粮食生产潜力预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粮食生产潜力的研究,对于制定一个国家的作物生产规划、粮食储运、人口控制、合理开发利用农业自然资源以及环境保护等一系列基本国策都具有重要的战略意义和现实意义。传统的基于光热资源角度估算的粮食生产潜力往往高于农业的实际生产水平,且参数众多,如何科学地确定不同潜力层次主要限制因子的有效程度难度较大,其预测结果对粮食生产、安排调运供应和进出口计划以及防灾减灾的指导意义不大。基于此,本研究的主要内容包括以下三个方面:
     (1)重新定义了粮食生产潜力的内涵,它是指某一空间单元的土地上,在某一时间内(年或若干年内)种植某一作物的主导品种,在当时生产技术条件和投入情况下,在平均气候年型下的单产。
     (2)提出了粮食生产潜力的科技进步驱动力预测理论。
     (3)建立了整体建模方法、分段建模方法、逐年回归建模方法、动态n值建模方法、拐点建模方法以及最优化系统建模方法等系列预测方法。通过众多案例的分析和验证,表明提出的理论和方法具有科学性,符合生产实际,能够解决粮食生产潜力预测的问题。多年单产移动平均趋势模型巧妙而有效地将气象因素和人为因素分离开,是预测的理论基石,能处理不同趋势的预测问题。可以预测不同空间尺度下不同作物类型的单产和总产。研究表明:可以使用任何预测单元的历史数据进行验证,并可进行预测。所提出的预测理论和所建立的系统预测方法可以作为我国粮食生产潜力乃至估产的理论基础和方法基础,并有望据此建立国家粮食生产潜力和估产信息技术平台,成为政府、商业和研究者的决策依据和研究工具,并可应用到其他类似系统(具有趋势性变量和波动性变量的系统)的预测,其应用前景十分广泛。
Study on grain potential productivity is important for a country to crop production planning, population controling, natural resources utilization and environmental protection. Traditional potential grain productivity estimated on the basis of light and thermal resources generally is higher than the actual level and requires so many parameters that it is rather difficult to scientifically determine. In addition, the results of prediction provide little guidance for grain production, import and export planning as well as prevention and reduction of disasters. The results are as follow:
     (1) The potential grain yield is redefined in this article as yield of a certain crop under multi-year average climate conditions and technology imputs of that time.
     (2) Put forward the theory motivating force of science and technology of potential grain productivity.
     (3) Prediction methods applicable to different conditions have been set up, such as modeling n value determination method, dynamic n value determination method during year-by-year prediction, prediction method for occurrence of point of inflection in yield tendency, micro tendency rectification method, and macro tendency prediction plus micro tendency rectification method, which are integrated into a systematic prediction method.
     The proposed prediction theory and the established systematic prediction method can be applied as the theoretical and methodological foundation for potential grain productivity or even yield estimation in China. They can hopefully help to set up the national technical platform for information of potential grain productivity and yield estimation and become decision-making bases and research tools for government, business and researchers. They can also be applied to the prediction of other similar systems (systems with tendency-oriented variables and fluctuating variables), highly promising for a widespread application.
引文
[1] Odum E P.生态学基础[M].北京:人民教育出版社,1981:42—61.
    [2] BlacknmaGE,Nblack J.植物环境分析中生理生态研究[A].作物产量交异的生物基础译文集[c].北京:科学出版社.1965.
    [3] LiethH,等.生物圈的第一性生产力[M].北京:科学出版社,1985.
    [4] 村田吉男.光合作用与水稻最高产量上限[M].农业技术,1966.
    [5] LoomisR S,Williams W A.Maximum crop productivity:An estimate[J].crop Science,963,3(1):67—72.
    [6] 刘建栋,周秀骥,于强.FAO生产潜力模型中基本参数的修正[J].自然资源学报,2001,16(3):240—247.
    [7] Hanks R J.Yield and Water-Usa Relationships:An Overview [A].Tayloretal H M.Limitatiom to Eficient Water Usa In crop Production[C].1983.
    [8] Higgis G M,et a1.Regional assessment of land potential:A fallow up to the FAO [J]. Nature and Resourses,1981,17(4),11—23.
    [9]切尔沙尼卡.大气中002浓度倍增时植被生产力的变化[J].气象科技,1987,10(4).
    [10]樱谷哲夫.旱地蒸散与生产力[J].国外农学一农业气象,1988,11(4).
    [11]任美锷.四川省作物生产力的地理分布[J].地理学报,1950.
    [12]竺可桢.论我国气候的几个特点极其粮食作物生产的关系[J].地理学报,1964,(1):1—13.
    [13]黄秉维.中国农业生产潜力一光合潜力[A].地理集刊(17)[c].北京:科学出版社,1985,1—522.
    [14]于沪宁,赵丰收.光热资源和农作物的光热生产潜力[J].气象学报,1982,(8).
    [15]李世奎,等.中国农业气候资源和农业气候区划[M].北京:科学出版社,1983. [16l孙惠南.自然地理学中的农业生产潜力研究及我国生产潜力的分布特征[A].地理集刊[c].北京:科学出版社,l985.
    [17]陈明荣,龙斯玉.中国气候生产潜力区划的探讨[J].自然资源,1983,17(3):72—79.
    [18]侯光良,刘充芬.我国气候生产潜力及其分区[J].自然资源,1985,19(3):52—59.
    [19]田国良.呼伦贝尔草原的太阳分光辐射能和光合潜力[J].地理学报,1980,35(1):76—82.
    [20]于沪宁.光热资源和农作物的光热生产潜力[J].气象学报,1982,4O(3):321—327.
    [21]赵名茶.作物可利用的光能一对光合潜力公式的检验和探讨[A].地理集刊(17)[c].北京:科学出版社,1985:35—48.
    [22]李世奎.中国农业气候资源和农业气候区划[M].北京:科学出版社,1988:124—144.
    [23] Schullze R.Transcending sales of space and time in impaces studies of climate change and climate change on agrohydrological response.agriculture[J]. Ecosystems and Environment, 2000, 82:185—212.
    [24]Olesan J E, Bocher PK, Jensen T. Comparis on of scales of climate and soil data for aggregating Simulated yields of Winter Wheat in Denmark[J]. Agriculture, Ecosystems and Environraent.2000,82:213—228.
    [25] James WH,James WJ. Scaling-up crop Models for Climate Prediction Applications [A]. Sivakumar MVK,eds. Climate prediction and Agriculture[C]. Washington DC,USA:Inteanatinnal START Secretariat,2000,77—117.
    [26] 陶毓汾,王立祥.中国北方旱农地区水分潜力及开发[M].北京:气象出版社,1993.
    [27]陈阜.武川旱农区农田水分生产潜力研究[J].干旱地区农业研究,1995,13(4):14一l8.
    [28] 冷石林.开发北方旱农地区自然降水生产潜力的主要限制因素及途径[J].中国农业气象,1997,18(1):13—17.
    [29]申元村.土地人口承载能力研究理论与方法探讨[J].自然资源,1990,(1):21—26.
    [30]周锁铨,戴进,姚小强.土地生产潜力和人口承载力方法的研究[J].自然资源,1992,(6):56—62.
    [31]尚新明.定西地区气候资源生产潜力及土地人口承载力分析评价[J].农业系统科学与综合研究,1997,13(4):293— 294.
    [32]谢俊奇.中国土地资源的食物生产潜力和人口承载潜力研究[J].浙江学刊,1997,2:41—44.
    [33]高亮之.苜蓿生产的农业气候计算机模拟-ALFAMOD[J].江苏农业学报,1985(2):1—11.
    [34]高竞之,金之庆,黄耀,等.水稻栽培计算机模拟优化决策系统[M].北京:中国农业科技出版社,1992.
    [35]高亮之,金之庆,郑国清,等.小麦栽培模拟优化决策系统(wcsoDs)[J].江苏农业学报,2OOO,169(2):65—72.
    [36]高亮之.数字化农业气象学[J].中国农业气象,2003,24(2):1—4.
    [37]刘建栋,傅抱璞,卢其尧,等.冬小麦光合生产潜力数值模拟[J].地理研究,1998,17(1):56—65.
    [38]杨春虹.农田小麦光合生产力模拟与分析[A].农田作物环境实验研究[c].北京:气象出版社,1990:193—203.
    [39]董振国.冬小麦生长率及麦田能量收支分析[A].农业生态环境实验研究[c].气象出版社,1988:205—211. [4O]刘建栋,于强,傅抱璞.黄淮海地区冬小麦光温生产潜力数值模拟研究[J].1999,14(2):169—174.
    [41]张字,王石立,王馥棠.气候变化对我国小麦发育及产量可能影响的模拟研究[J].应用气象学,2000,ll(3):264—270.
    [42]崔鲜一.模拟气候变化对内蒙古东部地区玉米生产的影响[J].内蒙古气象,1998,(3):25—27.
    [43]石春林,金之庆,葛道阔,等.气候变化对长江中下游平原粮食生产的阶段性影响和适应性对策[J].江苏农业学报,2001,17(1):1—6.
    [44]李军.作物生长模型AL MANAC的验证与应用探讨[J].干旱地区农业研究,1997,15(1):99—104.
    [45]李军,王立祥,邵明安,等.黄土高原地区小麦生产潜力模拟研究[J].自然资源学报,2001,3:161—165.
    [46]李军,王立祥,邵明安.黄土高原地区玉米生产潜力模拟研究[J].作物学报,2OO2,28:555—560.
    [47]王宗明,梁银丽.应用EPIC模型计算黄土塬区作物生产潜力的初步尝试[J].自然资源学报,2OOO,17(4):481—487.
    [48]Alves H M R, Notecliff S.Assessing potential production of maize simulation models for land evaluation in Brazil [J].Soil Use and Management, 2000(16): 49-55.
    [49]党安荣,阎守邕,吴宏歧,等.基于GIS的中国土地生产潜力研究[J].生态学报,2000,20(6):910—915.
    [50]李忠武,蔡强国,Soott Mitchell,等.基于GIs的黄土丘陵沟壑区作物生产力模拟研究[J].生态学报,2002,3:311—317.
    [51]熊伟.用GIS和作物模型对作物生产进行区域模拟方法[J].中国农业气象,2004,25(2):28—32.
    [52]刘布春,王石立,马玉平.国外作物模型区域应用研究进展[J].气象科技,2002(8):193—203.
    [53]Ahmed, F.E., Hall, A.E., DeMason, D.A., 1992. Heat injury duringfloral development in cowpea (Vigna unguiculata, Fabaceae).Am. J. Bot. 79, 784–791.
    [54]Al-Khatib, K., Paulsen, G.M., 1984. Mode of high temperatureinjury to wheat during grain development. Physiol. Plant. 61,363–372.
    [55]Batts, G.R., Morison, J.I.L., Ellis, R.H., Hadley, P., Wheeler, T.R.,1997. Effects of CO2 and temperature on growth and yieldof crops of winter wheat over four seasons. Eur. J. Agron. 7,43–52.
    [56]Blumenthal, C.S., Bekes, F., Batey, I.L., Wrigley, C.W., Moss,H.I., Mares, D.J., Barlow, E.W.R., 1991. Interpretation of grainquality results from wheat variety trials with reference to hightemperature stress. Aust. J. Agric. Res. 42, 325–334.
    [57]Blumenthal, C.S., Barlow, E.W.R., Wigley, C.W., 1993. Growthenvironment and wheat quality: the effect of heat stress ondough properties and gluten proteins. J.Cereal Sci. 18, 3–21.
    [58]Boote, K.J., 1982. Growth stages of peanut (Arachis hypogaeaL.). Peanut Sci. 9,35–39.
    [59]Boote, K.J., Jones, J.W., Mishoe, J.W., Wilkerson, G.G., 1986.Simulating the growth and yield of Florunner peanut. In:Proceedings of the American Peanut Research and EducationSociety, Vol. 18, 38 pp.Covell, S., Ellis, R.H., Roberts, E.H., Summerfield, R.J., 1986.
    [60]The influence of temperature on seed germination rate in grainlegumes. I. A comparison of chickpea, lentil, soyabean andcowpea in constant temperatures. J. Exp. Bot. 37, 705–715.
    [61]Evans, L.T., 1993. Crop Evolution, Adaptation and Yield.Cambridge University Press, Cambridge.
    [62]Ferris, R., Ellis, R.H., Wheeler, T.R., Hadley, P., 1998. Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann. Bot. 82, 631–639.
    [63]Ferris, R., Wheeler, T.R., Ellis, R.H., Hadley, P., 1999. Seed yield after environmental stress in soybean grown under elevated CO2. Crop Sci. 39, 710–718.
    [64]Finney, K.F., Fryer, H.C., 1958. Effect on loaf volume of high temperatures during the fruiting period of wheat. Agron. J. 50, 28–34.
    [65]Garcia-Huidobro, J., Monteith, J.L., Squire, G.R., 1982. Time, temperature and germination of pearl millet (Pennisetum typhoides). I. Constant temperature. J. Exp. Bot. 33, 288–296.
    [70]Goudriaan, J., Unsworth, M.H., 1990. Implications of increasing carbon dioxide and climate change for agricultural productivity and water resources. In: Kimball, B.A., Rosenberg, N.J., Allen, L.H. (Eds.), Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture. Special Publication No. 53. American Society of Agronomy, Madison, WI, pp. 111–130.
    [71]Graybosch, R.A., Peterson, C.J., Baenziger, P.S., Shelton, D.R.,1995. Environmental modification of hard red winter wheat flour protein composition. J. Cereal Sci. 22, 45–51.
    [72]Gross, Y., Kigel, J., 1994. Differential sensitivity to high temperature of stages inthe reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Res. 36, 112–201.
    [73]Hadley, P., Roberts, E.H., Summerfield, R.J., Minchin, F.R., 1983.A quantitative model of reproductive development in cowpea(Vigna unguiculata (L.) Walp.) in relation to photoperiod and temperature, and implications for screening germplasm. Ann.Bot. 51, 531–543.
    [74]Hadley, P., Batts, G.R., Ellis, R.H., Morison, J.I.L., Pearson,S., Wheeler, T.R., 1995. Temperature gradient chambers for research on global environment change. II. A twin-wall tunnel system for low stature, field-grown crops using a split heat pump: technical report. Plant Cell Environ. 18, 1055–1063. [75 ]Hall, A.E., 1992. Breeding for heat tolerance. Plant Breeding Rev. 10, 129–167.
    [76]Hammer, G.L., Holzworth, D.P., Stone, R., 1996. The value of skill in seasonal climate forecasting to wheat crop management in a region of high climatic variability. Aust. J. Agric. Sci. 47, 717–737.
    [77]Jones, C.A., Kiniry, J.R., 1986. CERES-maize: A Simulation Model of Maize Growth and Development. Texas A & M University Press, College Station, TX.
    [78]Kattenberg, A., Giorgi, F., Grassl, H., Meehl, G.A., Mitchell, J.F.B., Stouffer, R.J., Tokioka, T., Weaver, A.J., Wigley, T.M.L., 1995.Climate models — projection of future climate. In: Houghton,J.T., et al. (Eds.), Climate Change. The Science of Climate Change. Contribution of Working Group 1 to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 285–358.
    [79]Mahan, J.R., McMichael, B.L., Wanjura, D.F., 1995. Methods for reducing the adverse effects of temperature stress on plants: a review. Environ. Exp. Bot. 35, 251–258.
    [80]Mearns, L.O., Rosenweig, C., Goldberg, R., 1997. Mean and variance change in climate scenarios: methods, agricultural applications, and measures of uncertainty. Clim. Change 35, 367–396.
    [81]Moot, D.J., Henderson, A.L., Porter, J.R., Semenov, M.A., 1996. Temperature, CO2 and the growth and development of wheat: changes in the mean andvariability of growing conditions. Clim. Change 33, 351–368.
    [82]Morison, J.I.L., Lawlor, D.W., 1999. Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ. 22, 659–682.
    [83]Nicholls, N., Gruza, G.V., Jouzel, J., Karl, T.R., Ogallo, L.A., Parker, D.E., 1996. Observed climate variability and change.In: Houghton, J.T., et al. (Eds.), Climate Change. The Science of Climate Change. On tribution of Working Group 1 to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge,pp. 133–192.
    [84]Porter, J.R., Gawith, M., 1999. Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10, 23–36.Porter, J.R., Semenov, M.A., 1999. Climatic variability and crop yields in Europe. Nature 400, 724.
    [85]Porter, J.R., Kirby, E.J.M., Day, W., Adam, J.S., Appleyard, M.,Ayling, S., Baker, C.K., Beale, P., Besford, R.K., Chapman, A.,Fuller, M.P., Hampson, J., Hay, R.K.M., Hough, M., Matthews,S., Thompson, W.J., Weir, A.H., Willington, V.B.A., Wood,D.W., 1987. An analysis of morphological development stages in Avalon winter wheat with different sowing dates at 10 sites in England and Scotland. J. Agric. Sci. 109, 107–121.
    [86]Porter, J.R., Jamieson, P.D., Wilson, D.R., 1993. Comparison of the wheat simulation models AFRCWHEAT2, CERES-Wheat and SWHEAT for non-limiting conditions of crop growth. Field Crops Res. 33, 31–157.
    [87]Riha, S.J., Wilks, D.S., Simeons, P., 1996.Impact of temperature and precipitation variability on crop model predictions. Clim.Change 32, 293–311.
    [88]Roberts, E.H., Summerfield, R.J., 1987. Measurement and prediction of flowering in annual crops. In: Atherton, J.G. (Ed.),Manipulation of Flowering. Butterworths, London, pp. 17–50.
    [89]Roberts, E.H., Qi, A., Ellis, R.H., Summerfield,R.J., Lawn, R.J., Shanmugasundaram, S., 1996. Use of field observation to characterise genotypic flowering responses to photoperiod and temperature: a soyabean exemplar. Theoret. Appl. Genetics 93,519–533.
    [90]Semenov, M.A., Porter, J.R., 1995. Climatic variability and the modelling of cropyields. Agric. For. Meteorol. 73, 265–283.
    [91]Slafer, G.A., Rawson, H.M., 1994. Sensitivity of wheat-phasic development to major environmental factors: a re-examination of assumptions made by physiologists and modellers. Aust. J.Plant Physiol. 21, 393–426.
    [92]Srinivasan, A., Takeda, H., Senboku, T., 1996. Heat tolerance in food legumes as evaluated by cell membrane thermostability and chlorophyll flourescence techniques. Euphytica 88,35–45.
    [93]Summerfield, R.J., Lawn, R.J., Qi, A., Ellis, R.H., Roberts, E.H., Chay, P.M., Brouwer, J.B., Rose, J.L., Shanmugasundaram, S., Yeates, S.J., Sandover, S., 1993. Towards the reliable prediction of time to flowering in six annual crops. II. Soyabean (Glycinemax). Exp. Agric. 29, 253–289.
    [94]Tashiro, T., Wardlaw, I.F., 1990. The response to high temperature shock and humidity changes prior to and during the early stages of grain development in wheat. Aust. J. Plant Physiol. 17, 551–561.
    [95]Thorne, G.N., Wood, D.W., 1987. Effects of radiation and temperature on tiller survival, grain number and grain yield in winter wheat. Ann. Bot. 59, 413–426.
    [96]Vara Prasad, P.V., Craufurd, P.Q., Summerfield, R.J., 1999. Sensitivity of peanut to timing of heat stress during reproductive development. Crop Sci. 39, 1352–1357.
    [97]Vara Prasad, P.V., Craufurd, P.Q., Summerfield, R.J., Wheeler,T.R., 2000. Effect of short episodes of heat stress on flower production and fruit set of groundnut (Arachis hypogaea L.). J. Exp. Bot. 51, 777–784.
    [98]Wardlaw, I.F., Dawson, I.A., Munibi, P., Frewster, R., 1989. The tolerance of wheat to high temperatures during reproductive growth. I. Survey procedures and general responses. Aust. J.Agric. Res. 40, 1–13.
    [99]Wheeler, T.R., Batts, G.R., Ellis, R.H., Hadley, P., Morison, J.I.L., 1996a. Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. J. Agric. Sci. 127,37–48.
    [100]Wheeler, T.R., Hong, T.D., Ellis, R.H., Batts, G.R., Morison, J.I.L., Hadley, P., 1996b. The duration and rate of grain growth, and harvest index, of wheat(Triticum aestivum L.) in response to temperature and CO2. J. Exp. Bot. 47, 623–630.
    [101]Yan, W., Wallace, D.H., 1998. Simulation and prediction of plant phenology for field crops based on photoperiod_temperature interaction. Ann. Bot. 81, 705–716.
    [102]Yin, X., Kropff, M.J., McLaren, G., Visperas, R.M., 1995. A nonlinear model for crop development as a function of temperature. Agric. For. Meteorol. 77-79.
    [103]Yoshida, S., 1981. Fundamentals of Rice Crop Science. IRRI, Los Ba?os, The Philippines, p. 269.
    [104]Box, G.E.P., Cox, D.R., 1964. An analysis of transformations. J. R.Stat. Soc. B 26, 211–243.
    [105]Brown, M.B., Forsythe, A.B., 1974. Robust tests for the equality of variances. J. Am. Stat. Assoc. 69, 264–267.
    [106]Cane, M.A., 2001. Understanding and predicting the world’s climate system. In: Rosenzweig, C., Boote, K.J., Hollinger, S., Iglesias, A., Phillips, J. (Eds.), Impacts of El Nin?o and Climate Variability on Agriculture. ASA Special Publication No. 63. American Society of Agronomy, Madison, WI, USA, pp. 1–20.
    [107]De Jager, J.M., Potgieter, A.B., Van Den Berg, W.J., 1998. Framework for forecasting the extent and severity of drought in maize in the Free State Province of South Africa. Agric. Syst. 57, 351–365.
    [108]French, R.J., Schultz, J.E., 1984. Water use efficiency of wheat in a Mediterranean-type environment: 1. The relation between yield, water use and climate. Aust. J. Agric. Res. 35, 743–764.
    [109]Genovese, G., Terres, J.M., 1999. Crop yield forecasts derived from agrometeorological models at European level: the MARS project. in: Proceedings of the Workshop on the Application of Seasonal-timescale Weather Forecasts, 14–15 June 1999. European Centre for Medium Range Weather Forecasts, Reading, UK, pp. 35–41.
    [110]Goddard, L., Mason, S.J., 2002. Sensitivity of seasonal climate forecasts to persisted SST anomalies. Climate Dynamics 19,619–632.
    [111]Goddard, L., Mason, S.J., Zebiak, S.E., Ropelewski, C.F., Basher,R., Cane,M.A., 2001. Current approaches to seasonal to interannual climate predictions. Int. J. Climatol. 21, 1111–1152.
    [112]Goddard, L., Barnston, A.G.A., Mason, S.J., 2003. Evaluation of the IRI’s ‘‘net assessment’’ seasonal climate forecasts 2001. Bull. Am. Meteorol. Soc. 84, 1761 –1781.
    [113]Hammer, G.L., Stephens, D., Butler, D., 1996. Development of a national drought alert strategic information system. Agricultural and Forest Meteorology 127 (2004) 77–92 91
    [114]Hammer, G.L., Hansen, J.W., Phillips, J., Mjelde, J.W., Hill, H.S.J., Love, A., Potgieter, A., 2001. Advances in application of climate prediction in agriculture. Agric. Syst. 70, 515–553.
    [115]Hansen, J.W., Jones, J.W., 2000. Scaling–up crop models for climate variability applications. Agric. Syst. 65, 43–72.
    [116]Hansen, J.W., Indeje, M., 2004. Linking dynamic seasonal climate forecasts with crop simulation for maize yield prediction in semi-arid Kenya. Agric. Forest Meteorol. 125, 143–157.
    [117]Levene, H., 1960. Robust tests for equality of variance. In: Olkin, I. (Ed.), Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press, Palo Alto, California, pp. 278–292.
    [118]McBride, J.L., Nicholls, N., 1983. Seasonal relationships between Australian rainfall and the Southern Oscillation. Monthly Weather Rev. 111, 1998–2004.
    [119]Meinke, H., Hochman, Z., 2000. Using seasonal climate forecasts to manage dryland crops in northern Australia—experiences from the 1997/98 seasons. In: Hammer, G.L., Nicholls, N., Mitchell, C. (Eds.), Applications of Seasonal Climate Forecasting in Agricultural and Natural Ecosystems. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 149–165.
    [120]Meinke, H., Stone, R.C., in press. Seasonal and inter-annual climate forecasting: the new tool for increasing preparedness to climate variability and change in agricultural planning and operations. Climatic Change.Motha, R.P., Heddinghaus, T.R., 1986. The joint agricultural weather facility’s operational assessmentprogram. Bull. Am. Meteorol. Soc. 67, 1114–1122.
    [121]New, M.G., Hulme, M., Jones, P.D., 2000. Representing 20th century space-time climate variability. II. Development of 1901–1996 monthly terrestrial climate fields. J. Climate 13, 2217–2238.
    [122]Nix, H.A., Fitzpatrick, E.A., 1969. An index of crop water stress related to wheat and grain sorghum yields. Agric. Meteorol.6, 321–337.
    [123]Potgieter, A.B., Hammer, G.L., Butler, D., 2002. Spatial and temporal patterns in Australian wheat yield and their relationship with ENSO. Aust. J. Agric. Res. 53, 77–89.
    [124]Potgieter, A.B., Everingham, Y.L., Hammer, G.L., 2003. On measuring quality of a probabilistic commodity forecast for a system that incorporates seasonal climate forecasts. Int. J. Climatol. 23,1195–1210.
    [125]Rimmington, G.M., Nicholls, N., 1993. Forecasting wheat yields in Australia with the Southern Oscillation Index. Aust. J. Agric.Res. 44, 625–632.
    [126]Ritchie, J.T., 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resource Res. 8, 1204–1213.
    [127]Ritchie, J.T., 1998. Soil water balance and plant water stress. In: Tsuji, G.Y., Hoogenboom, G., Thornton, P.K. (Eds.), Understanding Options for Agricultural Production, vols. 41–54.
    [128]Russell, J.S., 1988. The effect of climatic change on the productivity of Australian agroecosystems. In: Pearman, G.I. (Ed.), Greenhouse—Planning for Climate Change. CSIRO, Australia, Melbourne,pp. 91–505.
    [129]Shao, J., 1993. Linear model selection by cross-validation. J. Am. Stat. Assoc. 88, 486–494.
    [130]Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611.
    [131]Stephens, D.J., 1995. Crop yield forecasting over large areas in Australia. Unpublished Ph.D. thesis. Murdoch University, Perth, Western Australia, p. 305.
    [132]Stephens, D.J., 1988. The investigation of crop yield forecasting in North America. Fin. Rep. to Queen Elizabeth 2 Silver Jubilee Trust for YoungAustralians, Murdoch University, Perth, Western Australia, p. 9.
    [133]Stephens, D.J., Lyons, T.J., Lamond, M.H., 1989. A simple model to forecast wheat yield inWestern Australia. J. R. Soc.West. Aust. 71, 77–81.
    [134]Stone, R.C., Auliciems, A., 1992. SOI phase relationships with rainfall in eastern Australia. Int. J. Climatol. 12, 625– 636.
    [135]Stone, R.C., Hammer, G.L., Marcussen, T., 1996. Prediction of global rainfall probabilities using phases of the Southern Oscillation Index. Nature 384, 252–255.
    [136]Trenberth, K.E., 1997. The Definition of El Nin?o. Bull. Am. Meteorol. Soc. 78, 2771–2777.
    [137]Walker, G.K., 1989. Model for operational forecasting of western Canadian wheat yield. Agric. For. Meteorol. 44, 339–351.
    [138]White, D.H., Howden, S.M., Walcott, J.J., Cannon, R.M., 1998. Aframework for estimating the extent and severity of drought, based on a grazing system in south-eastern Australia. Agric.Syst. 57, 259–270.
    [139]Zucchini, W., 2000. An introduction to model selection. J. Math. Psychol. 44, 41–61.
    [140]Araus, J.L. 1996. Integrative physiological criteria associated with yield potential. p. 150–166 In M.P. Reynolds et al. (ed.) Increasing yield potential in wheat. CIMMYT, Mexico, DF.
    [141]Austin, R.B., J. Bingham, R.D. Blackwell, L.T. Evans, M.A. Ford, C.L. Morgan, and M. Taylor. 1980. Genetic improvements in winter wheat yields since 1900 and associated physiological changes. J. Agric. Sci. (Cambridge) 94:675–689.
    [142]Austin, R.B., M.A. Ford, and C.L. Morgan. 1989. Genetic improvement in the yield of winter wheat: A further evaluation. J. Agric. Sci. (Cambridge) 112:295–301.
    [143]Bell, M.A., R.A. Fischer, D. Byerlee, and K. Sayre. 1995. Genetic and agronomic contributions to yield gains: A case study for wheat. Field Crops Res. 44:55–65.
    [144]Bingham, J. 1967. Breeding cereals for improved yielding capacity. Ann. Appl. Biol. 59:312–315.
    [145]Blum, A. 1990. Variation among wheat cultivars in the response of leaf gas exchange to light.J. Agric. Sci. (Cambridge) 115:305–311.
    [146]Bolano. s, J., and G.O. Edmeades. 1993. Eight cycles of selection for drought tolerance in lowland tropical maize. I. Responses in yield, biomass and radiation utilization. Field Crops Res. 31:233–252.
    [147]Bridge, R.R., and W.R. Meredith. 1983. Comparative performance of obsolete and current cotton cultivars. Crop Sci. 29:949–952.
    [148]Castleberry, R.M., C.W. Crum, and C.F. Krull. 1984. Genetic yield improvement of U.S. maize cultivars under varying fertility and climatic environments. Crop Sci. 24:33–36.
    [149]Ceccarelli, S., and S. Grando. 1991. Selection environment and environmental sensitivity in barley. Euphytica 57:157–167.
    [150]Clarke, F.R., R.J. Baker, and R.M. DePauw. 1998. Interplot interference distorts yield estimates in spring wheat. Crop Sci. 38:63–66.
    [151]Douches, D.S., D. Maas, K. Jastrzebski, and R.W. Chase. 1996. Assessment of potato breeding progress in the USA over the last century. Crop Sci. 36:1544–1552.
    [152]Duvick, D.N. 1977. Genetic rates of gain in hybrid maize yields during the past 40 years. Maydica 22:187–196.
    [153]Duvick, D.N. 1992. Genetic contributions to advances in yield of U.S. maize. Maydica 37:69–79.
    [154]Duvick, D.N. 1997. What is yield? p. 332–335 In G.O. Edmeades et al. (ed.) Developing drought-and low N-tolerant maize. CIMMYT/ UNDP, Mexico, DF.
    [155]Dwyer, L.M., M. Tollenaar, and D.W. Stewart. 1991. Changes in plant density dependence of leaf photosynthesis in maize hybrids, 1959 to 1988. Can. J. Plant Sci. 71:1–11.
    [156]Evans, L.T. 1981. Yield improvement in wheat: Empirical or analytical? p. 203–222 In L.T. Evans and W.J. Peacock (ed.) Wheat science—-Today and tomorrow. Cambridge Univ. Press, Cambridge.
    [157]Evans, L.T. 1993. Crop Evolution, adaptation and yield. Cambridge Univ. Press,Cambridge.
    [158]Evans, L.T., R.M. Visperas, and B.S. Vergara. 1984. Morphological and physiological changes among rice varieties used in the Philippines over the last seventy years. Field Crops Res. 8:105–124.
    [159]Fischer, R.A., and D. Hille Ris Lambers, D. 1978. Effect of environment and cultivar on source limitation to grain weight in wheat. Aust. J. Agric. Res. 29:443–458.
    [160]Fischer, R.A., and P.C. Wall. 1976. Wheat breeding in Mexico and yield increases. J. Aust. Inst. Agric. Sci. 42:139–148.
    [161]Fischer, R.A., and J.T. Wood. 1979. Drought resistance in spring wheat cultivars. III. Yield associations with morpho-physiological traits. Aust. J. Agric. Res. 30:1001–1020.
    [162]Fischer, R.A., D. Rees, K.D. Sayre, Z.-M. Lu, A.G. Condon, and A. Larque Saavedra. 1998. Wheat yield progress associated with higher stomatal conductance and photosynethetic rate, and cooler canopies. Crop Sci. 38:1467–1475.
    [163]Frankel, O.H. 1947. The theory of plant breeding for yield. Heredity 1:109–120.
    [164]Godden, D., and J.P. Brennan. 1994. Technological change embodied in southern NSW and British winter wheat varieties. Rev. of Marketing and Agric. Econ. 62:247–259.
    [165]Jackson, P., M. Robertson, M. Cooper, and G. Hammer. 1996. The role of physiological understanding in plant breeding: From a breeding perspective. Field Crops Res. 49:11–37.
    [166]Laing, D.R., and R.A. Fischer. 1977. Adaptation of semi dwarf wheat cultivars to rainfed conditions. Euphytica 26:129–139.
    [167]Lu, Z., R.G. Percy, C.O. Qualset, and E. Zeiger. 1998. Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures. J. Exp. Bot. 49:543–460..
    [168]MacKey, J. 1979. Genetic potentials for improved yield. p. 121–143 In S. Rajki (ed.) Proc. Workshop on Agricultural Potentiality Directed by Nutritional Needs.Akad. Kiado, Budapest.
    [169]Nissanka, S.P., M.A., Dixon, and M. Tollenaar. 1997. Canopy gas exchange response to moisture stress in old and new maize hybrid. Crop Sci. 37:172–181.
    [170]Ortiz-Monasterio, J.I., K.D. Sayre, S. Rajaram, and M. McMahon.1997. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci. 37:898–904.
    [171]Perera, A.L.T., M. Fahim, S. Sriyoheswaran, M.P. Dhanapala, D. Senadhira, and M.J. Lawrence. 1998. Quantitative genetics of rice I. Evidence of unexpected genetical variation for yield and other quantitative characters in modern Indica cultivars. Field Crops Res. 55:245–256.
    [172]Radin, J.W., Z. Lu, R.G. Percy, and E. Zeiger. 1994. Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation. Proc. Natl. Acad. Sci. (USA) 91: 7217–7221.
    [173]Rasmusson, D.C., and R.L. Phillips. 1997. Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci. 37:303–310.
    [174]Rawson, H.M. and L.T. Evans. 1971. The contribution of stem reserves to grain development in a range of wheat cultivars of different height. Aust. J. Agric. Res. 22:851–863.
    [175]Sasaki, H., and R. Ishii. 1992. Cultivar differences in leaf photosynthesis of rice bred in Japan. Photosynthesis Res. 32:139–146.
    [176]Sayre, K.D., S. Rajaram, and R.A. Fischer. 1997. Yield potential progress in short bread wheats in northwest Mexico. Crop Sci. 37:36–42.
    [177]Sayre, K.D., R.P. Singh, J. Huerta-Espino, and S. Rajaram. 1998.Genetic progress in reducing losses to leaf rust in CIMMYT-derived Mexican spring wheat cultivars. Crop Sci. 38:654–659.
    [178]Siddique, K.H.M., D. Tennant, M.W. Perry, and R.K. Belford. 1990. Water use efficiency of old and modern wheat cultivars in a mediterranean-type environment. Aust. J. Agric. Res. 41:431–437.
    [179]Silvey, V. 1986. The contribution of new varieties to cereal yields in England and Wales between 1947 and 1983. J. Natl. Inst. Agric. Bot. 17:155–168.
    [180]Sinclair, T.R. 1993. Crop yield potential and fairy tales. p. 707–711 In D. Buxton et al. (ed.) International crop science I. CSSA, Madison.Singh, R.P., J. Huerta-Espino, S. Rajaram, and J. Crossa. 1998. Agronomic effects from chromosome translocations 7DL, 7Ag and 1BL.IRS in spring wheat. Crop Sci. 38:27–33.
    [181]Tanksley, S.D., and S.R. McCouch. 1997. Seedbanks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063–1066.
    [182]Tollenaar, M. 1989. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Sci. 29:1365–1371.
    [183]Tollenaar, M., A. Aguilera, and S.P. Nissanka. 1997. Grain yield is reduced more by weed interference in an old than in a new maize hybrid. Agron. J. 89:239–246.
    [184]Villareal, R.L., O. Ban. uelos, J. Borja, R. Delgado, A. Mujeeb-Kazi, and S. Rajaram. 1997. Agronomic performance of some advanced derivatives of synthetic hexaploids (T. turgidum 3 T. tauschii ). Annu.Wheat Newsl. 43:175–177.
    [185]Voldeng, H.D., E.R. Cober, D.J. Hume, C. Gillard, and M.J. Morrison. 1997. Fifty-eight years of genetic improvement of short season soybean cultivars in Canada. Crop Sci. 37:428–431.
    [186]Watanabe, N., J.R. Evans, and W.S. Chow. 1994. Changes in the photosynthetic properties of Australian wheat cultivars over the last century. Aust. J. Plant Physiol. 21:169–183.
    [187]Wells, R., L.L. Schulze, D.A. Ashley, H.R. Boerma, and R.H. Brown. 1982. Cultivar differences in canopy apparent photosynthesis and their relationship to seed yield in soybeans. Crop Sci. 22:886–890.
    [188]Worland, A.J. 1996. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57.
    [189]Worland, A.J. and Sayers, E.J. 1995. Rht 1(B.dw), an alternative allelic variant for breeding semi-dwarf wheat varieties. Plant Breeding 114:397–400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700