separation of small molecules.
引文
[1]Zaworotko M J. Crystal engineering of diamondoid networks. Chem. Soc. Rev.1994,23, 283-288.
    [2]Batten S R, Robson R. Interpenetrating Nets:Ordered, Periodic Entanglement. Angew. Chem. Int. Ed.1998,37,1460-1494.
    [3]Barton T J, Bull L M, Klemperer W G, et al. Tailored Porous Materials. Chem. Mater.1999, 11,2633-2656.
    [4]Blake A J, Champness N R, Hubberstey P, et al. Inorganic crystal engineering using self-assembly of tailored building-blocks. Coord. Chem. Rev.1999,183,117-138.
    [5]Hagrman P J, Hagrman D, Zubieta J, et al. Organic-inorganic hybrid materials:from "simple" coordination polymers to organodiamine-templated molybdenum oxides. Angew. Chem. Int. Ed.1999,38,2638-2684.
    [6]Khlobystov A N, Blake A J, Champness N R, et al. Supramolecular design of one-dimensional coordination polymers based on silver(Ⅰ) complexes of aromatic nitrogen-donor ligands. Coord. Chem. Rev.2001,222,155-192.
    [7]Moulton B, Zaworotko M J. From molecules to crystal engineering:supramolecular isomerism and polymorphism in network solids. Chem. Rev.2001,101,1629-1658.
    [8]Kitagawa S, Kawata S. Coordination compounds of 1,4-dihydroxybenzoquinone and its homologues structures and properties. Coord. Chem. Rev.2002,224,11-34.
    [9]James S L. Metal-organic frameworks. Chem. Soc. Rev.2003,32,276-288.
    [10]Janiak C. Engineering coordination polymers towards applications. Dalton Trans.2003,0, 2781-2804.
    [11]Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials. Nature 2003,423,705-714.
    [12]Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers. Angew. Chem. Int. Ed.2004,43,2334-2375.
    [13]Hill R J, Long D-L, Champness, N R, et al. New Approaches to the analysis of high connectivity materials:design frameworks based upon 44-and 63-subnet tectons. Ace. Chem. Res.2005,35,335-348.
    [14]Ferey G. Hybrid porous solids:past, present, future. Chem. Soc. Rev.2008,37,191-214.
    [15]Robson R. Design and its limitations in the construction of bi-and poly-nuclear coordination complexes and coordination polymers (aka MOFs):a personal view. Dalton Trans.2008,0,5113-5131.
    [16]Kuppler R J, Timmons D J, Fang Q-R, et al. Potential applications of metal-organic frameworks. Coord. Chem. Rev.2009,253,3042-3066.
    [17]Perry Iv J J, Perman J A, Zaworotko M J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. Chem. Soc. Rev.2009,35,1400-1417.
    [18]Tranchemontagne D J, Mendoza-Cortes J L, O'Keeffe M, et al. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev.2009,38, 1257-1283.
    [19]O'Keeffe M, Yaghi O M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev.2011,112,675-702.
    [20]Abrahams B F, Hoskins B F, Robson R. A honeycomb form of cadmium cyanide. A new type of 3D arrangement of interconnected rods generating infinite linear channels of large hexagonal cross-section. J. Chem. Soc, Chem. Commun.1990,0,60-61.
    [21]Gable R W, Hoskins B F, Robson R. Synthesis and structure of [NMe4][CuPt(CN)4]:an infinite three-dimensional framework related to PtS which generates intersecting hexagonal channels of large cross section. J. Chem. Soc, Chem. Commun.1990,0,762-763.
    [22]Abrahams B F, Hoskins B F, Liu J, et al. The archetype for a new class of simple extended 3D honeycomb frameworks. The synthesis and x-ray crystal structures of Cd(CN)5/3(OH)1/3.1/3(C6H12N4), Cd(CN)2.1/3(C6H12N4), and Cd(Cn)2.2/3H2O.tBuOH (C6H12N4= hexamethylenetetramine) revealing two topologically equivalent but geometrically different frameworks. J. Am. Chem. Soc 1991,113,3045-3051.
    [23]Batten S R, Hoskins B F, Robson R.3D Knitting patterns. Two independent, interpenetrating rutile-related infinite frameworks in the structure of Zn[C(CN)3]2. J. Chem. Soc, Chem. Commun.1991,0,445-447.
    [24]Abrahams B F, Hardie M J, Hoskins B F, et al. Topological rearrangement within a single crystal from a honeycomb cadmium cyanide [Cd(CN)2]n 3D net to a diamond net./. Am. Chem. Soc 1992,114,10641-10643.
    [25]Abrahams B F, Hoskins B F, Michail D M, et al. Assembly of porphyrin building blocks into network structures with large channels. Nature 1994,369,727-729.
    [26]Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002,295,469-472.
    [27]Yadav M, Xu Q. Liquid-phase chemical hydrogen storage materials. Energ. Environ. Sci. 2012,5,9698-9725.
    [28]Wu H, Gong Q, Olson D H, et al. Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem. Rev.2012,112,836-868.
    [29]Sumida K, Rogow D L, Mason J A, et al. Carbon dioxide capture in metal-organic frameworks. Chem. Rev.2012,112,724-781.
    [30]Suh M P, Park H J, Prasad T K, et al. Hydrogen storage in metal-organic frameworks. Chem. Rev.2012,112,782-835.
    [31]Makal T A, Li J-R, Lu W, et al. Methane storage in advanced porous materials. Chem. Soc. Rev.2012,47,7761-7779.
    [32]Liu J, Thallapally P K, McGrail B P, et al. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev.2012,41,2308-2322.
    [33]Getman R B, Bae Y-S, Wilmer C E, et al. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev.2012, 112,703-723.
    [34]Sculley J, Yuan D, Zhou H-C. The current status of hydrogen storage in metal-organic frameworks-updated. Energ. Environ. Sci.2011,4,2721-2735.
    [35]Li J-R, Ma Y, McCarthy M C, et al. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev.2011,255,1791-1823.
    [36]Huegle T, Hartl M, Lentz D. The route to a feasible hydrogen-storage material:MOFs versus ammonia borane. Chem. Eur. J.2011,17,10184-10207.
    [37]Phan A, Doonan C J, Uribe-Romo F J, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res.2010,43,58-67.
    [38]Ma S, Zhou H-C. Gas storage in porous metal-organic frameworks for clean energy applications. Chem. Commun.2010,46,44-53.
    [39]Lin X, Champness N R, Schroeder M. In Functional Metal-Organic Frameworks:Gas Storage, Separation and Catalysis; Schroder, M., Ed.2010; Vol.293, p 35-76.
    [40]Hu Y H, Zhang L. Hydrogen storage in metal-organic frameworks. Adv. Mater.2010,22, E117-E130.
    [41]Xiao B, Yuan Q. Nanoporous metal organic framework materials for hydrogen storage. Particuology 2009,7,129-140.
    [42]Thomas K M. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications:comparison with other nanoporous materials. Dalton Trans.2009,1487-1505.
    [43]Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev.2009,38,1294-1314.
    [44]Li J-R, Kuppler R J, Zhou H-C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev.2009,35,1477-1504.
    [45]Keskin S, Liu J, Rankin R B, et al. Progress, opportunities, and challenges for applying atomically detailed modeling to molecular adsorption and transport in metal-organic framework materials. Ind. Eng. Chem. Res.2009,48,2355-2111.
    [46]Furukawa H, Yaghi O M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc.2009, 131,8875-8883.
    [47]Zhao D, Yuan D, Zhou H-C. The current status of hydrogen storage in metal-organic frameworks. Energ. Environ. Sci.2008,/,222-235.
    [48]Dinca M, Long J R. Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew. Chem., Int. Ed.2008,47,6766-6779.
    [49]Yoon M, Srirambalaji R, Kim K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev.2012,112,1196-1231.
    [50]Dhakshinamoorthy A, Garcia H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem. Soc. Rev.2012,41,5262-5284.
    [51]Ranocchiari M, van Bokhoven J A. Catalysis by metal-organic frameworks:fundamentals and opportunities. Phys. Chem. Chem. Phys.2011,13,6388-6396.
    [52]Liu Y, Xuan, W Cui, Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater.2010,22, 4112-4135.
    [53]Corma A, Garcia H, Llabres I. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev.2010,110,4606-4655.
    [54]Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev.2009,38,1248-1256.
    [55]Lee J, Farha O. K, Roberts J, et al. Metal-organic framework materials as catalysts. Chem. Soc. Rev.2009,38,1450-1459.
    [56]Farrusseng D, Aguado S, Pinel C. Metal-organic frameworks:opportunities for catalysis. Angew. Chem., Int. Ed.2009,48,7502-7513.
    [57]Seo J S, Whang D, Lee H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000,404,982-986.
    [58]Shah M, McCarthy M C, Sachdeva S, et al. Current status of metal-organic framework membranes for gas separations:promises and challenges. Ind. Eng. Chem. Res.2012,5/, 2179-2199.
    [59]Li J-R, Sculley J, Zhou H-C. Metal-organic frameworks for separations. Chem. Rev.2012, 112,869-932.
    [60]Keskin S, van Heest T M, Sholl D S. Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? Chemsuschem 2010,3,879-891.
    [61]Chen B, Xiang S, Qian G Metal-organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res.2010,43,1115-1124.
    [62]Custelcean R, Moyer B A. Anion separation with metal-organic frameworks. Eur. J. Inorg. Chem.2007,1321-1340.
    [63]Achmann S, Hagen G, Kita J, et al. Metal-organic frameworks for sensing applications in the gas phase. Sensors 2009,9,1574-1589.
    [64]Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal-organic frameworks. Chem. Soc. Rev.2009,38,1330-1352.
    [65]Lee T, Liu Z X, Lee H L. A biomimetic nose by microcrystals and oriented films of luminescent porous metal-organic frameworks. Cryst. Growth Des.2011,11,4146-4154.
    [66]Rocha J, Carlos L D, Almeida Paz F A, et al. Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev.2011,40,926-940.
    [67]Sapchenko S A, Samsonenko D G, Dybtsev D N, et al. Microporous sensor:gas sorption, guest exchange and guest-dependant luminescence of metal-organic framework. Dalton Trans.2011,40,2196-2203.
    [68]Cui Y, Yue Y, Qian G, et al. Luminescent functional metal-organic frameworks. Chem. Rev. 2012,112,1126-1162.
    [69]Kreno L E, Leong K, Farha O K, et al. Metal-organic framework materials as chemical sensors. Chem. Rev.2012,112,1105-1125.
    [70]Liu B. Metal-organic framework-based devices:separation and sensors. J. Mater. Chem. 2012,22,10094-10101.
    [71]Robinson A L, Stavila V, Zeitler T R, et al. Ultrasensitive humidity detection using metal-organic framework-coated microsensors. Anal. Chem.2012,84,7043-7051.
    [72]Sun C-Y, Qin C, Wang X-L, et al. Metal-organic frameworks as potential drug delivery systems. Exper. Opin. Drug Deliv.2013,10,89-101.
    [73]Horcajada P, Gref R, Baati, T, et al. Metal-organic frameworks in biomedicine. Chem. Rev. 2012,112,1232-1268.
    [74]Keskin S, Kizilel S. Biomedical applications of metal organic frameworks. Ind. Eng. Chem. Res.2011,50,1799-1812.
    [75]Della Rocca J, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res.2011,44,957-968.
    [76]McKinlay A C, Morris R E, Horcajada, P, et al. BioMOFs:Metal-organic frameworks for biological and medical applications. Angew. Chem. Int. Ed.2010,49,6260-6266.
    [77]Huxford R C, Della Rocca J, Lin W. Metal-organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol.2010,14,262-268.
    [78]Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater.2010,9,172-178.
    [79]Della Rocca J, Lin W. Nanoscale metal-organic frameworks:magnetic resonance imaging contrast agents and beyond. Eur. J. Inorg. Chem.2010,3725-3734.
    [80]Rowe M D, Thamm D H, Kraft S L, et al. Polymer-modified fadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules 2009,10,983-993.
    [81]Petit C, Bandosz T J. MOF-graphite oxide composites:combining the uniqueness of graphene layers and metal-organic frameworks. Adv. Mater.2009,27,4753-4757.
    [82]Taylor K M L, Rieter W J, Lin W. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc.2008,130,14358-14359.
    [83]Cychosz K A, Wong-Foy A G, Matzger A J. Liquid phase adsorption by microporous coordination polymers:removal of organosulfur compounds. J. Am. Chem. Soc.2008,130, 6938-6939.
    [84]Fang Q-R, Makal T A, Young M D, et al. Recent advances in the study of mesoporous metal-organic frameworks. Comment. Inorg. Chem.2010,31,165-195.
    [85]An J, Geib S J, Rosi N L. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J. Am. Chem. Soc.2009,131,8376-8377.
    [86]Imaz I, Rubio-Martinez M, An J, et al. Metal-biomolecule frameworks (MBioFs). Chem. Commun.2011,47,7287-7302.
    [87]Mantion A, Massuger L, Rabu P, et al. Metal-peptide frameworks (MPFs):"bioinspired" metal organic frameworks. J. Am. Chem. Soc.2008,130,2517-2526.
    [88]Liang X-Q, Li D-P, Li C-H, et al. Syntheses, structures, and physical properties of camphorate coordination polymers controlled by semirigid auxiliary ligands with variable coordination positions and conformations. Cryst. Growth Des.2010,10,2596-2605.
    [89]Liu Y, Kravtsov V C, Larsen R, et al. Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities. Chem. Commun.2006,0,1488-1490.
    [90]Park K S, Ni Z, Cote A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci.2006,103,10186-10191.
    [91]F6rey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005,309,2040-2042.
    [92]Humphrey S M, Chang J-S, Jhung S H, et al. Porous cobalt(II)-organic frameworks with corrugated walls:structurally robust gas-sorption materials. Angew. Chem. Int. Ed.2007,46, 272-275.
    [93]Harbuzaru B V, Corma A, Rey F, et al. Metal-organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors. Angew. Chem. Int. Ed.2008,47,1080-1083.
    [94]Park H J, Suh M P. Mixed-ligand metal-organic frameworks with large pores:gas sorption properties and single-crystal-to-single-crystal transformation on guest exchange. Chem. Eur. J.2008,74,8812-8821.
    [95]Chui S S-Y, Lo S M-F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999,283,1148-1150.
    [96]Qiu S, Zhu G. Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties. Coord. Chem. Rev.2009,253,2891-2911.
    [97]Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs):routes to various MOF topologies, morphologies, and composites. Chem. Rev.2012,112,933-969.
    [98]Bradshaw D, Garai A, Huo J. Metal-organic framework growth at functional interfaces:thin films and composites for diverse applications. Chem. Soc. Rev.2012,41,2344-2381.
    [99]Xuan W, Zhu C, Liu Y, et al. Mesoporous metal-organic framework materials. Chem. Soc. Rev.2012,47,1677-1695.
    [100]Rowsell J L C, Millward A R, Park K S, et al. Hydrogen sorption in functionalized metal-organic frameworks. J. Am. Chem. Soc.2004,126,5666-5667.
    [101]Rowsell J L C, Yaghi O M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc.2006,128,1304-1315.
    [102]Wong-Foy A G, Matzger A J, Yaghi O M. Exceptional H2 saturation uptake in microporous metal-organic frameworks. J. Am. Chem. Soc.2006,128,3494-3495.
    [103]Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks. Science 2010,329,424-428.
    [104]Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc.2008,130, 13850-13851.
    [105]Phan A, Doonan C J, Uribe-Romo F J, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res.2009,43,58-67.
    [106]Demessence A, D'Alessandro D M, Foo M L, et al. Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J. Am. Chem. Soc.2009,131,8784-8786.
    [107]Dinca M, Dailly A, Liu Y, et al. Hydrogen storage in a microporous metal-organic framework with exposed Mn2+coordination sites. J. Am. Chem. Soc.2006,128, 16876-16883.
    [108]Dinca M, Long J R. High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal-organic framework Mn3[(Mn4Cl)3(BTT)8(CH30H)10]2.J.Am. Chem. Soc.2007,129,11172-11176.
    [109]Koh K, Wong-Foy A G, Matzger A J. Coordination copolymerization mediated by Zn4O(CO2R)6 metal clusters:a balancing act between statistics and geometry. J. Am. Chem. Soc.2010,132,15005-15010.
    [110]Pichon A, Lazuen-Garay A, James S L. Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 2006,8,211-214.
    [111]Liu Y, Kravtsov V C, Beauchamp D A, et al.4-Connected metal-organic assemblies mediated via heterochelation and bridging of single metal ions:kagome lattice and the M6L12 octahedron. J. Am. Chem. Soc.2005,127,7266-7267.
    [112]Cheon Y E, Suh M P. Multifunctional fourfold interpenetrating diamondoid network:gas separation and fabrication of palladium nanoparticles. Chem. Eur. J.2008,14,3961-3967.
    [113]Lee E Y, Suh M P. A Robust porous material constructed of linear coordination polymer chains:reversible single-crystal to single-crystal transformations upon dehydration and rehydration. Angew. Chem. Int. Ed.2004,43,2798-2801.
    [114]Moon H R, Kim J H, Suh M P. Redox-active porous metal-organic framework producing silver nanoparticles from Agl ions at room temperature. Angew. Chem. Int. Ed.2005,44, 1261-1265.
    [115]Suh M P, Moon H R, Lee E Y, et al. A redox-active two-dimensional coordination polymer: preparation of silver and gold nanoparticles and crystal dynamics on guest removal./. Am. Chem. Soc.2006,128,4710-4718.
    [116]Schwab M G, Senkovska I, Rose M, et al. MOF@PolyHIPEs. Adv. Eng. Mater.2008,10, 1151-1155.
    [117]Kusgens P, Zgaverdea A, Fritz H-G, et al. Metal-organic frameworks in monolithic structures. J. Am. Ceram. Soc.2010,93,2476-2479.
    [118]O'Neill L D, Zhang H, Bradshaw D. Macro-/microporous MOF composite beads. J. Mater. Chem.2010,20,5720-5726.
    [119]Ameloot R, Liekens A, Alaerts L, et al. Silica-MOF composites as a stationary phase in liquid chromatography. Eur. J. Inorg. Chem.2010,2010,3735-3738.
    [120]Kiisgens P, Siegle S, Kaskel S. Crystal Growth of the Metal-organic framework Cu3(BTC)2 on the surface of pulp fibers. Adv. Eng. Mater.2009,11,93-95.
    [121]Rose M, Bohringer B, Jolly M, et al. MOF processing by electrospinning for functional textiles. Adv. Eng. Mater.2011,13,356-360.
    [122]Meilikhov M, Yusenko K, Schollmeyer E, et al. Stepwise deposition of metal organic frameworks on flexible synthetic polymer surfaces. Dalton Trans.2011,40,4838-4841.
    [123]Lohe M R, Gedrich K, Freudenberg T, et al. Heating and separation using nanomagnet-functionalized metal-organic frameworks. Chem. Commun.2011,47,3075-3077.
    [124]Aguado S, Canivet J, Farrusseng D. Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications. Chem. Commun.2010,46, 7999-8001.
    [125]Seo Y-K, Yoon J W, Lee U H, et al. Formation of a nanohybrid composite between mesostructured cellular silica foam and microporous copper trimesate. Micropor. Mesopor. Mater.2012,155,75-81.
    [126]Gorka J, Fulvio P F, Pikus S, et al. Mesoporous metal organic framework-boehmite and silica composites. Chem. Commun.2010,46,6798-6800.
    [127]Petit C, Bandosz T J. Synthesis, characterization, and ammonia adsorption properties of mesoporous metal-organic framework (MIL(Fe))-graphite oxide composites:exploring the limits of materials fabrication. Adv. Fund Mater.2011,21,2108-2117.
    [128]Yang S J, Choi J Y, Chae H K, et al. Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@MOF-5 Hybrid composite. Chem. Mater.2009,21,1893-1897.
    [129]Prasanth K P, Rallapalli P, Raj M C, et al. Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal-organic framework. Int. J. Hydrogen. Energ 2011,36,7594-7601.
    [130]Buso D, Jasieniak J, Lay M D H, et al. Highly luminescent metal-organic frameworks through quantum dot doping. Small 2012,8,80-88.
    [131]Lu G, Hupp J T. Metal-organic frameworks as sensors:a ZIF-8 based fabry-pe'rot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc.2010,132,7832-7833.
    [132]Wu Y-n, Li F, Xu Y, et al. Facile fabrication-of photonic MOF films through stepwise deposition on a colloid crystal substrate. Chem. Commun.2011,47,10094-10096.
    [133]Furukawa S, Hirai K, Nakagawa K, et al. Heterogeneously hybridized porous coordination polymer crystals:fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship. Angew. Chem. Int. Ed.2009,48,1766-1770.
    [134]Koh K, Wong-Foy A G, Matzger A J. MOF@MOF:microporous core-shell architectures. Chem. Commun.2009,6162-6164.
    [135]Babarao R, Jiang J. Molecular screening of metal-organic frameworks for CO2 storage. Langmuir 2008,24,6270-6278.
    [136]Volkringer C, Loiseau T, Haouas M, et al. Occurrence of uncommon infinite chains consisting of edge-sharing octahedra in a porous metal organic framework-type aluminum pyromellitate Al4(OH)8[C10O8H2] (MIL-120):synthesis, structure, and gas sorption properties. Chem. Mater.2009,21,5783-5791.
    [137]Banerjee R, Phan A, Wang B, et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008,319,939-943.
    [138]P6rez-Pellitero J, Amrouche H, Siperstein F. R, et al. Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks:experiments and simulations. Chem. Eur. J.2010,16, 1560-1571.
    [139]Banerjee R, Furukawa H, Britt D, et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties./. Am. Chem. Soc.2009,131,3875-3877.
    [140]Song X, Kim T K, Kim H, Kim D, Jeong S, Moon, H. R, Lah, M. S. Post-synthetic modifications of framework metal ions in isostructural metal-organic frameworks: core-shell heterostructures via selective transmetalations. Chem. Mater.2012,24, 3065-3073.
    [141]Shultz A M, Sarjeant A A, Farha O K, et al. Post-synthesis modification of a metal-organic framework to form metallosalen-containing MOF materials.J. Am. Chem. Soc.2011,133, 13252-13255.
    [142]Cohen S M. Modifying MOFs:new chemistry, new materials. Chem. Sci.2010,1,32-36.
    [143]Wang Z, Cohen S M. Postsynthetic modification of metal-organic frameworks. Chem. Soc. Rev.2009,35,1315-1329.
    [144]Tanabe K K, Wang Z, Cohen S M. Systematic functionalization of a metal-organic framework via a postsynthetic modification approach. J. Am. Chem. Soc.2008,130, 8508-8517.
    [145]Tanabe K K, Cohen S M. Postsynthetic modification of metal-organic frameworks-a progress report. Chem. Soc. Rev.2011,40,498-519.
    [146]Wang Z, Cohen S M. Postsynthetic covalent modification of a neutral metal-organic framework./. Am. Chem. Soc.2007,129,12368-12369.
    [147]Wu C-D, Hu A, Zhang L, et al. A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. J. Am. Chem. Soc.2005,127, 8940-8941.
    [148]Colombo V, Galli S, Choi H J, et al. High thermal and chemical stability in pyrazolate-bridged metal-organic frameworks with exposed metal sites. Chem. Sci.2011,2, 1311-1319.
    [149]Tan Y-X, He Y-P, Zhang J. Tuning MOF stability and porosity via adding rigid pillars. Inorg. Chem.2012,51,9649-9654.
    [150]Jasuja H, Huang Y-g, Walton, K S. Adjusting the stability of metal-organic frameworks under humid conditions by ligand functionalization. Langmuir 2012,28,16874-16880.
    [151]Ma D, Li Y, Li Z. Tuning the moisture stability of metal-organic frameworks by incorporating hydrophobic functional groups at different positions of ligands. Chem. Commun.2011,47,7377-7379.
    [152]Wu T, Shen L, Luebbers M, et al. Enhancing the stability of metal-organic frameworks in humid air by incorporating water repellent functional groups. Chem. Commun.2010,46, 6120-6122.
    [153]Cravillon J, Munzer S, Lohmeier S-J, et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater.2009,21,1410-1412.
    [154]Huang L, Wang H, Chen J, et al. Synthesis, morphology control, and properties of porous metal-organic coordination polymers. Micropor. Mesopor. Mater.2003,55,105-114.
    [155]Tranchemontagne D. J, Hunt J R, Yaghi O M. Room temperature synthesis of metal-organic frameworks:MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008,64, 8553-8557.
    [156]Ni Z, Masel R I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis.J. Am. Chem. Soc.2006,128,12394-12395.
    [157]Jhung S H, Lee J H, Yoon J W, et al. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater.2007,19,121-124.
    [158]Mueller U, Puetter H, Hesse M, et al. WO 2005/049892.
    [159]Richter I, Schubert M, M€uller U. PatentWO2007/131955.
    [160]Mueller U, Schubert M, Teich F, et al. Metal-organic frameworks-prospective industrial applications. J. Mater. Chem.2006,16,626-636.
    [161]Garay A L, Pichon A, James S L. Solvent-free synthesis of metal complexes. Chem. Soc. Rev.2007,36,846-855.
    [162]FriSCic T, Reid D G, Halasz Ⅰ, et al. Ion-and liquid-assisted grinding:improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. Angew. Chem. Int. Ed.2010,49,712-715.
    [163]Yuan W, Friscic T, Apperley D, et al. High reactivity of metal-organic frameworks under frinding conditions:parallels with organic molecular materials. Angew. Chem. Int. Ed.2010, 49,3916-3919.
    [164]Friscic T, Fabian L. Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG). CrystEngComm 2009,11,743-745.
    [165]Qiu L-G, Li Z-Q, Wu Y, et al. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun.2008,3642-3644.
    [166]Son W-J, Kim J, Kim J, et al. Sonochemical synthesis of MOF-5. Chem. Commun.2008,0, 6336.6338.
    [167]Jung D-W, Yang D-A,Kim J,et al.Facile synthesis ofMOF-177 by a sonochemical method using 1-methy1-2-pyrrolidinone as a solvent.Dalton Trans.2010,39,2883-2887.
    [168]Rieter W J,Pott K M,Taylor K M L,et al.Nanoscale coordination polymers for platinum-based anticancer drug delivery.J.m.Chem.Soc.2008,130,11584-11585.
    [169]Rieter W J,Taylor K M L,An H,et al.Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agentts.J. Am.Chem.Soc.2006,128,9024-9025.
    [170]Taylor K M L,Jin A,Lin W.Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging.Angew.Chem.,Int.Ed.2008, 47,7722-7725.
    [171]Yoon J W,Jhung S H,Wang Y K, et al.Gas-sorption selectivity of CUK-1:a porous coordination solid made of cobalt(Ⅱ)and pyridine-2,4-dicarboxylic acid.Adv.Mater.2007, 19,1830-1834.
    [172]Finsy V, Verelst H,Alaerts L,et al.Pore-fillillg-dependent selectivity effects in the vapor-phase separation of xylene isomers on the metal-organic framework MIL-47.J.Am. Chem.Soc.2008,130,7110-7118.
    [173]Finsy V Calero S,Garcia-Perez E,et al.Low-coverage adsorption properties of the metal-organic framework MIL-47 studied by pulse chromatography and Monte Carlo simulations.Phys.Chem.Chem.Phys.2009,11,3515-3521.
    [174]Finsy V, Ma L,Alaerts L,et al.Separation of CO2/CH4 mixtures with the MIL一53(A1) metal-organic framework.Micropor.Mesopor Mater.2009,120,221-227.
    [175]Couck S,Remy T,Baron G V, et al.A pulse chromatographic study of the adsorption properties of the amino-MIL-53(A1)metal-organic framework.Phys.Chem.Chem.Phys. 2010,12,9413-9418.
    [176]Luebbers M T,Wu T,Shen L,et al.Trends in the adsorption of volatile organic compounds in a large-pore metal-organic framework,IRMOF-1.Langmuir,2010,26,11319-11329.
    [177]Gu Z-Y,Jiang D-Q,Wang H-F,et al.Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks.Z Phys.Chem.C 2009, 114,311-316.
    [178]Luebbers M T,Wu T,Shen L,et al.Efects of molecular sieving and electrostatic enhancement in the adsorption of orgaanic compounds on the zeolitic imidazolate framework ZIF-8.Langmuir 2010,26,15625-15633.
    [179]Borjign T,Sun F,Zhang J,et al.A microporous metal-organic framework with high stability for GC separation of alcohols from water Chem.Commun.2012,48,7613-7615.
    [180]Chang N,Gu Z-Y, Yan X-P.Zeolitic imidazolate framework一8 nanocrystal coated capillary for molecular sieving of branched alkanes from linear alkanes along with high-resolution chromatographic separation of linear alkanes.J.Am.Chem.Soc.201O,132,13645-13647.
    [181]Chang N,Yan X-P.Exploring reverse shape selectivity and molecular sieving effect of metal-organic framework UIO-66 coated capillary column for gas chromatographic separation. J. Chromatogr. A 2012,1257,116-124.
    [182]Fan L, Yan X-P. Evaluation of isostructural metal-organic frameworks coated capillary columns for the gas chromatographic separation of alkane isomers. Talanta 2012,99, 944-950.
    [183]Xie S-M, Zhang Z-J, Wang Z-Y, et al. Chiral metal-organic frameworks for high-resolution fas chromatographic separations. J. Am. Chem, Soc.2011,133,11892-11895.
    [184]Nuzhdin A L, Dybtsev D N, Bryliakov K P, et al. Enantioselective chromatographic resolution and one-pot synthesis of enantiomerically pure sulfoxides over a homochiral Zn-organic framework.J.Am. Chem. Soc.2007,129,12958-12959.
    [185]Chen B, Liang C, Yang J, et al. A microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew. Chem. Int. Ed.2006,45,1390-1393.
    [186]Alaerts L, Kirschhock C E A, Maes M et al. Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. Angew. Chem. Int. Ed.2007,46,4293-4297.
    [187]Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations. Chem. Rev.2012, 112,869-932.
    [188]Horcajada P, Gref R, Baati T, et al. Metal-organic frameworks in biomedicine. Chem. Rev. 2012,112,1232-1268.
    [189]Cychosz K A, Ahmad R, Matzger A J. Liquid phase separations by crystalline microporous coordination polymers. Chem. Sci.2010,293-302.
    [190]Maes M, Vermoortele F, Alaerts L, et al. Separating saturated alkylaromatics from their unsaturated analogues using metal-organic frameworks. J. Phys. Chem. C 2011,115, 1051-1055.
    [191]Ameloot R, Liekens A, Alaerts L, et al. Silica-MOF composites as a stationary phase in liquid chromatography. Eur. J. Inorg. Chem.2010,2010,3735-3738.
    [192]Ahmad R, Wong-Foy A G, Matzger A J. Microporous coordination polymers as selective sorbents for liquid chromatography. Langmuir 2009,25,11977-11979.
    [193]Han S, Wei Y, Valente C, et al. Chromatography in a single metal-organic framework (MOF) crystal. J. Am. Chem. Soc.2010,132,16358-16361.
    [194]Yang C-X, Liu S-S, Wang H-F, et al. High-performance liquid chromatographic separation of position isomers using metal-organic framework MIL-53(A1) as the stationary phase. Analyst 2012,137,133-139.
    [195]Liu S-S, Yang C-X, Wang S-W, et al. Metal-organic frameworks for reverse-phase high-performance liquid chromatography. Analyst 2012,137,816-818.
    [196]Xu G, Zhang X, Guo P, et al. Mn(Ⅱ)-based MIL-53 analogues:synthesis using neutral bridging μ2-ligands and application in liquid-phase adsorption and separation of C6-C8 aromatics. J. Am. Chem. Soc.2010,132,3656-3657.
    [197]Alaerts L, Maes M, Giebeler L, et al. Selective adsorption and separation of ortho-substituted alkylaromatics with the microporous aluminum terephthalate MIL-53.J. Am. Chem. Soc.2008,130,14170-14178.
    [198]Maes M, Vermoortele F, Alaerts L, et al. Separation of styrene and ethylbenzene on metal-organic frameworks:analogous structures with different adsorption mechanisms. J. Am. Chem. Soc.2010,15277-15285.
    [199]Alaerts L, Maes M, van der Veen M A, et al. Metal-organic frameworks as high-potential adsorbents for liquid-phase separations of olefins, alkylnaphthalenes and dichlorobenzenes. Phys. Chem. Chem. Phys.2009,11,2903-2911.
    [200]Alaerts L, Maes M, Jacobs P A, et al. Activation of the metal-organic framework MIL-47 for selective adsorption of xylenes and other difunctionalized aromatics. Phys. Chem. Chem. Phys.2008,10,2979-2985.
    [201]Yang C-X, Yan X-P. Metal-organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics. Anal. Chem.2011,83,7144-7150.
    [202]Yang C-X, Chen Y-J, Wang H-F, et al. High-performance separation of fullerenes on metal-organic framework MIL-101(Cr). Chem. Eur. J.2011,17,11734-11737.
    [203]Centrone A, Santiso E E, Hatton T A. Separation of chemical reaction intermediates by metal-organic frameworks. Small 2011,7,2356-2364.
    [204]Gu Z-Y, Yan X-P. Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene. Angew. Chem. Int. Ed. 2010,49,1477-1480.
    [205]Chang N, Gu Z-Y, Wang H-F, et al. Metal-organic frameworks based tandem molecular sieve as a dual platform for selective microextraction and high resolution gas chromatographic separation of n-alkanes inO complex matrices. Anal. Chem.2011,83, 7094-7101.
    [206]Karra J R, Walton K S. Effect of open metal sites on adsorption of polar and nonpolar molecules in metal-organic framework Cu-BTC. Langmuir 2008,24,8620-8626.
    [207]Hoskins B F, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4",4'"-tetracyanotetraphenylmethane]BF4.xC6H5NO2.J. Am. Chem. Soc.1990, 112,1546-1554.
    [208]Hwang Y K, Hong D-Y, Chang J-S, et al. Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101. Appl. Catal. A-Gen.2009,358,249-253.
    [209]Hong D-Y, Hwang Y K, Serre C, et al. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites:surface functionalization, encapsulation, sorption and catalysis. Adv. Funct. Mater.2009,19,1537-1552.
    [210]Henschel A, Gedrich K, Kraehnert R, et al. Catalytic properties of MIL-101. Chem. Commun.2008,4192-4194.
    [211]Latroche M, Surble S, Serre C, et al. Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101.Angew. Chem. Int. Ed.2006,45,8227-8231.
    [212]Wen Y, Li J, Zhang W, et al. Dispersive liquid-liquid microextraction coupled with capillary electrophoresis for simultaneous determination of sulfonamides with the aid of experimental design. Electrophoresis 2011,32,2131-2138.
    [213]Ohyama K, Kishikawa N, Matayoshi K, et al. Sensitive determination of 1-and 2-naphthol in human plasma by HPLC-fluorescence detection with 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride as a labeling reagent. J. Sep. Sci.2009, 32,2218-2222.
    [214]Diaz-Cruz M S, Lopez de Alda M a J, Barcel6 D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC-Trend. Anal. Chem.2003, 22,340-351.
    [215]Oturan M A, Peiroten J, Chartrin P, et al. Complete destruction of p-nitrophenol in aqueous medium by electro-fenton method. Environ. Sci. Technol.2000,34,3474-3479.
    [216]Adrian S. High-rate biodegradation of 3-and 4-nitroaniline. Chemosphere 1999,39, 2325-2346.
    [217]Chung K.-T, Chen S-C, Zhu Y-Y, et al. Toxic effects of some benzamines on the growth of Azotobacter vinelandii and other bacteria. Environ. Toxicol. Chem.1991,16,1366-1369.
    [218]Tingle M D, Pirmohamed M, Templeton E, et al. An investigation of the formation of cytotoxic, genotoxic, protein-reactive and stable metabolites from naphthalene by human liver microsomes. Biochem. Pharmacol.1993,46,1529-1538.
    [219]Dorough H W, Casida J E. Insecticide metabolism, nature of certain carbamate metabolites of insecticide sevin. J. Agric. Food Chem.1964,12,294-304.
    [220]Yoon J W, Seo Y-K, Hwang Y K, et al. Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption. Angew. Chem. Int. Ed.2010,49,5949-5952.
    [221]Loiseau T, Serre C, Huguenard C, et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J.2004,10,1373-1382.
    [222]Snyder L R. Classification of the solvent properties of common liquids. J. Chromatogr. A 1974,92,223-230.
    [223]Vimont A, Goupil J-M, Lavalley J-C, et al. Investigation of acid sites in a zeotypic giant pores chromium(HI) carboxylate. J. Am. Chem. Soc.2006,128,3218-3227.
    [224]Vimont A, Leclerc H, Mauge F, et al. Creation of controlled brensted acidity on a zeotypic mesoporous chromium(III) carboxylate by grafting water and alcohol molecules. J. Phys. Chem.C 2007,111,383-388.
    [225]Busca G, Rossi P F, Lorenzelli V, et al. Microcalorimetric and fourier transform infrared spectroscopic studies of methanol adsorption on alumina.J. Phys. Chem.1985,89, 5433-5439.
    [226]Demessence A, Horcajada P, Serre C, et al. Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr). Chem. Commun.2009,7149-7151.
    [227]Dunlap C J, Carr P W, McNeff C V, et al. Peer reviewed:zirconia stationary phases for extreme separations. Anal. Chem.2001,73,598 A-607 A.
    [228]Almeida Paz, F A, Klinowski J, Vilela S M F, et al. Ligand design for functional metal-organic frameworks. Chem. Soc. Rev.2012,41,1088-1110.
    [229]Gu Z Y, Yang C X, Chang N, et al. Metal-organic frameworks for analytical chemistry:from sample collection to chromatographic separation. Ace. Chem. Res.2012,45,734-745.
    [230]Xie S-M, Zhang Z-J, Wang Z-Y, et al. Chiral metal-organic frameworks for high-resolution gas chromatographic separations.J. Am. Chem. Soc.2011,133,11892-11895.
    [231]Munch A S, Seidel J, Obst A, et al. High-separation performance of chromatographic capillaries coated with MOF-5 by the controlled SBU approach. Chem. Eur. J.2011,17, 10958-10964.
    [232]Gu Z-Y, Jiang J-Q, Yan X-P. Fabrication of isoreticular metal-organic framework coated capillary columns for high-resolution gas chromatographic separation of persistent organic pollutants. Anal. Chem.2011,83,5093-5100.
    [233]Chang N, Gu Z-Y, Wang H-F, et al. Metal-organic frameworks based tandem molecular sieve as a dual platform for selective microextraction and high resolution gas chromatographic separation of n-alkanes in complex matrices. Anal. Chem.2011,83, 7094-7101.
    [234]Horcajada P, Surble S, Serre C, et al. Synthesis and catalytic properties of MEL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun.2007,2820-2822.
    [235]Engelhardt H, Jungheim M. Comparison and characterization of reversed phases. Chromatographia 1990,29,59-68.
    [236]Pratesi G, Bartolini P, Senatra D, et al. Experimental studies of the ortho-toluidine glass transition. Phys. Rev. E 2003,67,021505.
    [237]Marengo E, Gennaro M C, Gianotti V, et al. Optimization of the separation of mono-and dichloroanilines in ion interaction high-performance liquid chromatography. J. Chromatogr. A 1999,863,1-11.
    [238]Alba-Simionesco C, Fan J, Angell C A. Thermodynamic aspects of the glass transition phenomenon. II. Molecular liquids with variable interactions. J. Chem. Phys.1999,110, 5262-5272.
    [239]Sliwka-Kaszynska M, Jaszczolt K, Witt D, et al. High-performance liquid chromatography of di-and trisubstituted aromatic positional isomers on 1,3-alternate 25,27-dipropoxy-26,28-bis-[3-propyloxy]-calix[4]arene-bonded silica gel stationary phase. J. Chromatogr. A 2004,1055,21-28.
    [240]Young T E, Ecker S T, Synovec R E, et al. Bonded stationary phases for reversed phase liquid chromatography with a water mobile phase:application to subcritical water extraction. Talanta 1998,45,1189-1199.
    [241]Foster M D, Synovec R E. Reversed phase liquid chromatography of organic hydrocarbons with water as the mobile phase. Anal. Chem.1996,68,2838-2844.
    [242]Goldberg A P. Comparison of columns for reversed-phase liquid chromatography. Anal. Chem.1982,54,342-345.
    [243]Braude E A, Nachod F C. Determination of Organic Structures by Physical Methods [M]. Academic Press, New York,1955.
    [244]Munch A S, Mertens F O R L. HKUST-1 as an open metal site gas chromatographic stationary phase-capillary preparation, separation of small hydrocarbons and electron donating compounds, determination of thermodynamic data. J. Mater. Chem.2012,22, 10228-10234.
    [245]Fu Y-Y, Yang C-X, Yan X-P. Control of the coordination status of the open metal sites in metal-organic frameworks for high performance separation of polar compounds. Langmuir 2012,28,6794-6802.
    [246]El Osta R, Carlin-Sinclair A, Guillou N, et al. Liquid-phase adsorption and separation of xylene isomers by the flexible porous metal-organic framework MIL-53(Fe). Chem. Mater. 2012,24,2781-2791.
    [247]Tanaka K, Muraoka T, Hirayama D, et al. Highly efficient chromatographic resolution of sulfoxides using a new homochiral MOF-silica composite. Chem. Commun.2012,48, 8577-8579.
    [248]Lee H J, Cho W, Oh M. Advanced fabrication of metal-organic frameworks: template-directed formation of polystyrene@ZIF-8 core-shell and hollow ZIF-8 microspheres. Chem. Commun.2012,48,221-223.
    [249]Aguado S, Canivet J, Farrusseng D. Engineering structured MOF at nano and macroscales for catalysis and separation.J. Mater. Chem.2011,21,7582-7588.
    [250]Ke F, Qiu L-G, Yuan Y-P, et al. Fe3O4@MOF core-shell magnetic microspheres with a designable metal-organic framework shell. J. Mater. Chem.2012,22,9497-9500.
    [251]Silvestre M E, Franzreb M, Weidler P G, et al. Magnetic cores with porous coatings:growth of metal-organic frameworks on particles using liquid phase epitaxy. Adv. Funct. Mater. 2012,25,1210-1213.
    [252]Jo C, Lee H J, Oh M. One-pot synthesis of silica@coordination polymer core-shell microspheres with controlled shell thickness. Adv. Mater.2011,23,1716-1719.
    [253]Sorribas S, Zornoza B, Tellez C, et al. Ordered mesoporous silica-(ZIF-8) core-shell spheres. Chem. Commun.2012,48,9388-9390.
    [254]Bux H, Liang F, Li Y, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc.2009, 131,16000-16001.
    [255]McCarthy M C, Varela-Guerrero V, Barnett G V, et al. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir 2010,26, 14636-14641.
    [256]Li S, Shi W, Lu G, et al. Unconventional nucleation and oriented growth of ZIF-8 crystals on non-polar surface. Adv. Mater.2012,24,5954-5958.
    [257]Kreno L E, Hupp J T, Van Duyne R P. Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem.2010,82,8042-8046.
    [258]Lloyd R Snyder, Joseph J Kirkland, Glajch J L. Practical HPLC Method Development,2nd Edition; 2 ed, Wiley,1997.
    [259]Hermes S, Schroder F, Chelmowski R, et al. Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111).J. Am. Chem. Soc.2005,127,13744-13745.
    [260]Matamoros V, Calderon-Preciado D, Dominguez C, et al. Analytical procedures for the determination of emerging organic contaminants in plant material:A review. Anal. Chim. Acta 2012,722,8-20.
    [261]Shelby M D, Newbold R R, Tully D B, et al. Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environ. Health Persp. 1996,104,1296-1300.
    [262]Sekhon B S. Chiral pesticides. J. Pestic. Sci.2009,34,1-12.
    [263]Kumar A, Malik A K, Pico Y. Sample preparation methods for the determination of pesticides in foods using CE-UV/MS. Electrophoresis 2010,37,2115-2125.
    [264]Liu Q-P, Gao L-X, Gao Z-W, et al. Preparation and characterization of polyimide/silica nanocomposite spheres. Mater. Lett.2007,61,4456-4458.
    [265]Macquarrie D J. Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM. Chem. Commun.1996,1961-1962.
    [266]Steiner T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed.2002,41,48-76.
    [267]Van Deemter J J, Zuiderweg F J, Klinkenberg A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci.1956,5, 271-289.
    [268]Knox J H. Band dispersion in chromatography—a universal expression for the contribution from the mobile zone.J. Chromatogr. A 2002,960,7-18.
    [269]Unger K K, Skudas R, Schulte M M. Particle packed columns and monolithic columns in high-performance liquid chromatography-comparison and critical appraisal. J. Chromatogr. A 2008,1184,393-415.
    [270]Svec F, Frechet J M J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem.1992,64,820-822
    [271]Peters E C, Svec F, Frechet J M J. Preparation of large-diameter "Molded" porous polymer monoliths and the control of pore structure homogeneity. Chem. Mater.1997,9,1898-1902.
    [272]Hjerten S, Yi-Ming Li Y, Liao J-L, et al. Continuous beds:high-resolving, cost-effective chromatographic matrices. Nature 1992,356,810-811.
    [273]Gu B, Chen Z, Thulin C D, et al. Efficient polymer monolith for strong cation-exchange capillary liquid chromatography of peptides.Anal. Chem.2006,75,3509-3518.
    [274]Krenkova J, Lacher N A, Svec F. Control of selectivity via nanochemistry:monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of phosphopeptides. Anal. Chem.2010,82,8335-8341.
    [275]Svec F, Huber C G. Monolithic materials:promises, challenges, achievements. Anal. Chem. 2006,75,2100-2107.
    [276]Miller S. Product review:separations in a monolith. Anal. Chem.2004,76,99 A-101 A.
    [277]Mayr B, Holzl G, Eder K, et al. Hydrophobic, pellicular, monolithic capillary columns based on cross-linked polynorbornene for biopolymer separations. Anal. Chem.2002,74, 6080-6087.
    [278]Arrua R D, Talebi M, Causon T J, et al. Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules. Anal. Chim. Ada 2012,738,1-12.
    [279]Meent M M, Eeltink S, Jong G. Potential of poly(styrene-co-divinylbenzene) monolithic columns for the LC-MS analysis of protein digests. Anal. Bioanal. Chem.2011,399, 1845-1852.
    [280]Wu M, Wu Ra, Li R, et al. Polyhedral oligomeric silsesquioxane as a cross-linker for preparation of inorganic-organic hybrid monolithic columns. Anal. Chem.2010,82, 5447-5454.
    [281]Urban J, Svec F, Frechet J M J. Hypercrosslinking:new approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules. J. Chromatogr. A 2010,1217,8212-8221.
    [282]Nischang Ⅰ, Teasdale Ⅰ, Briiggemann O. Porous polymer monoliths for small molecule separations:advancements and limitations. Anal. Bioanal. Chem.2011,400,2289-2304.
    [283]Meyer U, Svec F, Frechet J M J, et al. Use of stable free radicals for the sequential preparation and surface grafting of functionalized macroporous monoliths. Macromolecules. 2000,33,7769-7775.
    [284]Peters E C, Svec F, Frechet J M J, et al. Control of porous properties and surface chemistry in "Molded" porous polymer monoliths prepared by polymerization in the presence of TEMPO. Macromolecules.1999,32,6377-6379.
    [285]Viklund C, Nordstrom A, Irgum K, et al. Preparation of porous poly(styrene-co-divinylbenzene) monoliths with controlled pore size distributions initiated by stable free radicals and their pore surface functionalization by frafting. Macromolecules.2001,34, 4361-4369.
    [286]Xu Z, Yang L, Wang Q. Different alkyl dimethacrylate mediated stearyl methacrylate monoliths for improving separation efficiency of typical alkylbenzenes and proteins. J. Chromatogr. A 2009,1216,3098-3106.
    [287]Urban J, Svec F, Frechet J M J. Efficient separation of small molecules using a large surface area hypercrosslinked monolithic polymer capillary column. Anal. Chem.2010,82, 1621-1623.
    [288]Coufal P, Cihak M, Suchankova J, et al. Methacrylate monolithic columns of 320 um I.D. for capillary liquid chromatography. J. Chromatogr. A 2002,946,99-106.
    [289]Aoki H, Kubo T, Ikegami T, et al. Preparation of glycerol dimethacrylate-based polymer monolith with unusual porous properties achieved via viscoelastic phase separation induced by monodisperse ultra high molecular weight poly(styrene) as a porogen. J. Chromatogr. A 2006,1119,66-79.
    [290]Svobodova A, Krizek T, Sirc J, et al. Monolithic columns based on a poly(styrene-divinylbenzene-methacrylic acid) copolymer for capillary liquid chromatography of small organic molecules. J. Chromatogr. A 2011,1218,1544-1547.
    [291]Moravcova D, Jandera P, Urban J, et al. Characterization of polymer monolithic stationary phases for capillary HPLC. J. Sep. Sci.2003,26,1005-1016.
    [292]Moravcova D, Jandera P, Urban J, et al. Comparison of monolithic silica and polymethacrylate capillary columns for LC. J. Sep. Sci.2004,27,789-800.
    [293]Greiderer, A, Trojer, L, Huck, C. W, et al. Influence of the polymerisation time on the porous and chromatographic properties of monolithic poly(1,2-bis(p-vinylphenyl))ethane capillary columns. J. Chromatogr. A 2009,1216,1741-1154.
    [294]Plaza-Bolanos P, Frenich A G, Vidal J L M. Polycyclic aromatic hydrocarbons in food and beverages. Analytical methods and trends. J. Chromatogr. A 2010,1217,6303-6326.
    [295]Nischang Ⅰ, Teasdale Ⅰ, Briiggemann O. Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography. J. Chromatogr. A 2010,1217,7514-7522.
    [296]Turson M, Zhou M, Jiang P, et al. Monolithic poly(ethylhexyl methacrylate-co-ethylene dimethacrylate) column with restricted access layers prepared via reversible addition-fragmentation chain transfer polymerization. J. Sep. Sci.2011,34,127-134.
    [297]Zhong Y, Zhou W, Zhang P, et al. Preparation, characterization, and analytical applications of a novel polymer stationary phase with embedded or grafted carbon fibers. Talanta 2010, 82,1439-1447.
    [298]Li Y, Chen Y, Xiang R, et al. Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for u-HPLC and capillary electrochromatography. Anal. Chem.2005,77,1398-1406.
    [299]Chambers S D, Svec F, Frechet J M J. Incorporation of carbon nanotubes in porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. J. Chromatogr. A 2011,1218,2546-2552.
    [300]Chambers S D, Holcombe T W, Svec F, et al. Porous polymer monoliths functionalized through copolymerization of a C60 fullerene-containing methacrylate monomer for highly efficient separations of small molecules. Anal. Chem.2011,83,9478-9484.
    [301]Wang M-M, Yan X-P. Fabrication of fraphene oxide nanosheets incorporated monolithic column via one-step room temperature polymerization for capillary electrochromatography. Anal. Chem.2011,84,39-44.
    [302]Barcia P S, Guimaraes D, Mendes P A P, et al. Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66. Micropor. Mesopor. Mater.2011,139,67-73.
    [303]Scandar J, Milacic R. Applications of methacrylate-based monolithic supports for speciation analysis. J. Sep. Sci.2009,32,2495-2503.
    [304]Schaate A, Roy P, Godt A, et al. Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. Chem. Eur. J.2011,17,6643-6651.
    [305]Martin C, Coyne J, Carta G Properties and performance of novel high-resolution/high-permeability ion-exchange media for protein chromatography. J. Chromatogr. A 2005,1069, 43-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700