城市生活垃圾催化热解的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于世界能源、资源日益紧张以及各种垃圾资源化利用方法的出现,城市垃圾已从单纯收集、运输、处理、填埋的狭窄概念转向抑制垃圾生产、提高垃圾资源化利用率上来。城市垃圾作为一种资源被开发利用已是大势所趋。本文通过介绍国内外的垃圾处理现状,比较填埋法、堆肥法、焚烧法、热解法等的优缺点,显示出垃圾热解技术具有二次污染小,无害化彻底,资源化程度高的特点,将是垃圾处理的重要方向,正引起世界各国研究者的广泛重视。然而目前对垃圾的热解特性还缺乏深入的了解,而且城市生活垃圾成分复杂多样,给垃圾热解带来诸多问题。
     本研究使用自行设计和制造的、旨在模拟工业化实际设备中热解特性的小型可连续进料的外热式催化热解实验装置,以城市生活垃圾为实验物料,进行了大量的实验研究,考察了一些主要参数变量,如温度(600℃~900℃)、物料的组分、加热方式、水蒸气以及白云石催化剂对热解结果的影响,分析了城市生活垃圾外热式热解在不同工况下的产物分布情况、产气特性、热解气体性质、热解焦油以及热解残留半焦的特性。实验结果表明,热解气的产量、成分含量和热值,均随热解温度呈现一定的变化规律,在设定温度为600℃~900℃的范围内,产气量不断上升,其热值先升高后降低,热解溶液产率和半焦产率则呈下降趋势;热解气体主要成分为H2、CO、CH4和CO2,随热解温度的升高,H2和CO的含量增加,CH4和CO2的含量减少;快加热方式比慢加热方式更有利于垃圾的热解产气;水蒸汽的通入能明显提高产气量和CO、H2的含量;白云石能明显提高产气量和CO、H2的含量,并降低焦油的含量,具有较好的催化效果。
Owing to the shortage of energy and resources all over the world and the emergence of different utilization of municipal solid waste (MSW), in recent years, the traditional waste disposal such as simple collection and direct burying have been gradually substituted by some new methods which not only can restrain the yield of trash but also can effectively utilize waste as one kind of resource. By introducing the domestic and overseas disposal status of MSW, and comparing the advantages and disadvantages of some disposal methods, such as landfill, compost, incineration and pyrolysis, it is proved that the pyrolysis technology is one of the most important MSW disposal technics with little secondary pollution, quite innocuity and high reusability. For lack of research on pyrolysis characteristics, many pyrolysis systems of MSW are operated under non-optional conditions.
     To simulate the pyrolysis characteristics of industrial facility, an externally heated catalytic pyrolysis furnace was built. Experiments were carried out using MSW as the testing materials. The influences of parameters such as temperature, components of MSW, heating manner, steam and catalyst were experimentally investigated, and the production distribution, the gas characteristics, the pyrolysis gas quality, the characteristics of the pyrolysis tar and residual char were analyzed. The results showed that as the increasing pyrolysis temperature from 600℃to 900℃,the yield of pyrolysis gas increased, and the yield of the pyrolysis tar and residual char decreased accordingly. The main components of pyrolysis gas were carbon monoxide, hydrogen, methane and carbon dioxide. The contents of CO and H2 increased whilst that of CH4 and CO2 in gaseous components as the pyrolysis temperature increasing or introducing steam. The pyrolysis gas calorific value didn’t ascend along with rise of the pyrolysis temperature. A high heating rate was more advantageous than a low heating rate. As a kind of cheap catalyst, dolomite has good effect on pyrolysis of MSW for enhancing the yield of gas and decreasing the content of tar.
引文
[1]朱亚杰,孙兴文.能源世界之窗.北京:清华大学出版社,2001. 13
    [2]解强,边炳鑫,赵由才.城市固体废弃物能源化利用技术.北京:化学工业出版社,2004. 31
    [3]刘刚,沈镭.中国生物质能源的定量评价及其地理分布.自然资源学报,2007, 22(1):9~19
    [4] S. Galvagno, S. Casu, T. Casabianca, et al. Pyrolysis process for the treatment of scrap tyres: preliminary experimental results. Waste Management, 2002, 22: 917-923
    [5]杜吴鹏,高庆先,张恩琛等.中国城市生活垃圾排放现状及成分分析.环境科学研究,2006,19(5):85~90
    [6]王明武.城市生活垃圾处理方法综述.矿山环保,2000,1: 13
    [7]张于峰,邓娜,李新禹等.城市生活垃圾的处理方法及效益评价.自然科学进展,2004,14(8):863~869
    [8] Nickolas J Themelis. An overview of the global waste-to-energy industry. Waste Manage World, 2003, (4): 40~47.
    [9]李国刚.我国城市生活垃圾处理处置的现状与问题.环境保护,2000,4:35~38
    [10]李晓东.中国部分城市生活垃圾热值的分析.中国环境科学,2001,21(2):156
    [11] Williams P T. Pollutants from incineration: An overview. In: Hester R E, et al. eds. Waste Incineration and the Environment, Bath: Press, 1994
    [12]杨国清等.固体废物处理工程.北京:科学出版社,2000. 191~216
    [13]张进锋,聂永丰.垃圾处理领域的技术发展和启示.环境科学研究,2006,19(1):57~63
    [14] Alexander Klein, Kevin Whiting, Egan Archer, et al. Gasification and pyrolysis, J.Waste Manage World, 2004, (5): 71—75
    [15] Interstate Waste Technologies Inc. The ultimate solid waste solution EB/OL. http://www.interstatewastetechnologies.com/tec.dev.htm, 2002/ 2005.
    [16]卢苇,马一太.垃圾焚烧的发展趋势分析.太阳能学报,2002,23(6):799~804.
    [17] European Union. Council directive 1999/31/EC of 26 April 1999 on the landfill of waste Z. Brussels: Official Journal of the European Communities, Legislation 182, 1999. 1~19.
    [18] European Union. Directive 2004/12/EC of the European parliament and of the council of 11 February 2004 amending directive 94/62/EC on packaging and packaging waste Z. Brussels: Official Journal of the European Communities, Legislation 47, 2004, 26-32.
    [19] DSD. The future of municipal waste landfilling in Germany Z. Germany: Der Grüne Punkt-Duales System Deutschland Aktiengesellschaft, 2002. 1-6
    [20] Office of Solid Waste and Emergency Response, USEPA. Municipal solid waste in the United States: 2001 facts and figures executive summary R. USA: Office of Solid Waste and Emergency Response, USEPA, 2003.
    [21]建设部,中国城市建设统计年报Z,北京:中国建筑工业出版社,2005.
    [22]杜吴鹏,高庆先,张恩琛等.中国城市生活垃圾处理及趋势分析.环境科学研究,2006,19(6):115~120
    [23] Zabaniotou A A, Roussos A I, Koroneos C J. A laboratory study of cotton gin waste pyrolysis[J]. Janal Appl Pyrolysis, 2000, 56 (1): 47-59.
    [24] Kiran A N, Ekinc I E, Snape C E. Recyling of plastic wastes via pyrolysis [J]. Resource Conserv Recycle, 2000, 29(4): 273-283.
    [25]苏学泳,王智微,,程从明等.生物质在流化床中的热解和气化研究.燃料化学学报, 2002, 28(4):298~305.
    [26] L. Helsen, E. Van den Bulck, J. S. Hery. Total recycling of CCA treated woodwaste by low-temperature pyrolysis. Waste Management, 1998, 18: 571-578
    [27] M. N. Islam, M. R. A. Beg. The fuel properties of pyrolysis liquid derived from urban solid waste in Bangladesh. Hioresource technology, 2004, 92: 181-186
    [28]宋玉银.城市有机固体废弃物的热解研究,环境科学与技术,1992, 10(3): 9~13.
    [29]何品晶,邵立明,陈正夫等.污水厂污泥低温热化学转化过程机理研究.中国环境科学,1998,(1):39~42.
    [30]李爱民.城市固体废弃物在回转窑内运动特性及热解特性的研究:[博士学位论文]。浙江杭州:浙江大学,1999.
    [31]李爱民,严建华,李水清等.城市垃圾在回转窑中热解:热解焦油特性研究.燃料科学与技术,2000,6(3):195~199.
    [32]李爱民,李晓东,李水清等.回转窑热解城市垃圾制造中热值燃气的试验研究.化工学报,1999,52: 101~107.
    [33]张力,屈超蜀.城市生活垃圾物性与热解特性的实验研究.环境科学学报. 2000, 20 (5): 645~648.
    [34]江淑琴.生物质燃料的燃烧与热解特性.太阳能学报,1995, 16(1):40~48.
    [35]廖洪强,姚强等. TGA技术研究城市生活垃圾焚烧特性.燃料化学学报,2001,29(2):140~143.
    [36]宋玉银.城市有机固体废弃物的热解研究.环境保护科学,1992, 18(3):43~50
    [37]解强,边炳鑫,赵由才等.城市固体废弃物能源化利用技术.北京:化学工业出版社,2004:158
    [38]陈冠益.生物质热解实验与机理研究[博士学位论文],浙江杭州:浙江大学,1999
    [39]李水清,李爱民,严建华等.生物质废弃物在回转窑内热解研究――热解条件对热解产物分布的影响.太阳能学报,2000,21(4):333~340
    [40]赵由才.生活垃圾资源化原理与技术.北京:化学工业出版社,2002. 113
    [41]张衍国,吕俊复.国内外城市垃圾能源化焚烧技术发展现状及前景.环境保护,1998,(7):38~41.
    [42]郭新生,梁益武,方梦祥等.焦油的催化裂解对燃气组成的影响.煤气与热力,2005,25(8):5~10
    [43]赵国靖,李海涛,豆斌林等.高温煤气中焦油组分的催化裂解.煤气与热力,2001,21(1):3~6.
    [44] Garcia X A, Alarcon N A, Gordon A L. Steam Gasification of Tars Using a CaO Catalyst [J]. Fuel Processing Technology. 1999, 58: 101.
    [45] Carin M, Christina H, et al. Catalytic tar decomposition of biomass pyrolysis gas with a combination of dolomite and silica [J]. Biomass and Bioenergy, 2002 (23): 217-227.
    [46] Narvaez I, Corella J, Orio A. Fresh tar elimination over a commercial steam-reform catalyst: Kinetics and effect of different variable of operation [J]. Ind Eng Chem Res, 1997, 36(2): 317-327.
    [47] Courson C, Makaga E, Petit C, et al. Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam- and dry-reforming [J]. Catalysis Today, 2000, 63(24): 427-437.
    [48] Delgado J., Aznar M. P., Corella J. Calcined dolomite, magnesite and calcite for cleaning hot gas from a fluidized bed biomass gasifier with steam: Life and usefulness. Ind. Eng. Chem. Res., 1996, 35: 3637-3643
    [49] Delgado J., Aznar M. P. Biomass gasification with steam in fluidized bed: Effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Ind. Eng. Chem. Res., 1997, 36:1535-1543
    [50] Aznar M. P., Caballero M. A. , Gil J., Martín J. A., Corella J. Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2. Catalytic tar removal. Ind. Eng. Chem. Res. , 1998, 37: 2668-2680
    [51] Delgado J, Aznar M P. Biomass gasification with steam in fluidized bed:Effectiveness of CaO, MgO and CaO-MgO for hot raw gas cleaning. Ind Eng Chem Res, 1997, 36: 1535-1543
    [52]张晓东,骆仲泱,周劲松等.焦油催化裂化催化剂积炭失活的实验研究.燃料化学学报,2004,32(5):542~546
    [53]吴创之,马隆龙.生物质能现代化利用技术.北京:化学工业出版社,2003.
    [54]蒋剑春,戴伟娣,应浩等.城市垃圾气化试验研究初探.可再生能源,2003,(2):14~17.
    [55]胡冠,徐绍平,刘淑琴.生物质催化气化制氢催化剂研究进展.林产化学与工业,2005,25(增刊):161~164
    [56] R. V. nindoria, Jin-Yee Lim and J.E. Hawkes et al. Structural characterization of biomass pyrolysis tars/oils from eucalyptus wood waste: Effect of H2 pressure and sample configuration, Fuel, 1997, 76:1013~1023
    [57] Guanxing Chen, Qizhuang Yu and Krister Sjostrom. Reactivity of char from pyrolysis of birch wood, J. Anal. Appl. Pyrolysis, 1997, 40:491~499.
    [58]张力,冉景煜,屈超蜀.城市生活垃圾物性与热解特性的实验研究.环境科学学报,2000,20(5):645~647.
    [59] (美)安里拉L.安德森.废物与燃料.北京:科学技术文献出版社,1984. 98
    [60]江建方.城市生活垃圾外热式热解技术的研究:[博士学位论文]。华中科技大学,2006.
    [61]张晓东,周劲松,骆仲泱.催化裂化生物质焦油构成变化.燃料化学学报,2005,23(5):582~585.
    [62]金余其,严建华等. PVC热解动力学的研究. 2001,29(4):380~384
    [63]张无敌. 21世纪发展生物质能前景广阔.中国能源,2001,(5):35
    [64]张全国.生物质焦油热物理特性研究.华中农业大学学报,2001,(5):493~496

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700