用户名: 密码: 验证码:
欧洲黑杨(Populus nigra L.)水、光资源高效利用相关单核苷酸多态性(SNP)研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
欧洲黑杨(Populus nigra L.)是世界主栽杨树品种重要的基因供体,也在我国杨树遗传改良中起重要作用。我国黑杨派基因资源严重不足,仅新疆北部有少量欧洲黑杨分布。近年来我国已陆续从欧洲15个国家引进了许多欧洲黑杨无性系,极大地丰富了我国欧洲黑杨育种资源。我国是严重缺水的国家,土壤干旱缺水严重限制了杨树的生长和木材生产,提高杨树对水分的利用效率、增强抗旱能力,培育节水抗旱的杨树新品种对木材生产和通过绿化改善环境都具有重要意义。光合作用是影响植物生物量积累的重要因素,充分利用环境的光能资源,提高杨树对光能资源的利用能力,培育具有较高光合利用效率的杨树新品种,是高产杨树人工林培育的重要方向。本研究以从国外引进和我国新疆的欧洲黑杨基因资源为材料,对光合利用效率进行了评价,结合之前对水分利用效率(碳稳定同位素比率,δ~(13)C)的评价结果,从水分与光合利用相关功能基因中进行了单核苷酸多态性(SNP)标记的筛选与分析,通过SNP标记在基因资源中的分型并与水分利用效率、光合生理特征和生长性状进行关联分析,开发与目标性状相关联的功能SNP标记,为杨树水分、光合利用性状分子标记辅助育种提供参考。论文主要研究结果如下:
     欧洲黑杨水分及光合利用效率评价。由于之前已完成了水分利用效率的评价,本文着重对光合利用效率进行了评价。对气体交换、叶绿素荧光及生长性状的测定与分析证明,欧洲黑杨基因资源的光合生理和生长性状具有丰富的遗传变异;来自我国和英国的无性系具有较高的净光合速率(Pn),来自匈牙利的无性系叶绿体光系统II(PSII)最大光化学效率(Fv/Fm)最高。各检测参数在欧洲黑杨中具有较高的广义遗传力(H2值在0.750~0.962间)且变异系数较高。分析结果发现,Pn、胞间二氧化碳浓度(Ci)、气孔导度(Gs)和PSII电子传递速率(ETR)等参数指标与欧洲黑杨高生长性状显著相关,在光合利用效率评价中具有潜在的应用价值;起源于南欧和东欧的欧洲黑杨可在进一步的杨树高光效育种研究中作为优良基因型选择的重点。
     欧洲黑杨水分及光合利用相关功能基因SNP的筛选与分析。利用PCR扩增和序列测定,从7个水分利用效率相关基因(SuSY1、dhn、lea3、PIP、Expa1、ERF和GPX1)和2个光合利用效率相关基因(rubisco和Lhcb2)中共筛选出312个SNP位点,SNP频率为1/26 bp。所测序DNA区域的核苷酸多样为θ_W=0.01074和πT=0.00702,高于欧洲山杨(P. tremula)、毛果杨(P. trichocarpa)和多数针叶树种;进化的中性检测结果表明,目标基因DNA区域以低频率突变为主,其中多数非同义突变可能与欧洲黑杨的适应性进化过程有关;GPX1、dhn、lea3和Expa1基因不符合中性进化原则,可能在进化过程中受到产生遗传搭载效应的选择清除作用。不同基因内的连锁不平衡(LD)水平各不相同;欧洲黑杨总体的LD水平较低,r~2值在300 bp的DNA物理距离范围内从0.45降低至0.20以下,该规律与其它多数林木相似,说明欧洲黑杨适合于采用目标基因进行关联分析和功能SNP标记的开发。
     水分利用效率性状(δ~(13)C值)与SNP标记的关联分析。利用SNaPshot技术对SuSY1、lea3、PIP、Expa1和ERF等5个基因的25个SNP位点进行了分型。采用单因素方差分析(ANOVA)和一般线性模型(GLM)分析,对分型的SNP标记与δ~(13)C值进行了关联分析。结果显示,共有6个SNP标记与欧洲黑杨δ~(13)C值显著关联。SNP2为T-C转换,遗传贡献率为7.705%,基因型为TT的欧洲黑杨具有较高的δ~(13)C值。SNP15为G-A转换,并引起编码氨基酸的变化(Val-Ile),遗传贡献率为7.570%;GG基因型的欧洲黑杨具有较高的δ~(13)C值。SNP25、SNP26、SNP27和SNP31均位于Expa1基因内,遗传贡献率为6.436%~6.900%;这4个位点的纯合、杂合基因型频率均具有相似的分布特征,其中SNP25、SNP27和SNP31的TT基因型所对应个体的δ~(13)C值明显高于杂合基因型。
     光合利用效率性状与SNP标记的关联分析。利用SNaPshot技术对rubisco和Lhcb2基因的20个SNP位点进行了分型。采用ANOVA和GLM分析,对分型的SNP标记与光合特征及生长性状进行了关联分析。结果表明,共有4个SNP标记与光合特征及生长性状显著关联。其中SNP12、SNP36和SNP50位于rubisco基因内,SNP12和SNP36为非同义突变,分别导致天冬氨酸(Asn)-组氨酸(His)、酪氨酸(Tyr)-苯丙氨酸(Phe)间的变化;两标记均与ETR值显著关联,其AA基因型欧洲黑杨ETR值高于其它基因型;SNP50同时与Pn、ETR、Fv/Fm、树高和胸径显著关联,CT基因型欧洲黑杨具有较高的ETR值、Fv/Fm值、树高、胸径和较低的Pn值。Lhcb2基因的SNP44与树高性状显著关联,其GG基因型个体具有较大的树高生长量。
Populus nigra L. is an important gene donor for major poplar varieties worldwide, and plays crucial roles in the genetic improvement programs of poplar in China. There is a serious shortage of gene resources of Aigeiros section in China, as P. nigra distributes only across a small area of Northern Xinjiang. In recent years, many P. nigra genotypes were introduced from 15 European countries to China successively, making gene resources of P. nigra substantially increased in our country. China is a nation with a shortage of fresh water, resulting in restrained growth and production of poplar plantations due to insufficient water supply for land soils. Thus, breeding water economic and drought resistance poplar variety by improving its water use efficiency (WUE) and the capacity of drought tolerance is important for poplar production and conservation of environments. Photosynthesis is the key factor that impact biomass accumulation of plants. This makes the breeding of poplar variety with higher photosynthetic-light use efficiency (PUE) is a key point in the establishment of high productive plantations. Such varieties should have high ability of the utility of light resource.
     In this paper, gene resources of P. nigra collected from Europe and Xinjiang were used as materials. PUE was evaluated and single nucleotide polymorphisms (SNPs) within water and photosynthesis-related genes were discovered and analyzed combined with the results of evaluation of WUE (δ~(13)C) studied previously. Functional SNP markers were found by using association analyses between SNPs and related traits, proving a foundation for marker-assistant breeding on water-use and photosynthesis traits in poplar. The main results are described as following:
     Evaluation of WUE and PUE in P. nigra. Since the evaluation of WUE has been done in previous work, this paper focused on the evaluation of PUE. Gas exchange and chlorophyll fluorescence-related parameters were measured in gene resources of P. nigra. The results showed abundant genetic variation for traits of photosynthesis and growth in P. nigra. The genotypes from China and the U.K. have relatively higher values of photosynthesis rate (Pn), while genotypes from Hungry have the highest values of quantum efficiency of chloroplast photosystem II (PSII) centers (Fv/Fm). The measured traits were found to have generally high broad sense heritabilities (H2 ranges from 0.750 to 0.962) with considerable variation coefficients. The results showed that parameters including Pn, intercellular concentration of carbon dioxide (CO2) (Ci), stomatal conductance (Gs) and electron transport rate (ETR) were significantly correlated with height growth, indicating potential applications for the evaluation of PUE in P. nigra. Focus should be on genotypes from counties of Southern and Eastern Europe in further breeding research based on PUE in poplar.
     Discovery and analysis of SNPs from genes that are involved in water and photosynthesis use. A total of 312 single nucleotide polymorphism (SNP) sites are found from seven water-use related (SuSY1, dhn, lea3, PIP, Expa1, ERF, and GPX1) and two photosynthetic-light use related (rubisco and Lhcb2) genes. The median SNP frequency is one site per 26 bp. The average nucleotide diversity for the sequenced regions was calculated to beθ_W=0.01074 andπ_T=0.00702, higher values than those observed in P. tremula, P. trichocarpa and most conifer species. Tests of neutrality for each gene reveal a general excess of low-frequency mutations, and many non-synonymous polymorphisms of these loci might be involved in local adaptation in P. nigra. The results reject neutral evolution at GPX1, dhn, lea3, and Expa1. These loci are likely to be undergoing a selective sweep which can cause hitchhiking effect. The level of linkage disequilibrium (LD) varies among loci. The overall LD in P. nigra is low, decaying rapidly from 0.45 to 0.20 or less within a distance of 300 bp. This is similar to the rate of decay reported in most other tree species, indicating that P. nigra is suitable for association analysis and mining of functional SNP markers based on candidate genes.
     Association analysis between SNPs and WUE trait (δ~(13)C value). A total of 25 SNPs were genotyped using SNaPshot~(?) technology. These SNPs are from five genes, namely SuSY1, lea3, PIP, Expa1, and ERF. Association analysis between marker and trait were carried out using both One-way Analysis of Variance (ANOVA) and General Linear Model (GLM). The results showed six associations between markers andδ~(13)C value. SNP2 shows T-C transition with a genetic effect of 7.705%. The trees with genotype TT at SNP2 have higherδ~(13)C values than that for other genotypes. SNP15 shows G-A transversion with a genetic effect of 7.570%. SNP15 causes an amino acid alteration between Val and Ile, and genotype GG has higherδ~(13)C value. SNP25, SNP26, SNP27 and SNP31 are all located in Expa1, with a genetic effect ranging from 6.436% to 6.900%. One genotype was not detected for each of the four SNPs, and similar patterns of genotype frequency was found among them. For SNP25, SNP27 and SNP31, genotype TT has higherδ~(13)C value than heterozygous genotype, implying similar mechanism responsible for the variation ofδ~(13)C value in P. nigra.
     Association analysis between SNPs and PUE related traits. A total of 20 SNPs were genotyped using SNaPshot? technology. These SNPs are from genes of rubisco and Lhcb2. Association analysis between marker and traits were carried out using both ANOVA and GLM. The results showed that 4 SNPs are closely associated with photosynthesis and growth traits. SNP12, SNP36 and SNP50 are all located in rubisco. Among them, SNP12 and SNP36 are non-synonymous mutations, which result in amino acid alterations of Asn-His and Tyr-Phe, respectively. SNP12 and SNP36 are associated with ETR, and the genotype AA has higher ETR value than other genotypes. SNP50 is associated with Pn, ETR, Fv/Fm, height and diameter, and genotype CT has higher values of ETR, Fv/Fm, height and diameter and lower value of Pn. SNP44 of Lhcb2 is associated with height growth, and the genotype GG has higher height growth than other genotypes.
引文
[1] Vanden BA. EUFORGEN Technical Guidelines for genetic conservation and use for European black poplar (Populus nigra L.). International Plant Genetic Resources Institute, 2003, Rome, pp 1-6
    [2] Eckenwalder JE. Systematic and evolution of Populus. In: Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research Press, 1996, National Council of Canada, Ottawa, pp 7-32
    [3]张宝恩,张鲁男,张宏友,等.新疆特有种-黑杨及其栽培技术.新疆林业, 2005, 2:31
    [4]陈天华.林木遗传改良中基因资源的保护.福建林业科技, 1994, :51-57
    [5]杨敏生,李艳华,梁海永,等.白杨派杂种无性系及其亲本光合和生长对盐胁迫的反应.林业科学, 2006, 41(4):19-26
    [6]付士磊,周永斌,何兴元,等.干旱胁迫对杨树光合生理指标的影响.应用生态学报, 2006, 17(11):2016-2019
    [7]万雪琴,张帆,夏新莉.镉处理对杨树光合作用及叶绿素荧光参数的影响.林业科学, 2008, 44(6):73-78
    [8]吴瑞云,郑红波,王少元,等.空气干旱对美洲黑杨夏秋两季光合生理的影响.现代农业科学, 2008, 15(6):30-32
    [9]周洪华,陈亚宁,李卫红,等.塔里木河下游胡杨气体交换特性及其环境解释.中国沙漠, 2008, 28(4):665-672
    [10] Bassman JH, Zwier JC. Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa×P. deltoides clones. Tree Physiol, 1991, 8(2):145-159
    [11] Rhodenbaugh EJ, Pallardy SG. Water stress, photosynthesis and early growth patterns of cuttings of three Populus clones. Tree Physiol, 1993, 13(3):213-226
    [12] Pilipovi? A, Nikoli? N, Orlovi? S, et al. Cadmium phytoextraction potential of poplar clones (Populus spp.). Z Naturforsch [C], 2005, 60(3-4):247-251
    [13] Donaldson JR, Kruger EL, Lindroth RL. Competition- and resource-mediated tradeoffs between growth and defensive chemistry in trembling aspen (Populus tremuloides). New Phytol, 2006, 169(3):561-570
    [14] Oksanen E, Amores G, Kokko H, et al. Genotypic variation in growth and physiological responses of Finnish hybrid aspen (Populus tremuloides×P. tremula) to elevated tropospheric ozone concentration.Tree Physiol, 2001, 21(16):1171-1181
    [15] Haikio E, Freiwald V, Silfver T, et al. Impacts of elevated ozone and nitrogen on growth and photosynthesis of European aspen (Populus tremula) and hybrid aspen (P. tremula×Populus tremuloides) clones. Can J For Res, 2007, 37(11):2326-2336
    [16] Haikio E, Freiwald V, Julkunen-Tiitto R, et al. Differences in leaf characteristics between ozone-sensitive and ozone-tolerant hybrid aspen (Populus tremula×Populus tremuloides) clones. Tree Physiol, 2009, 29(1):53-66
    [17] Coleman MD, Isebrands JG, Dickson RE, et al. Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. Tree Physiol, 1995, 15(9):585-592
    [18] Coleman MD, Dickson RE, Isebrands JG, et al. Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone. Tree Physiol, 1995, 15(9):593-604
    [19] Wang X, Curtis PS, Pregitzer KS, et al. Genotypic variation in physiological and growth responses of Populus tremuloides to elevated atmospheric CO2 concentration. Tree Physiol, 2000, 20(15):1019-1028
    [20] Rowland DL. Diversity in physiological and morphological characteristics of four cottonwood (Populus deltoides var. wislizenii) populations in New Mexico: evidence for a genetic component of variation. Can J For Res, 2001, 31(5):845-853
    [21] Letts MG, Phelan CA, Johnson DR, et al. Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland. Tree Physiol, 2008, 28(7):1037-1048
    [22] Ceulemans R, Impens I, Steenackers V. Variations in photosynthetic, anatomical, and enzymatic leaf traits and correlations with growth in recently selected Populus hybrids. Can J For Res, 1987, 17(4):273-283
    [23] Casella E, Ceulemans R. Spatial distribution of leaf morphological and physiological characteristics in relation to local radiation regime within the canopies of 3-year-old Populus clones in coppice culture. Tree Physiol, 2002, 22(18):1277-1288
    [24] Urban O, SprtováM, KosvancováM, et al. Comparison of photosynthetic induction and transient limitations during the induction phase in young and mature leaves from three poplar clones. Tree Physiol, 2008, 28(8):1189-1197
    [25]刘建伟,刘雅荣,王世绩.不同杨树无性系光合作用与其抗旱能力的初步研究.林业科学, 1994, 30(1):83-87
    [26] Huang XX, Yin CY, Duan BL, et al. Interactions between drought and shade on growth and physiological traits in two Populus cathayana populations. Can J For Res, 2008, 38(7):1877-1887
    [27]唐静,高建社,符军,等.毛白杨优良无性系抗旱性研究.陕西林业科技, 1995, 23(1):6-11
    [28]杨敏生,彭伟秀,路丙社,等.白杨杂种无性系叶片保水力研究.河北林学院学报, 1996, 11(1):1-5
    [29]狄晓艳,王孟本,陈建文,等.杨树无性系PV曲线水分参数的研究.西北植物学报, 2007, 27(1):0098-0103
    [30]郑书星,樊军锋,苏晓华.欧洲黑杨无性系抗旱性综合鉴定研究.西北林学院学报, 2005, 20(1):57-64
    [31]苏晓华,李义良,黄秦军,等.节水高产优质杨树纸浆材品种综合选育研究.林业科学研究, 2007, 20(5):630-637
    [32] Harvey HP, Van Den Driessche R. Nutrition, xylem cavitation and drought resistance in hybrid poplar. Tree Physiol, 1997, 17(10):647-654
    [33] Harvey HP, Van Den Driessche R. Nitrogen and potassium effects on xylem cavitation and water-use efficiency in poplars. Tree Physiol, 1999, 19(14):943-950
    [34] Sparks JP, Black RA. Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation. Tree Physiol, 1999, 19(7):453-459
    [35] Cochard H, Casella E, Mencuccini M. Xylem vulnerability to cavitation varies among poplar and willow clones and correlates with yield. Tree Physiol, 2007, 27(12):1761-1767
    [36] Chen S, Wang S, Altman A, et al. Genotypic variation in drought tolerance of poplar in relation to abscisic acid. Tree Physiol, 1997, 17(12):797-803
    [37] Tschaplinski TJ, Tuskan GA, Sewell MM, et al. Phenotypic variation and quantitative trait locus identification for osmotic potential in an interspecific hybrid inbred F2 poplar pedigree grown in contrasting environments. Tree Physiol, 2006, 26(5):595-604
    [38] Farquhar GD, O’Leary MH, Berry JA. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol, 1982, 9:121-137
    [39] Farquhar GD, Richards RA. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol, 1984, 11:539-552
    [40]林植芳,彭长连,林桂珠.大豆和小麦不同基因型的碳同位素分馏作用及水分利用效率.作物学报, 2001, 27(4):410-414
    [41] Leffler AJ, Evans AS. Physiological variation among Populus fremontii populations: short- andlong-term relationships between delta13C and water availability. Tree Physiol, 2001, 21(15):1149-1155
    [42] Fischer DG, Hart SC, Whitham TG, et al. Ecosystem implications of genetic variation in water-use of a dominant riparian tree. Oecologia, 2004, 139(2):288-297
    [43] Marron N, Villar M, Dreyer E, et al. Diversity of leaf traits related to productivity in 31 Populus deltoides×Populus nigra clones. Tree Physiol, 2005, 25(4):425-435
    [44] Monclus R, Dreyer E, Delmotte FM, et al. Productivity, leaf traits and carbon isotope discrimination in 29 Populus deltoides×P. nigra clones. New Phytol, 2005, 167(1):53-62
    [45] Monclus R, Dreyer E, Villar M, et al. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides×Populus nigra. New Phytol, 2006, 169(4):765-777
    [46] Dillen SY, Marron N, Koch B, et al. Genetic variation of stomatal traits and carbon isotope discrimination in two hybrid poplar families (Populus deltoides 'S9-2'×P. nigra 'Ghoy' and P. deltoides 'S9-2'×P. trichocarpa 'V24'). Ann Bot (Lond), 2008, 102(3):399-407
    [47]赵凤君,高荣孚,沈应柏,等.水分胁迫下美洲黑杨不同无性系间叶片δ13C和水分利用效率的研究.林业科学, 2005, 41(1):36-41
    [48]赵凤君,沈应柏,高荣孚,等.黑杨杂交无性系间叶片δ13C、长期水平利用效率和光合特性的研究.西北植物学报, 2005, 25(11):2250-2258
    [49]丁明明,苏晓华,黄秦军.欧洲黑杨基因资源稳定碳同位素组成特征.林业科学研究, 2006, 19(3):272-276
    [50]尹伟伦,万雪琴,夏新莉.杨树稳定碳同位素分辨率与水分利用效率和生长的关系.林业科学, 2007, 43(8):15-22
    [51]卢孟柱,卞祖娴.五种杨树叶绿体DNA的提取及RFLP分析.林业科学研究, 1992, 5(4):465-468
    [52] Wagner D B. Nuclear, chloroplast, and mitochodrial DNA polymorphisms as biochemical markers in population genetic analyses of forest trees.New Forests,1992,6:373-390
    [53] Liu Z, Furnier GR. Comparison of allozyme, RFLP, and RAPD markers for revealing genetic variation within and between trembling aspen and bigtooth aspen. Theor Appl Genet, 1993, 87(1-2):97-105
    [54] Vornam B, Herzo G S, Preisig-Muller R, et al. Restriction fragment length polymorphisms of a chloroplast photosystem II gene from poplar and their use for species identification. Genome, 1994,37(5):747-750
    [55]苏晓华,张绮纹,郑先武,等.美洲黑杨(Populus deltoids Marsh)×青杨(P. cathayana Rehd.)分子连锁图谱的构建.林业科学, 1998, 34(6):29-37
    [56]李金花,苏晓华,张绮纹,等.用RAPD标记检测与杨树生长和物候期有关的QTLs.林业科学研究, 1999, 12(2):111-117
    [57]苏晓华,李金花,陈伯望,等.杨树叶片数量性状相关联标记及其图谱定位研究.林业科学, 2000, 36(1):33-40
    [58]尹佟明,黄敏仁,王明庥,等.利用RAPD标记构建响叶杨和银白杨分子标记连锁图谱.植物学报, 1999, 41(9):956-961
    [59]张新叶,尹佟明,诸葛强,等.利用RAPD标记构建美洲黑杨×欧美杨分子标记连锁图谱.遗传, 2000, 22(4):209-213
    [60] Yin TM, Huang MR, Wang MX. Preliminary interspecific genetic maps of the Populus genome constructed from RAPD markers. Genome, 2001, 44(4):602–609
    [61] Yeh FC, Chong DKX, Yang R-C. RAPD variation within and among natural populations of trembling aspen (Populus tremuloides Michx.) from Alberta. J Heredity, 1995, 86(6):454-460
    [62] Rajagopal J, Bashyam L, Bhatia S, et al. Evaluation of genetic diversity in the Himalayan poplar using RAPD markers. Silvae genetica, 2000, 49(2):60-66
    [63] Saito Y, Shiraishi S, Tanimoto T, et al. Genetic diversity of Populus euphratica populations in northwestern China determined by RAPD DNA analysis. New Forests, 2002, 23(2):97-103
    [64]张蕴哲,刘红霞,邬荣领,等.毛新杨×毛白杨AFLP分子遗传图谱.林业科学研究, 2003, 16(5):595-603
    [65]黄秦军,苏晓华,黄烈健,等.美洲黑杨×青杨木材性状QTLs定位研究.林业科学, 2004, 40(2):55-60
    [66]宋红竹,张绮纹,周春江.杨树部分种的AFLP遗传多样性分析.林业科学, 2007, 43(12):64-69
    [67]尹佟明,孙晔,易能君,等.美洲黑杨无性系AFLP指纹分析.植物学报, 1998, 40(8):778-780
    [68] Zhang D, Zhang Z, Yang K. Genetic mapping in (Populus tomentosa×Populus bolleana) and P. tomentosa Carr. using AFLP markers. Theor Appl Genet, 2004, 108(4):657-662
    [69] Arens P, Coops H, Jansen J, et al. Molecular genetic analysis of black poplar (Populus nigra L.) along Dutch rivers. Mol Ecol, 1998, 7(1):11-18
    [70] Winfield MO, Arnold GM, Cooper F, et al. A study of genetic diversity in Populus nigra subsp. betulifolia in the Upper Severn area of the UK using AFLP markers. Mol Ecol, 2002, 7(1):3-10
    [71] Stome V, Vanden Broeck A, Ivens B, et al. Ex-situ conservation of Black poplar in Europe: genetic diversity in nine gene bank collections and their value for nature development. Theor Appl Genet, 2004,108(6):969-981
    [72] Smulders MJM, Cottrell JE, Lefèvre F, et al. Structure of the genetic diversity in black poplar (Populus nigra L.) populations across European river systems: Consequences for conservation and restoration. Forest Ecol Management, 2008, 255(5-6):1388-1399
    [73]黄烈健,苏晓华,张香华,等.与杨树木材密度、纤维性状相关的SSR分析标记.遗传学报, 2004, 31(3):299-304
    [74]张香华,苏晓华,黄秦军,等.欧洲黑杨育种基因资源SSR多态性比较研究.林业科学研究, 2006, 19(4):477-483
    [75]黄秦军,丁明明,张香华,等. SSR标记与欧洲黑杨材性性状的关联分析.林业科学, 2007, 43(2):43-47
    [76] Dayanandan S, Rajora OP, Bawa KS. Isolation and characterization of microsatellites in trembling aspen (Populus tremuloides). Theor Appl Genet, 1998, 96(6-7):950-956
    [77] var der Schoot J, Pospí?kiváM, Vosman B, et al. Development and characterization of microsatellite markers in black poplar (Populus nigra L.) Theor Appl Genet, 2000, 101(1-2):317-322
    [78] Gaudet M, Jorge V, Paolucci I, et al. Genetic linkage maps of Populus nigra L. including AFLPs, SSRs, SNPs, and sex trait. Tree Genet Genomes, 2008, 4(1):25-36
    [79]曾燕如,黄敏仁,王明庥.一种新的分子标记—单核苷酸多态(SNP).南京林业大学学报(自然科学版), 2003, 27(3):84-88.
    [80] Dantec LL, ChagnéD, Pot D, et al. Automated SNP detection in expressed sequence tags: statistical considerations and application to maritime pine sequences. Plant Mol Biol, 2004, 54(3):461-470
    [81] Zhang B, Zhou Y, Zhang L, et al. Identification and validation of single nucleotide polymorphisms in poplar using publicly expressed sequence tags. J Integr Plant Biol, 2005, 47(12):1493-1499
    [82] Pavy N, Parsons LS, Paule C, et al. Automated SNP detection from a large collection of white spruce expressed sequences: contributing factors and approaches for the categorization of SNPs. BMC Genomics, 2006, 7:174
    [83] Kim S, Misra A. SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng, 2007, 9:289-320
    [84]陈冬,吴登俊.单核苷酸多态性检测方法的研究进展.生物技术通报, 2008, 2:93-96,104
    [85] Sokolov BP. Primer extension technique for the detection of single nucleotide in genomic DNA. Nucleic Acids Res, 1990, 18:3671
    [86] Ross P, Hall L, Smirnov I, et al. High level multiplex genotyping by MALDI-TOF mass spectrometry. Nat Biotechnol, 1998, 16:1347-1351
    [87] Haff LA, Smirnov IP. Single-nucleotide polymorphism identification assay using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res, 1997, 7:378-388
    [88] Braun A, Little DP, Koster H. Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin Chem, 1997, 43:1151-1158
    [89] Cashman J, Zhang J, Leushner J, et al. Population distribution of human flavin-containing monooxygenase form 3: gene polymorphisms. Drug metabol Dispos, 2001, 29:1629-1637
    [90] Kim S, Edwards JR, Deng L, et al. Solid phase capturable dideoxynucleotides for multiplex genotyping using mass spectrometry. Nucleic Acids Res, 2002, 30:e85
    [91] Sauer S, Gelfand DH, Boussicault F, et al. Facile method for automated genotyping of single nucleotide polymorphisms by mass spectrometry. Nucleic Acids Res, 2002, 30:e22
    [92] Fei Z, Ono T, Smith LM. MALDI-TOF mass spectrometric typing of single nucleotide polymorphisms with mass-tagged ddNTPs. Nucleic Acids Res, 1998, 26:2827-2828
    [93] Sauer S, Gut IG. Extension of the GOOD assay for genotyping single nucleotide polymorphisms by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom, 2003, 17:1265-1272
    [94] Kim S, Ruparel HD, Gilliam TC, et al. Digital genotyping using molecular affinity and mass spectrometry. Nat Rev Genet, 2003, 4:1001-1008
    [95] Kim S, Ulz ME, Nguyen T, et al. Thirtyfold multiplex genotyping of the p53 gene using solid phase capturable dideoxynucleotides and mass spectrometry. Genomics, 2004, 83:924-931
    [96] Le Hellard S, Ballereau SJ, Visscher PM, et al. SNP genotyping on pooled DNAs: comparison of genotyping technologies and a semi automated method for data storage and analysis. Nucleic Acids Res, 2002, 30:e74
    [97] Sanchez JJ, B?rsting C, Hallenberg C, et al. Multiplex PCR and minisequencing of SNPs-a model with 35 Y chromosome SNPs. Forensic Sci Int, 2003, 137:74-84
    [98] Kennedy GC, Matsuzaki H, Dong S, et al. Large-scale genotyping of complex DNA. Nat Biotechnol, 2003, 21:1233-1237
    [99] Matsuzaki H, Loi H, Dong S, et al. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res, 2004, 14:414-425
    [100] Matsuzaki H, Dong S, Loi H, et al. Genotyping over 10,000 SNPs on a pair of oligonucleotide arrays. Nat Methods, 2004, 1:109-111
    [101] Holland PM, Abramson RD, Watson R, et al. Detection of specific polymerase chain reaction product by utilizing the 5’-3’exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA, 1991, 88:7276-7280
    [102] Livak KJ. Allelic discrimination using fluorogenic probes and the 5’nuclease assay. Genet Anal, 1999, 14:143-149
    [103] Landergren U, Kaiser R, Sanders J, et al. A ligase-mediated gene detection technique. Science, 1988, 241:1077-1080
    [104] Tong AK, Li Z, Jones GS, et al. Combinatorial fluorescence energy transfer tags for multiplex biological assays. Nat Biotechnol, 2001, 19:756-759
    [105] Lyamichev V, Mast AL, Hall JG, et al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat Biotechnol, 1999, 17:292-296
    [106] Ferguson JA, Steemers FJ, Walt DR. High-density fiber-optic DNA random microsphere. Anal Chem, 2000, 72:5618-5624
    [107] Shen R, Fan JB, Campbell D, et al. High-throughout SNP genotyping on universal bead arrays. Mutat Res, 2005, 573:70-82
    [108] Maniatis N. Linkage Disequilibrium Maps and Disease-association Mapping. In: Linkage Disequilibrium and Association Mapping, Methods in Molecular Biology. Humana Press, 2007, 376:109-121
    [109] Rafalski JA. Novel genetic mapping tools in plants: SNP and LD based approaches. Plant Sci, 2002, 162(3):329-333
    [110] Tuskan GA, DiFazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313(5793):1596-1604
    [111] Nordborg M, Hu TT, Ishino Y, et al. The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol, 2005, 3(7):1289-1299
    [112] Caicedo AL, Williamson S, Hernandez RD, et al. Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet, 2007, 3(9):1745-1756
    [113] Brown GR, Gill GP, Kuntz RJ, et al. Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA, 2004, 101(42):15255-15260
    [114] Pot D, McMillan L, Echt C, et al. Nucleotide variation in genes involved in wood formation in two pine species. New Phytol, 2005, 167(1):101-112
    [115] Ingvarsson PK. Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics, 2005, 169(2):945-953
    [116] Krutovsky KV, Neale DB. Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Genetics, 2005, 171(4):2029-2041
    [117] Heuertz M, De Paoli E, Kollman T, et al. Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics, 2006, 174(4):2095-2105
    [118] Savolainen O, Pyhajarvi T. Genomic diversity in forest trees. Curr Opin Plant Biol, 2007, 10(2):162-167
    [119] Gilchrist EJ, Haughn GW, Ying CC, et al. Use of ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol, 2006, 15:1367-1378
    [120] Thumma BR, Nolan MF, Evans R, et al. Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics, 2005, 171(3):1257-1265
    [121] Neale DB, Savolainen O. Association genetics of complex traits in conifers. Trends Plant Sci, 2004, 9(7):325-330
    [122] Yin TM, DiFrazio SP, Gunter LE, et al. Genetic and physical mapping of Melampsora rust resistance genes in Populus and characterization of linkage disequilibrium and flanking genomic sequence. New Phytol, 2004,164(1):95-105
    [123]甘四明,苏晓华.林木基因组学研究进展.植物生理与分子生物学学报, 2006, 32(2):133-142
    [124] Boerjan W. Biotechnology and the domestication of forest trees. Curr Opin Biotechnol, 2005, 16(2):159-166
    [125] González-Martínez SC, Krutovsky KV, Neale DB. Forest tree genomics and adaptive evolution. New Phytol, 2006, 170(2):227-238
    [126]王荣焕,王天宇,黎裕.植物基因组中的连锁不平衡.遗传, 2007, 29(11):1317-1323
    [127] Jorde LB. Linkage disequilibrium and the search for complex disease genes. Genome Res, 2000, 10(10):1435-1444
    [128] Plomion C, Cooke J, Richardson T, et al. Report on the forest trees workshop at the plant and animal genome conference. Comp Funct Genom, 2003, 4(2):229-238
    [129] González-Martínez SC, Wheeler NC, Ersoz E, et al. Association genetics in Pinus taeda L. I. Wood property traits. Genetics, 2007, 175(1):399-409
    [130] Yu JM, Pressoir G, Briggs WH, et al. A unified mixed-model method of association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38(2):203-208
    [131] Neale DB. Genomics to the tree breeding and forest health. Curr Opin Genet Dev, 2007, 17(6):539-544
    [132] Ingvarsson PK, Garcia MV, Luquez V, et al. Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 Locus in European aspen (Populus tremula, Salicaceae). Genetics. 2008, 178(4):2217-2226
    [133] Weiss KM, Clark AG, Linkage disequilibrium and the mapping of complex human traits. Trends Genet, 2002, 18(1):19-24
    [134] Hinds DA, Stuve LL, Nilsen GB, et al. Whole-genome patterns of common DNA variation in three human populations. Science, 2005, 307(5712):1072-1079
    [135] González-Martínez SC, Ersoz E, Brown GR, et al. DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics, 2006, 172(3):1915-1926
    [136] Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989, 123(3):585-595
    [137] Ingvarsson PK, García MV, Hall D, et al. Clinal variation in phyB2, a candidate gene for day- length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula). Genetics, 2006, 172(3):1845-1853
    [138] Joseph JA, Lexer C. A set of novel DNA polymorphisms within candidate genes potentially involved in ecological divergence between Populus alba and P. tremula, two hybridizing European forest tress. Molecular Ecology Resources, 2008, 8(1):188-192
    [139] Jansson S, Douglas CJ. Populus: a model system for plant biology. Annu Rev Plant Biol, 2007, 58:435-458
    [140] Long AD, Langley CH. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res, 1999, 9(8):720-731
    [141]侯爱菊,徐德昌.植物高光效基因工程育种.中国生物工程杂志, 2005, 25(9):19-23
    [142]黄焱,季孔蔗,汤庚国.珍珠黄杨不同扦插继代的荧光特性.东北林业大学学报, 2008,36(10):9-11, 15
    [143]丁明明.欧洲黑杨育种基因资源评价研究.中国林业科学研究院博士学位论文, 2006
    [144] Singh M, Ceccarelli S, Hamblin J. Estimation of heritability from varietal trials data. Theor Appl Genet, 1993, 86(4):437-441
    [145]陈悦;袁隆平;王学华,等. Relationship between grain yield and leaf photosynthetic rate in super hybrid rice.植物生理与分子生物学学报, 2007(3):235-243
    [146] Long S P, Zhu X G, Naidu S L, et al. Can improvement in photosynthesis increase crop yields? Plant Cell Environ, 2006, 29(3):315-330
    [147]周永学,苏晓华,樊军峰,等.引种欧洲黑杨无性系苗期生长测定与选择.西北农林科技大学学报(自然科学版), 2004, 32(10):102-106
    [148] Maxwell K, Johnson G N. Chlorophyll fluorescence―a practical guide. J Exp Bot, 2000, 51(345):659-668
    [149] Schreiber U. Pulse Amplitude (PAM) fluorometry and saturation pulse method. In: Papageorgiou G and Govind jee (eds) Chlorophyll fluorescence: A signature of photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004, pp. 279-319
    [150] Street NR, Skogstr?m O, Sj?din A, et al. The genetics and genomics of the drought response in Populus. Plant J, 2006, 48:321-341
    [151] Jansson S. The light-harvesting chlorophyll a/b binding proteins. Biochim Biophys Acta, 1994, 1184:1-19
    [152] Andersson I, Backlund A. Structure and function of Rubisco. Plant Physiol Bioch, 2008, 46:275-291
    [153] Rozen S, Skaletsky HJ. Primer 3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics: Methods and Protocols (Methods in Molecular Biology). Humana Press, Totowa, NJ, 2000, pp 365-386
    [154] Ewing B, Hillier L, Wendl MC, et al. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res, 1998, 8:175-185
    [155] Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23:2947-2948
    [156] Rozas J, Sánchez-DelBarrio JC, Messeguer X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003, 19:2496-2497
    [157] Watterson GA. On the number of segregating sites in genetical models without recombination. TheorPopul Biol, 1975, 7:256-276
    [158] Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76:5269-5273
    [159] Nei M. Molecular evolutionary genetics. Columbia University Press, New York, NY, 1987
    [160] Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics, 1993, 133:693-709
    [161] Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 1997, 147:915-925
    [162] Kelly JK. A test of neutrality based on interlocus associations. Genetics, 1997, 146:1197-1206
    [163] McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature, 1991, 351:652-654
    [164] Fay JC, Wu C-I. Hitchhiking under positive Darwinian selection. Genetics, 2000, 155:1405-1413
    [165] Hudson RR, Kaplan NL. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics, 1985, 111:147-164
    [166] Hill WG, Robertson A. Linkage disequilibrium in finite populations. Theor Appl Genet, 1968, 38:226-231
    [167] Remington DL, Thornsberry JM, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA, 2001, 98:11479-11484
    [168] Hill WG, Weir BS. Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol, 1988, 33:54-78
    [169] Moriyama EN, Powell JR. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol, 1996, 13:261-277
    [170] Ross-Ibarra J, Wright SI, Foxe JP, et al. Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS One, 2008, 3:e2411
    [171] Ingvarsson PK. Multilocus patterns of nucleotide polymorphism and the demographic history of Populus tremula. Genetics. 2008, 180(1):329-340
    [172] Grossman AR, Bhaya D, Apt KE, et al. Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu Rev Genet, 1995, 29:231-288
    [173] Jansson S. A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci, 1999, 4:236-240
    [174] Rorat Tadeusz. Plant dehydrins-tissue location, structure and function. Cell Mol Biol Lett, 2006,11:536-556
    [175] Cottrell JE, Krystufek V, Tabbener HE, et al. Postglacial migration of Populus nigra L.: lessons learnt from chloroplast DNA. Forest Ecol Manag, 2005, 219:293-312
    [176] Przeworski M. The signature of positive selection at randomly chosen loci. Genetics, 2002, 160:1179-1189
    [177] Hedrick PW. Gametic disequilibrium measures: proceed with caution. Genetics, 1987, 117:331-342
    [178] Flint-Garcia SA, Thornsberry JM, Buckler ES 4th. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54:357-374
    [179] García MV, Ingvarsson PK. An excess of nonsynonymous polymorphism and extensive haplotype structure at the PtABI1B locus in European aspen (Populus tremula): a case of balancing selection in an obligately outcrossing plant? Heredity, 2007, 99(4):381-388
    [180] Kim S, Plagnol V, Hu TT, et al. Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet, 2007, 39:1151-1155
    [181] Mather KA, Caicedo AL, Polato NR, et al. The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics, 2007, 177:2223-2232
    [182] Morrell PL, Toleno DM, Lundy KE, et al. Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self-fertilization. Proc Natl Acad Sci USA, 2005, 102:2442-2447
    [183] Searle SR. Linear models for unbalanced data. John Wiley & Sons, 1987
    [184] Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138:963-971
    [185] Riechmann JL, Heard J, Yu GL, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290:2105-2110
    [186]刘武,戴良英.植物抗逆相关ERF转录因子研究综述.农业生物技术科学, 2007, 23(4):78-81
    [187] Weigel D. The APELATA2 domain is regaled to a novel type of DNA binding domain. Plant Cell,1995,7:388-389
    [188] Zhang JY, Broeckling CD, Blancaflor EB, et al. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J, 2005, 42(5):689-707
    [189] Gao S, Zhang H, Tian Y, et. Expression of TERF1 in rice regulates expression of stress-responsivegenes and enhances tolerance to drought and high-salinity. Plant Cell Rep, 2008, 27(11):1787-1795
    [190] Karaba A, Dixit S, Greco R, et al. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci U S A, 2007, 104(39):15270-15275
    [191]乌云塔娜,孙福山.蔗糖代谢关键酶的分子遗传学研究.内蒙古农业科技, 2007, 35(6):33-36
    [192] Déjardin A, Sokolov LN, Kleczkowski LA. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem J, 1999, 344:503-509
    [193] Cosgrove DJ. Loosening of plant cell walls by expansins. Nature, 2000, 407: 321-326
    [194] Cosgrove DJ. Expansive growth of plant cell walls. Plant Physiology and Biochemistry, 2000, 38 (1-2):109-142.
    [195]牛艳梅,沈文涛,周鹏. Expansin超级家族的进化与命名.广东农业科学, 2007, (8):133-135
    [196]高英,陈乃芝,熊艳梅,等.扩张蛋白在旱稻的免疫组化定位及对旱稻抗旱性的表达分析.自然科学进展, 2006, 16(4):475-479
    [197] An C, Saha S, Jenkins JN, et al. Transcriptome profiling, sequence characterization, and SNP-based chromosomal assignment of the EXPANSIN genes in cotton. Mol Genet Genomics, 2007, 278(5):539-553
    [198] Makino A, Mae T, Ohira K. Purification and storage of ribulose-1,5-bisphosphate carboxylase from rice leaves. Plant Cell Physiol,1983, 24:1169-1173
    [199] Hikosaka K, Shigeno A. The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia, 2009, 160(3):443-451
    [200] Paulsen H. Chlorophyll a/b-binding proteins. Photochem and Photobio, 1995, 63:367-382
    [201]孙钦秒,李良壁,毛大璋,等.豌豆Lhcb2基因在大肠杆菌中的高效表达及其表达产物与色素的重组.中国科学(C辑), 2000, 30(4):363-369
    [202] Standfuss J, Kühlbrandt W. The three isoforms of the light-harvesting complex II: spectroscopic features, trimer formation, and functional roles. J Biol Chem, 2004, 279(35):36884-26891
    [203] González-Martínez SC, Huber D, Ersoz E, et al. Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity, 2008, 101(1):19-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700