聚苯胺制备和改性及其与氢相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机导电聚合物具有众多优良的物理化学性能,在电化学催化、生物传感器、超级电容器、储氢等诸多领域有着广泛的应用前景。在众多的有机导电聚合物中,聚苯胺由于原料廉价易得、合成简单、电导率高、环境稳定性好等特点而备受人们的关注。本文针对聚苯胺在储氢领域的应用进行了初步研究,主要结论如下:
     1.采用了合成成本低廉、所得产物更适于储氢应用的合成方法——氧化聚合,以过硫酸铵为氧化剂,采用乳液法、相转移催化以及超声化学法合成了具有不同形貌的盐酸掺杂聚苯胺;氧化剂过硫酸铵与苯胺单体物质量比为1∶1时较佳,在机械搅拌条件下,反应时间在2小时较合适,在超声波存在条件下,只需要5~10分钟反应就可以完成;盐酸浓度对反应产物形貌影响较大,在超声波条件下,合适的盐酸反应浓度(≥1mol/L)可以得到纳米棒状的盐酸掺杂聚苯胺;BET比表面积分析显示,超声化学法合成的聚苯胺具有更大的比表面积,最大可达56.3m~2/g,这与超声波所产生的微射流能够提供更大面积的相接触界面有关;以乙二醇为还原剂,以氯化钯为钯源,通过超声化学法制备了钯掺杂的聚苯胺,XRD图谱显示,超声波对聚苯胺基底没有明显改变,钯是以单质钯存在的。
     2.为了研究聚苯胺与氢相互作用,根据容积法原理建立起一套氢吸附测试平台,通过不吸附气体氦气来确定参比槽体积和样品槽剩余体积,这是一种较为准确的测定体积的途径。通过分析,该系统误差主要来源于六个方面,而且都比较难于克服,但在相同条件下,其误差积累基本保持不变,因而可以通过测定一定条件下的本底并扣除之,从而得到更为准确的试验结果。该吸附试验平台适用于氢吸附量较大的样品的测试。用该平台测试聚苯胺的氢吸附量发现其吸附量与系统本底是相当,因此该平台不适于测量聚苯胺的氢吸附量。
     3.利用自动吸附仪测量了不同聚苯胺在77K、0~1大气压的氢吸附/脱附等温线。聚苯胺在该条件下的氢吸附/脱附等温线和气凝胶有着很大的区别,主要是由于其吸附机理不一样、吸附能也存在较大差异造成的;市售碱基聚苯胺经盐酸掺杂处理后氢气吸附量可以提高为原来的3倍,自制盐酸掺杂聚苯胺氢吸附量比市售碱基聚苯胺要高,机械搅拌和超声化学法制备的聚苯胺氢气吸附量差别不大;钯掺杂处理能够大大提高聚苯胺的氢气吸附量,这是一条对储氢材料进行改性的很好途径。
     4.聚苯胺在高压下吸氢后其电阻率会有明显降低,当置于常压环境中,吸附的氢气能够缓慢释放,电阻率会缓慢回升,十几个小时后氢气能够完全释放。测试材料和氢相互作用前后电阻变化是用来研究材料和氢相互作用机理的一条重要途径。
Organic conductive polymer, on account of their excellent physical and chemical properties, are prominsing in many fileds such as electrochemical catalysis, biosensor, electrochemical capacitor, hydrogen storage and so on. Among conductive polymers, polyaniline(PAn) has attracted considerable interesting due to its availaility, simple synthesis, high conductivity and stability. PAn used as a hydrogen storage material was investigated. The main progresses are presented as follows:
     PAn which was synthesized via oxidation polymeization adapt to the application of hydrogen storage and the ammonium persulfate was used as oxidant. PAn doped by hydrochloric acid with different shapes was synthesized via many aproaches such as sono-chemical and emulsion. The oxidant dosage play a key role in the produciton to material ratio and the best ratio of oxidant to anliline monomer is 1:1. hydrochloric acid concentration can affect the polyanline shape. The specific surface area of polyanline which is fabricated by sono-chemical is bigger than the specific surface area of polyanline is bought or is synthesized via other approaches and it is 56.3m~2·g~(-1). PAn doped by palladium was synthesized via sono-chemical and the resul of XRD show palladium elementary substance.
     A volumetric apparatus for hydrogen adsorption measurement and experiment methods were fabricated. The volume of comparable vessel and the residual volume of adsorption chamber were measured using helium which is not adsorbed by any materials and exact measuring result can be acquired. The apparatus produces error from six aspects and the error does not change while conditions are same. So the error can be measured and took out. The apparatus for hydrogen adsorption measurement is fit for measuring the samples which can adsorb a mass of hydrogen.
     The isotherm of PAn hydrogen adsorption and desoption at low temperature (77K) and low pressure (the high limit is 1×10~6Pa) was measured by Changing the adsorbate gas of the Autosorb-1 Instrument from nitrogen to hydrogen. The isotherm of PAn is different from the isotherm of aerogel and their adsorption mechanism may not be same. After doped by hydrochloric acid the hydrogen adsorption capacity of the merchandise PAn is 3 times than primary. The hydrogen adsorption capacity of the PAn can be increased by doping with palladium.
     The resistivity of PAn will reduce after absorb hydrogen under high pressure an the resistivity can slow increase while the hydrogen absorbed release under low pressure.
引文
[1]胡子龙,储氢材料[M],化学工业出版社,2002,1
    [2]Alexander J.Glass,An historic overview of inertial confinement fusion:What have we learned ?[J]J.Vac.Sci.Technol.A4/(1986) 1098-1103.
    [3]R.W.Petzoldt,Inertial fusion energy target injection,tracking,and beam pointing[R],DOE reports No.UCRL-LR-120192,1995.
    [4]B.A.Hammel,T.P.Bernat,G.W.Collins,et al,Recent advances in indirect drive ICF target physics at LLNL[R],DOE reports No.UCRL-JC-130302,1998.
    [5]C.Dillon,M.J.Heben,Hydrogen storage using carbon adsorbents:past,present and future[J],Appl.Phys.A 72,133-142(2001)
    [6]Annual Progress Report for the DOE Hydrogen Program,November 2005,available at:http://www.hydrogen.energy.gov/annual_progress05.html.
    [7]S.Satyapal,C.Read,G.Ordaz,G.Thomas,DOE Hydrogen Program Annual Merit Review Proceedings(2006) http://www.hydrogen.energy.gov/annual_review06_plenary.html.
    [8]Quantum Fuel Systems Technologies Worldwide Project Report,FY2005 Annual Progress Report for the DOE Hydrogen Program,November 2005,available at:http://www.hydrogen.energy.gov/annual_progress05_storage.html.
    [9]http://www.gm.com/company/gmability/adv_tech/400_fcv/fact_-sheets.html.
    [10]Lawrence Livermore National Laboratory Project Report,FY2005 Annual Progress Report for the DOE Hydrogen Program,November 2005,available at:http://www.hydrogen.energy.gov/annual_progress05_storage.html.
    [11]R.D.McCarty,J.Hord,H.M.Roder,Selected Properties of Hydrogen(Engineering Design Data),Center for Chemical Engineering,NationalEngineering Laboratory,National Bureau of Standards,Boulder,Colorado,NBS Report No.168,February 1981.
    [12]K.J.Gross,G.J.Thomas,C.M.Jensen,J.Alloys Compd.330-332(2002)683.
    [13]Schwarz J.S.,Activated Carbon-Based Hydrogen Storage System,Proceedings of the 1993DOE/NREL Hydrogen Program Review,Cocoa Beach,FL,1993,89-102
    [14]Carpetis C.,Peschka W.,A Study of Hydrogen Storage by Use of Cryoadsorbents[J],Int.J.Hydrogen energy,1980,5,539-554
    [15]王朝阳,李波,张占文等,塑料微球高压充氢工艺研究[J],原子能科学技术,2002,36(04/05),357-360。
    [16]唐永建 蒋伟阳,强激光与粒子束[J]1998,10(1),155-160。
    [17]H.Shirakawa,E.J.Louis,A.G.MacDiarmid,C.K.Chiang,A.J.Heerger,[J]J.Chem.Soc.,Chem.Comm.,1977,579.
    [18]H.Shirakawa,[J]Angew.Chem.Int.Ed.,2001,40,2574.
    [19]A.G.MacDiarmid,[J]Angew.Chem.Int.Ed.,2001,40,2581.
    [20]A.J.Heeger,Angew.Chem.Int.Ed.,[J]2001,40,2591.
    [21]A.G.MacDiarmid,J.C.Chiang,M.Halpern,W.S.Huang,S.L.Mu,N.L.D.Somasiri,W.Wu,S.I.Yaniger,Mol.[J]Cryst.Liq.Cryst.,1985,121,173.
    [22]Macdiramid A G,Chiang J C.Chemical.Eletrocemical and infrared studies of polyaniline.[J]Synth.Met.,1987,18:285-290.
    [23]王利祥,王伟松.取代苯胺的化学氧化聚合[J].高分子学报,1989:264-269
    [24]Wudl F,Angus R O,Lujr F L,et al.Poly-p-phenyleneamineimine:synthesis and comparison to polyaniline.[J]J.Am.Chem.Soc.,1987,109:3677-3684
    [25]Gregory R V,Tzou K.A method to prepare soluble polyaniline salt solutions-in situ doping of PANI base with organic dopants in polar solvens.[J]Synth.Met.,1993,53:365-377
    [26]C.K.Chiang,C.R.Fischer,Y.W.Park,A.J.Heeger,H.Shirakawa,E.J.Louis,S.C.Gau,A.G.MacDiarmid,[J]Phys.Rev.Lett.,1977,39,1098.
    [27]C.K.Chiang,M.A.Druy,S.C.Gau,A.J.Heeger,E.J.Louis,A.G.MacDiarmid,Y.W.Park,H.Shirakawa,[J]J.Am.Chem.Soc.,1978,100,1013.
    [28]R.Desurville,M.Jozefowicz,L.T.Yu,Electrochem Acta,1968,13,1451.
    [29]E.M.Genies,C.Tsintavis,A.A.Syed,Mol.Cryst Liq.Cryst.,1985,121,181.
    [30]D.K.Moon,K.Osakada,T.Maruyama,T.Yamamoto,Makromol.Chem.,1992,193,1723.
    [31]S.Armes,J.F.Miller,Synth.Met.,1988,22,385.
    [32]S.Armers,M.Aldissi,Polymer,1991,32,2043.
    [33]Y.Cao,A.Andreatta,A.J.Heeger,P.Smith,Polymer,1989,30,2305.
    [34]A.G.MacDiarmid,A.J.Epstein,Synth.Met.,1994,65,103.
    [35]E.R.Holland,S.J.Pomfret,P.N.Adams,L.A bell.A.P.Monkman,Synth.Met.,1997,84,777.
    [36]J.Huang,M.Wan,J.Polym.Sci.,Part A:Polym.Chem.,1999,37,151.
    [37]J.Stejskisla,A.Riede,D.Hlavata,J.Proke?,M.Helmstedt,P.Holler,Synth.Met.,1998,96,55.
    [38]L.H.C.Mattoso,A.G.MacDiarmid,A.J.Epstein.Synth.Met.,1994,68,1.
    [39]R.V.Gregory,W.C.Kimbrell,H.H.Kuhn.Synth.Met.,1989,28,C823.
    [40]J.Huang,S.Virji,B.H.Weiller,R.B.Kaner,J.Am.Chem.Soc.,2003,125,314.
    [41]J.Huang,R.B.Kaner,J.Am.Chem.Soc.,2004,126,851
    [42]A.F.Diaz,J.A.Logan,J.Electroanal.Chem.,1980,111,111.
    [43]T.Ohsaka,Y.Ohnuki,J.Electroanal.Chem.,1984,161,399.
    [44]T.Kobayashi,et al.,J.Electroanal.Chem.,1984,161,419.
    [45]A.Thyssen,A.Hochfeld,R.Kessel,A.Meyer,J.W.Schulzte,Synth.Met.,1989,29,E357.
    [46]A.Volkov,G.Tourillon,P.C.Lacaze,J.E.Dubois,J.Electroanal.Chem.,1980,115,279.
    [47]W.S.Huang,B.D.Humphrey,A.G.MacDiarmid,J.Chem.Soc.,Faradny Trans.,1986,1,82.
    [48]P.Wang,J.S.Dordick,Macromolecules,1998,31,941
    [49]K.S.Aiva,J.Kumar,K.A.Marx,S.Tripathy,Macromolecules,1997,30,4024.
    [50]R.Premachandran,S.Banerjee,X.K.Wu,V.T.John,G.L.McPherson,J.A.Alckara,M.Ayyagari,D.L.Kaplan,Macromolecules,1996,29,6452.
    [51]F.Bruno,J.A.Akkara,L.Samuelson,D.L.Kaplan,K.A.Marx,J.Kumar,S.Tripathy,Langmuir,1995,11,889.
    [52]P.Yam,Science,1995,11,40.
    [53]Y.Yang,E.Westerweele,C.Zhang,P.Smith,A.J.Heeger,J.Appl.Phys.,1995,77,694.
    [54]V.P.Parkhutik,R.D.Calleja,E.S.Matveeva,J.M.Martinez-Duart,SynthMet.,1994,67,111.
    [55]S.A.Chen,K.R.Chuang,,C.I.Chao,H.T.Lee,Synth.Met.,1996,82,207.
    [56]Yang,L.S.,Shan,Z.Q.,Liu,Y.D.Performance of Polyaniline Positive in A Lithiuim Batterry.J.Power Sources 1991.34(2):141-145
    [57]Miller,J.S.Molecular Materials.7.B.Conducting polymers-Materials of Commerce.Advanced Materials 1993.5(9):671-676
    [58]Sotomura,T.,Uemachi,Hi,Takeyama,K.er al.New Oragnadisulfide Polyaniline Composite Cathode for Secondary Lithium Battery.Electrochim.Acta 1992 37(10):1851-1854
    [59]Li,C.Z.,Peng,X.S.,Zhang,B.R.et al.An all-solid-state lithium polyaniline rechargeable cell.J.Power Sources 1992 39(2):255-258
    [60]Macdiarmid,A.G.,Yang,L.S.,Huang,W.S.et al.Polyaniline-electrochemistry and application to rechargeable batteries.Synth.Met.1987 18(1-3):393-398
    [61]Nakajima,T.,Kawagoe,T.Polyanline-Structural-Analysis and application for battery.Synth.Met.1989 28(1-2):C629-C638
    [62]Genies,E.Hany,P.,Santier,C.Secondary organic batteries made with thick free standing films of electrochemically prepared polyaniline.Synth.Met.1989(1-2):C647-C654
    [63]Kobayashi,A.,Xu,X.F.,Ishikawa,H.et al.Electrical-Conducion in polyaniline compressed pellets doped with alkylbenzenesulfonic acids.J.Appl.Phys.1992 72(12):5702-5705
    [64]Prakash,R.Electrochemistry of polyaniline:Study of the pH effect and electrochromism.J.Appl.Polym.Sci.2002.83(2):378-385
    [65]M.R.Anderson,B.R.Mattes,H.Reiss,R.B.Kaner,Science,1991,252,1412.
    [66]C.K.Tan,D.J.Blackwood,Sensor.Actual.B,2000,71,184.
    [67]蔡沛祥,张润建,朱芳等.聚苯胺修饰碳纤维针型复合微pH传感器[J].分析化学,1997,25(11): 1250-1254
    [68]万其进,张学记,张春光等.聚苯胺修饰碳纤维微pH传感器研究及其在植物柱头活体测试中的应用[J].高等学校化学学报,1997,18(2):226-228
    [69]王朝瑾,李云峰,应太林.聚苯胺修饰钨丝针型复合微pH传感器的研究及在水果测试中的应用.[J]食品科学,2000,21(10):48-50
    [70]李晓喧,李星玮。用于阴离子检测的聚苯胺电极.[J]功能材料,1997,28(3):328-330
    [71]Sung J Y,Huang H J.Application of a polyaniline-nafion composite electrode to the determination of alkali and alkaline earth metal ions using folw-injection analysis and ion chromatography.[J]Anal.Chim.Acta,1991,246(2):275-281
    [72]Lindfors T,Sjoberg P,Bobacka J,et al.Characterization of a single-piece alll-solid-state lithium-selective electrode based on soluble conductiong polyaniline.[J]Anal.Chim.Acta,1999,385(1-3):163-173
    [73]Lukachova L V,Karyakin A A,Karyakina E E,et al.The improvement of polyaniline glucose biosensor stability using enzyme immobilization from water-organic mixtures with a high content of organic solvent.[J]Sens.Actuator B,1997,44(1-3):356-360
    [74]薛怀国,穆绍林.葡萄糖氧化酶修饰聚苯胺电极的动力学.[J]高等学校化学学报,1993,14(1):138-140
    [75]Deberry D.W.Modification of the electrochemical and corrosion behavior of stainless steel with electroactive coating.[J]J.Electrochem.Soc.1985.132(5):1022-1026
    [76]Wei,Y.,Wang,J.G.,Jia,X.R.et al.Polyaniline as corrosion protection coating on cold-rolled steel.[J]Polymer 1995.36(23):4535-4537
    [77]Popovic,M.M.,Grgur,B.N.Electrochemical synthesis and corrosion behavior of thin polyaniline-benzoate film on mild steel.[J]Synth.Met.2004.143(2):191-195
    [78]弋明亮,[J]现代塑料加工应用,2002,14(4):43-46
    [79]Olmedo,L.,Hourquebie,P.,Jousse,F.Microwave abosorbing materials based on conducting polymers.[J]Advanced Materials 1993 5(5):373-377
    [80]Guan,J.G.,Wang,W.,Gong,R.Z.et al.One-step synthesis of cobalt-phthalocyanine/iron nanocomposite particles with high magneti susceptibility.[J]Langmuir 2002 18(11):4198-4204
    [81]马建标,功能高分子材料,[M]北京:化学工业出版社,2000,207
    [82]Kane-Maguire,L.A.P.,Wallace,G.G.Communicating with the building blocks of life using organic electronic conductors.[J]Synth.Met.2001 119(1-3):39-42
    [83]Sung J.C.,Koyeon C.,Dong E K.,et al.H2 sorption in HCl-treated polyaniline and polyryrrole.[J]Catalysis Today 2007 120:336-340
    [84]Suslick K S.Ultrasound,Its Chemical,Physical,and Biological Effects[M].New York:1988.
    [85]马利,卢苇,甘孟瑜等.[J].化学学报,2008,66(10):1259-1264.
    [86]Haglund J.,Fernandez Guillermet F.,Grimvall G.,et al.Theory of bonding in transition-metal carbides and nitrides.[J]Physical Review,Serie 3.B-Condensed Matter 1993,(48):11685-11691
    [87]Wells A.F.The Crystal Structure of Palladous Chloride Pd C12.[J]Zeitschrift fuer Kristallographie,Kristallgeometrie,Kristallphysik,Kristallchemie(-144,1977)(1938),100,189-194
    [88]Keller J U,Dreisbach F,Rave H,et al,Measurement of gas mixture adsorption equilibria of natural gas compounds on microporous sorbents[J].Adsorption,1999,5:199-214
    [89]李向荣,用SRK方程计算真实气体的密度[J]。青岛化工学院学报,2002,23(1):98-100.
    [90]肖明耀编著,试验误差估计与数据处理[M]。科学出版社,1980,北京。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700