长柄水青冈种群遗传结构和系统地理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统地理学主要研究影响物种的基因谱系形成现有地理分布格局的历史过程,常用于系统地理学研究的基因是细胞器DNA(线粒体DNA、叶绿体DNA)和核DNA。细胞器DNA和核DNA是两种不同遗传模式的基因,两种基因片段结合起来用于系统地理学的研究,可以揭示种群的遗传结构并推测影响种群现有遗传分布格局的历史过程。欧洲和北美最早开展系统地理学方面的研究。第四纪冰期时欧洲和北美大部分地区都被冰盖覆盖,许多古老的物种只在少数避难所存活下来,存活下来的种群在冰期结束后由南向北重新扩散;而东亚大陆并没有被巨大的冰川覆盖,但气温比现在降低8-12℃。那么当时许多东亚物种的分布区是否与当时欧洲和北美生物的分布区发生了相同的变化?这些东亚物种是否也存在冰期避难所?冰期后又是沿怎样的扩散路线形成现在的分布格局?
     为了解决以上的问题,我们选取了长柄水青冈作为研究材料。第三纪晚期时,水青冈属植物广泛分布于我国大部分地区,甚至北部地区也有分布。第四纪冰期气候使其退缩到南方亚热带地区,但是冰期后气候回暖时,喜马拉雅山和青藏高原的抬升,使我国东部和西南部季风性气候加强,西北华北大陆性气候加强,气候条件的改变限制了水青冈向北、向西北的扩散,水青冈继续保留在南方亚热带地区。长柄水青冈是我国水青冈属中分布最广泛的种,主要在我国秦岭以南、五岭南坡以北各地分布,是我国亚热带常绿落叶阔叶混交林的优势种之一,分布区呈东西样带分布,东部地区分布呈明显片断化。第四纪冰期对水青冈现在的分布格局有着重要的影响。那么,第四纪冰期时长柄水青冈的避难所在那里?冰期后沿怎样的路线向外扩散并形成现有分布格局?本文针对以上问题进行探讨:采用核DNA的SSR标记和叶绿体DNA标记,分析长柄水青冈的种群遗传结构,探讨种子流和花粉流在种群遗传分化中的贡献率;希望通过分析种群遗传结构和叶绿体单倍型的地理分布格局,揭示长柄水青冈的冰期避难所和冰期后的扩散路线。主要结果如下:
     (1)用7对微卫星引物对27个种群576个个体分析表明,长柄水青冈种群有较低的遗传多样性。大部分的遗传变异存在于种群内。种群间遗传分化程度高于其它水青冈种。
     东部种群和西部种群表现出不同的遗传多样性分布格局。东部种群的遗传多样性低于西部种群。东部分布区种群间的遗传分化比较大,表明长期的片断化阻隔了种群间花粉和种子的传播,使种群间的遗传分化加大。东部不同种群的遗传多样性变化很大:分布区北部的种群遗传多样性较低,种群规模最小;分布区中部的种群具有最高的遗传多样性。WL种群和MD种群检测到了瓶颈效应。这说明长柄水青冈种群分布有衰退的趋势,分布区的南缘和北缘逐渐变得不适合长柄水青冈的生长。
     西部地区虽然有高山的阻隔,但种群为大规模连续分布,所以相对于东部种群而言,西部种群的种子流和花粉流能在短距离内扩散,种群间的基因流比较高,遗传分化程度比较低。
     (2)用2对叶绿体通用引物(trnS-trnG、psbB-psbF)对22个种群201个个体测序,共得到13种单倍型,只有4个种群(JL、WL、JS、LS)存在单倍型多样性。叶绿体DNA分析表明93.197%的遗传变异存在于种群间,种群间基因分化系数G_(ST)为0.900。长柄水青冈与亮叶水青冈两个种间检测到3种共享单倍型,表明两个种的分化时间较近,二者间曾发生基因渐渗。所有种群都没有检测到种群扩张,表明冰期后气候等环境条件限制了长柄水青冈种群大规模的扩张。
     叶绿体单倍型分布呈显著的地理格局,表现出东部分布区与西部分布区单倍型地理分布格局的不同。西部地区种群有较多的原始单倍型和独特的单倍型;同一单倍型在南部地区分布很近,表明冰期后的扩散发生在短距离内;北部因为没有高山的阻隔,单倍型扩散距离较远。东部地区也有较多独特的单倍型,同一单倍型的分布比较广,表明冰期后存在长距离的扩散。
     (3)根据两种遗传标记估算的花粉-种子迁移率r为34.228,即在长柄水青冈种群中通过花粉的基因流要比通过种子的基因流高。通过cpDNA计算的遗传分化G_(STm)与其它壳斗科物种接近,表明片断化对长柄水青冈种群间的种子流影响不大,对花粉流的影响比较大。西部高山对花粉的传播也起了一定的阻隔作用。
     (4)微卫星揭示的种群遗传结构和cpDNA单倍型地理格局表明,长柄水青冈存在东部和西部两种不同的避难所格局。
     西部的避难所以广西、贵州为中心,冰期后种群从低纬度地区向北扩散,高山的阻隔使种群只能短距离扩散或者沿山体上下迁移。避难所北部的种群,向北的迁移扩散不受高山的限制,沿四川盆地周围的山系向北扩散,并越过四川盆地,沿中部低海拔地区向东部地区扩散。
     东部避难所位于武夷山山脉的两侧,因武夷山的阻隔,表现出两种不同的扩散路线。武夷山脉以东、南岭东段的避难所,沿武夷山脉东侧向北扩散,到达武夷山脉北段的浙江省境内。而山脉西侧的避难所种群则是沿武夷山西侧向北扩散至浙江省南部。这两条扩散路线都没有越过武夷山脊,是单独发生的。浙江省南部武夷山系的北段单倍型比较丰富,遗传多样性比较高,是两条迁移路线的汇总处。
Phylogeography studies the principles and processes governing the geographical distributions of genealogical lineages,which emphasizes historical aspects of the contemporary spatial distributions of gene lineages.Compared with biparentally inherited nuclear markers,the cpDNA variation provides special markers for phylogeny reconstruction at the population level and the geographic structure of variation,which provide insights into the phylogeograpy of the species. The contrasted patterns of inheritance of organelle and nuclear genes can be used to unravel the complexity of gene flow in plants,as they are predicted to result in very different distribution of genetic diversity within and among populations.In the last two decades,extensive phylogeographic studies have been conducted on taxa from Europe and North America,where were covered by huge glaciers during the Quaternary.Some species only survived in a few refugia and recolonized after glaciation in Europe and North America.Contrasting to Europe and North America,East Asia had not been covered by huge glaciers during the Quaternary glaciation. However,the temperature had decreased about 8-12℃.Did distribution ranges of the species in East Asia also retract like those in European and North America? Where did they survive from the cold temperature and how did they recolonize after the Quaternary glacial ages?
     In order to answer these questions,we choose Fagus longipetiolata as the focal species. Fagus(beech)is among the most abundant and economically important genera of broadleaved trees in northern hemisphere temperate forests.The genus Fagus comprises 10 to 14 species of monoecious trees that are disjunctly distributed in Europe and south-western Asia(1-5 species), eastern Northern America and Mexico(1-2 species)and eastern Asia(7-12 species).F. longipetiolata distributes widely in subtropical southern China,which distributed much further north during the late Tertiary in China.During the early Quaternary,it declined and disappeared in northern China,but expanded in subtropical southern China.And its distribution range is from Xichou County,Yunnan Province,to Tiantai Mountain,Zhejiang Province.F.longipetiolata is a monoecious,long-lived woody angiosperm.It is pollinated by wind and dispersed by gravity,but rodents may serve as the secondary dispersers.
     Nuclear microsatellites and cpDNA variations among populations of F.longipetiolata were investigated in the study.The main results are as following.
     (1)A total of 576 individuals were collected from 27 populations covering most distribution range of E longipetiolata.We used 7 pairs of microsatellite primers,among them 6 were screened from congeneric species,E sylvatica and E crenata,and one,locus FL05,was developed by ourself.Low genetic diversity was found within populations.The genetic differentiation among populations was high(F_(ST)=0.23).Gene flow for 21 populations(Nm)was estimated to be 0.83.
     Different genetic patterns were found in populations of eastern and western range. Populations of western range had higher genetic diversity than those of eastern range.And genetic differentiation was small among populations.However,genetic diversity was much more diverse among populations of eastern range.Higher genetic diversity was found within large populations than small populations.Populations of northern and southern part had lower genetic diversity than that in central populations in eastern China.Recent bottleneck effect was found in a southern population,MD population,and a northern population,SH population.
     (2)Two pairs of universal cpDNA primers,trnS-trnG and psbB-psbF,were used.A total of 201 individuals from 26 populations were sequenced successfully.15 polymorphic sites over 1664bp and 13 haplotypes were observed.However,within-population haplotype diversity was very low.Only 4 populations had more than one haplotypes.About 93.197 percentage of genetic differentiation was among populations.The genetic differentiation value was high(G_(ST)=0.900, 21 populations).There were 3 haplotypes shared with F.lucida indicating the early introgression between these two species or they shared a common ancestor.
     Significant geographic structure of haplotypes was detected.Populations of western and eastern ranges had own unique haplotypes.More ancestral haplotypes were found and distributed widely in populations of western range.Dispersion of the same haplotype in western range happened in short distance.However the same haplotype in eastern China was found in a long distance,meaning that it was distributed from south refugia to north mountains in eastern China.
     (3)Based on Ennos' model,the pollen-seed ratio(r)was estimated to be 34.228,indicating that pollen flow had played a more important role in the maintenance of genetic structure than seed flow.However this value was much smaller than that in other species of Fagaceae,due to the decreased pollen flow among populations by natural fragmentation,given similar cpDNA-based G_(ST)with other Fagus species.
     (4)From this study,two contrasting pattern in glacial refugia and recolonization routes were found in eastern and western distribution range.
     Southwestern China including Guangxi Province and Guizhou Province provided refugia for F.longipetiolata during Quaternary glaciations.When it became warm,its postglacial populations migrated from one region to the other along the lower mountains.It was short-distance disseminated for populations of south part in this refugia because of high mountains.While there were Sichuan Basin in north part of this refugia,population migrated northward along the mountains surrounding Sichuan Basin.An exceptional case of long-distance dissemination,the modern distribution of haplotype H1 was ascribed to a postglacial colonization route starting from north part of this refugia,eastward crossing the Sichuan Basin,central of China and reaching East China.
     Wuyishan-Nanling served as the other refugia.This refugia was separated into two parts: south and north,by Wuyishan.After glaciations,populations in the south part migrated northeastward along Wuyishan.In western Zhejiang,E longipetiolata migrated to the north and east parts of Zhejiang Province.Populations survived in the north Wuyishan refugia migrated to the north as well as northeastward along the north ridge of Wuyishan and then mixed with the migrators of south part in western Zhejiang Province.Therefore,high and mixed haplotype diversity was found in western Zhejiang Province.
     Given the closely phylogenetic relationship based on haplotype and SSRs between populations of Fujian Province and populations of western China,populations of eastern range might colonize from western China before the Quaternary glaciations.
引文
Abbott RJ, Smith LC, Milne RI, Crawford RMM, Wolff K, Balfour J (2000) Molecular analysis of plant migration and refugia in the Arctic. Science 289, 1343-1346.
    Asuka Y, Tani N, Tsumura Y, Tomaru N (2004a) Development and characterization of microsatellite markers for Fagus crenata Blume. Molecular Ecology Notes 4, 101-103.
    
    Asuka Y, Tomaru N, Nisimura N, Tsumura Y, Yamamoto S (2004b) Heterogeneous genetic structure in a Fagus crenata population in an old-growth beech forest revealed by microsatellite markers. Molecular Ecology 13, 1241-1250.
    Avise JC (1998) The history and preview of Phylogeography: a personal reflection. Molecular Ecology 7,371-379.
    Avise JC (2000) Phylogeography: the history and formation of species Harvard University Press, Cambridge.
    Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific Phylogeography: the mitochondrail DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18, 489-522.
    Bermingham E, Martin AP (1998) Comparative Phylogeography of neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of lower Central America. Molecular Ecology 7, 499-517.
    Birky JC, Fuerst P, Maruyama T (1989) Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 103, 513-527.
    Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325, 31-36.
    Castelloe J, Templeton AR (1994) Root probabilities for intraspecific gene trees under neutral coalescent theory. Molecular Phylogenetics and Evolution 3, 102-113.
    Charlesworth D (2003) Effects of inbreeding on the genetic diversity of populations. Philosophical Transactions of the Royal Society B, Biological Science 358, 1051 -1070.
    Comes HP, Kadereit JW (1998) The effect of Quaternary climatic changes on plant distribution and evolution. Trends in Plant Science 3,432-438.
    Comps B, Thiebaut B, Paule L, Merzeau D, Letouzey J (1990) Allozymic variability in beechwoods (Fagus sylvatica L.) over central Europe: spatial differentiation among and within populations. Heredity 65, 407-417.
    Cornman RS, Arnold ML (2007) Phylogeography of Iris missouriensis (Iridaceae) based on nuclear and chloroplast markers. Molecular Ecology 16, 4585-4598.
    Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001-2014.
    Cwynar LC, MacDonald GM (1987) Geographical variation of lodgepole pine in relation to population history. The American Naturalist 129, 463-469.
    Demesure B, Comps B, Petit RJ (1996) Chloroplast DNA Phylogeography of the common beech (Fagus sylvatica L.) in Europe. Evolution 50,2515-2520.
    Denk T (2003) Phylogeny of Fagus L. (Fagaceae) based on morphological data. Plant Systematics and Evolution 240, 55-81.
    Denk T, Grimm G, Stogerer K, Langer M, Hemleben V (2002) The evolutionary history of Fagus in western Eurasia: Evidence from genes, morphology and the fossil record. Plant Systematics and Evolution 232, 213-236.
    Denk T, Grimm GW, Hemleben V (2005) Patterns Of molecular and morphological differentiation in Fagus (Fagaceae): phylogenetic implications. American Journal of Botany 92, 1006-1016.
    Downie SR, Palmer JD (1992) Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Molecular systematics of plants (eds. Soltis PS, Soltis DE, Doyle JJ), pp. 14-35. Chapman and Hall, New York.
    Doyle J (1991) DNA protocols for plants -CTAB total DNA isolation [M]. In: Molecular Techniques in Taxonomy (eds. Hewiitt GM, Johnston A), pp. 283-293. Springer, Berlin.
    
    Dumolin-Lapegue S, Demesure B, Fineschi S, Corre VL, Petit RJ (1997) Phylogeographic structure of white oaks throughout the European continent. Genetics 146, 1475-1487.
    Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plants populations. Heredity 72, 250-259
    Epperson BK (2002) Spatial-temporal properties of gene genealogies in geographically structured populations. In: Modern Developments in Theoretical Population Genetics (eds. Slatkin M, Veuille M), pp. 165-182. Oxford University Press, Oxford.
    Excoffier L, Laval G, Schneider S (2006) Arlequin ver 3.1: An Integrated Software Package for Population Genetics Data Analysis. URL: http://cmpg.unibe.ch/software/arlequin3.
    Fang JY, Lechowicz MJ (2006) Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography 33, 1804-1819.
    Fontaine C, Lovett PN, Sanou H, Maley J (2004) Genetic diversity of the shea tree (Vitellaria paradoxa C.F. Gaertn), detected by RAPD and chloroplast microsatellite markers. Heredity 93, 639-648.
    Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and backgroud selection. Genetics 147, 915-925.
    Fujii N, Tomaru N, Okuyama K, Koike T, Mikami T, Ueda K (2002) Chloroplast DNA Phylogeography of Fagus crenata (Fagaceae) in Japan. Plant Systematics and Evolution 232,21-33.
    Gao LM, Moller M, Zhang XM, Hollingsworth ML, Liu J, Mill RR, Gibby M, Li DZ (2007) High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Molecular Ecology 16,4684-4698.
    Garrick RC, Dyer RJ, Beheregaray LB, Sunnucks P (2008) Babies and bathwater: a comment on the premature obituary for nested clade phylogeographical analysis. Molecular Ecology 17, 1401-1403.
    Goudet J (2001) FSTAT : a program to estimate and test gene diversities and Fixation indices (version 2.9.3). Available at http://www.unil.ch/izea/software/fstat.html.
    Hamilton MB, Miller JR (2002) Comparing relative rates of pollen and seed gene flow in the island model using nuclear and organelle measures of population structure. Genetics 162, 1897-1909.
    Hamrick JL (2004) Response of forest trees to global environmental changes. Forest Ecology and Management 197, 323-335.
    Hare MP (2001) Prospects for nuclear gene Phylogeography. Trends in Ecology & Evolution 16, 700-706.
    Harpending H, Rogers A (2000) Genetic perspectives on human origins and differentiation. Annual Review of Genomics Human Genetics 1, 361-385.
    Hazler-Pilepic K, Comps B, Sugar I, Solic E (1999) Isozyme polymorphism of Croatian beech populations (Fagus sylvatica L.). Periodicum Biologorum 101, 165-170.
    Hedrick P (1999) Highly variable loci and their interpretation in evolution and conservation. Evolution 53, 313-318.
    
    Hewitt, Godfrey (2000) The genetic legacy of the Quaternary ice ages. Nature 405, 907-913.
    Hewitt GM (1996) Some genetic consequences of ice ages and their role in divergence and speciation. Biological Journal of the Linnean Society 58, 247-216.
    Hey J, Machado CA (2003) The study of structured populations -new hope for a difficult and divided science. Nature Reviews Genetics 4, 535-543.
    Hodgins KA, Barrett SCH (2007) Population structure and genetic diversity in tristylous Narcissus triandrus: insights from microsatellite and chloroplast DNA variation. Molecular Ecology 16,2317-2332.
    Hu XS,Ennos RA(1997)On estimation of the ratio of pollen to seed flow among plant populations.Heredity 79,541-552.
    Hu XS,Li BL(2003)On migration load of seeds and pollen grains in a local population.Heredity 90,162-168.
    Hufbauer RA,Sforza R(2008)Multiple introductions of two invasive Centaurea taxa inferred from cpDNA haplotypes.Diversity and Distributions 14,252-261.
    Jaramilio-Correa JP,Beaulieu J,Bousquet J(2004)Variation in mitochondriai DNA reveals multiple distant glacial refugia in black spruce(Picea mariana),a transcontinental North American conifer.Molecular Ecology 13,2735-2747.
    Jarne P,Lagoda PL(1996)Microsatellites,from molecular to populations and back.Trends in Ecology & Evolution 11,424-429.
    Jones JH(1986)Evolution of the Fagaceae:the implications of foliar features.Annals of the Missouri Botanical Garden 73,228-275.
    Jump AS,Hunt JM,Martinez-Izquierdo JA,Penuelas J(2006)Natural selection and climate change:temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica.Molecular Ecology 15,3469-3480.
    Jump AS,Penuelas J(2006)Genetic effects of chronic habitat fragmentation in a wind-pollinated tree.Proceedings of the National Academy of Sciences,USA 103,8096-8100.
    Kidd DM,Ritchie MG(2006)Phylogeographic information systems:Putting the geography into phylogeography.Journal of Biogeography 33,1851-1865.
    King RA,Ferris C(1998)Chloroplast DNA phylogeography of Alnus glutinosa(L.)Gaertn.Molecular Ecology 7,1151-1161.
    Knowles LL,Maddison WP(2002)Statistical phylogeography.Molecular Ecology 11,2623-2635.
    Koopman WJM,Li Y,Coart ELS,Van De Weg WE,Vosman BEN,Roldan-Ruiz I,Smulders MJM (2007)Linked vs.unlinked markers:multilocus microsatellite haplotype-sharing as a tool to estimate gene flow and introgression.Molecular Ecology 16,243-256.
    Kreitman M(2001)Methods to detect natural selection in populations with applications to the human.Annual Review of Genomics and Human Genetics 1,539-559.
    Kremer A,Petit R,Zanetto A,Fougere V,Ducousso A,Wagner D,Chauvin C(1991)Nuclear and organelle gene diversity in Quercus robur and Q.petraea.In:Genetic Variation in European Populations of Forest Trees(eds.Mueller-Starck G,Ziehe M),pp.141-166.Sauerlaender Verlag,Frankfurt,Germany.
    Lee YJ,Hwang SY,Ho KC,Lin TP(2006)Source populations of Quercus glauca in the Last Glacial Age in Taiwan revealed by nuclear microsatellite markers.Journal of Heredity 97,261-269.
    Liao JC(1971)Morphological studies on the flowers and fruits of the genera Fagus,Castanea,Castanopsis and Limlia in Taiwan.Memoirs of the College of Agriculture,National Taiwan University 12,83-113.
    Liu HY,Xing QR,Ji ZK,Xu LH,Tian YH(2003)An outline of Quaternary development of Fagus forest in China:palynological and ecological perspectives.Flora 198,249-259.
    Luikart G,Allendorf FW,Piry S,Cornuet JM(1998)Molecular genetic test identifies endangered populations.Conservation Biology 12,228-237.
    Magri D(2008)Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica).Journal of Biogeography 35,450-463.
    Magri D,Vendramin GG,Comps B,Dupanloup I,Geburek T,Gomory D,scaron,an,Latalowa M,Litt T,Paule L,Roure JM,Tantau I,van der Knaap WO,Petit RJ,de Beaulieu J-L(2006)A new scenario for the Quaternary history of European beech populations:palaeobotanical evidence and genetic consequences.New Phytologist 171,199-221.
    Mantel N(1967)The detection of disease clustering and a generalized regression approach.Cancer Research,209-220.
    Margaret BD(1983)Quaternary history of deciduous forest of eastern north America and Europe.Annals of the Missouri Botanical Garden 70,550-563.
    McLachlan JS,Clark JS(2004)Reconstructing historical ranges with fossil data at continental scales.Forest Ecology and Management 197,139-147.
    Miller MP(1997)Tools for population genetic analyses(TFPGA)v1.3:A windows program for the analysis of allozyme and molecular genetic data,Nouthern Arizona University,Arizona,USA.
    Nei M(1977)F-statics and analysis of gene diversity in subdivided populations.Annals of Human Genetics 41,225-233.
    Nei M(1978)Estimation of average heterozygosity and genetic distance from a small number of individuals.Genetics 89,583-590.
    Nei M,Kumar S(2000)Molecular Evolution and Phylogenetics Oxford University Press.
    Newton AC,Allnutt TR,Dvorak WS,Del Castillo RF,Ennos RA(2002)Patterns of genetic variation in Pinus chiapensis,a threatened Mexican pine,detected by RAPD and mitochondrial DNA RFLP markers.Heredity 89,191-198.
    Newton AC,Allnutt TR,Gillies ACM,Lowe AJ,Ennos RA(1999)Molecular phylogeography,intraspecific variation and the conservation of tree species.Trends in Ecology & Evolution 14, 140-145.
    Okaura T, Harada K (2002) Phylogeographical structure revealed by chloroplast DNA variation in Japanese Beech (Fagus crenata Blume). Heredity 88, 322-329.
    Palmer JD (1987) Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. American Naturalist 130, 6-29.
    Panchal M (2007) The automaton of nested clade phylogeographic analysis. Bioinformatics 23, 509-510.
    Panchal M, Beaumont MA (2007) The automation and evaluation of nested clade phylogeographic analysis. Evolution 61, 1466-1480.
    Pastorelli R, Smulders MJM, Vanot Westende WPC, Vosman B, Giannini R, Vettori C, Vendramin GG (2003) Characterization of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky. Molecular Ecology Notes 3, 76-78.
    Persson H, Widen B, Andersson S, Svensson L (2004) Allozyme diversity and genetic structure of marginal and central populations of Corylus avellana L. (Betulaceae) in Europe. Plant Systematics and Evolution 244, 157-179.
    Petit RJ (2008) On the falsifiability of the nested clade phylogeographic analysis method. Molecular Ecology 17, 1404-1404.
    Petit RJ, Brewer S, Bordacs S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl UM, van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, Konig AO, Lowe AJ, Madsen SF, Matyas G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries SGM, Ziegenhagen B, de Beaulieu JL, Kremer A (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management 156,49-74.
    Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology 14, 689-701.
    Petit RJ, Kremer A, Wagner DB (1993) Finite island model for organelle and nuclear genes in plants. Heredity 71, 630-641.
    Petit RJ, Mousadik AE, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conservation Biology 12, 844-855.
    Petit RJ, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A (1997) Chloroplast DNA footprints of postglacial recolonization by oaks. Proceedings of the National Academy of Sciences, USA 94, 9996-10001.
    Piry S, Luikart G, Cornuet JM (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data.The Journal of Heredity 90,502-503.
    Powell W,Morgante M,McDevitt R,Vendramin GG,Rafalski JA(1995)Polymorphic simple sequence repeat regions in chloroplast genomes:applications to the population genetics of pines.Proceedings of the National Academy of Sciences,USA 92,7759-7763.
    Praglowski J(1982)Fagaceae L.:Fagoideae.World Pollen and Spore Flora 11,128.
    Rogers AR,Harpending H(1992)Population growth makes waves in the distribution of pairwise genetic differences.Molecular Biology and Evolution 9,552-569.
    Rowden A,Robertson A,Allnutt T,Heredia S,Williams-Linera G,Newton AC(2004)Conservation genetics of Mexican beech,Fagus grandifolia var.mexicana.Conservation Genetics 5,475-484.
    Saitou N,Nei M(1987)The neighbor-joining method:a new method for reconstructing phylogenetic trees.Molecular Biology and Evolution 4,406-425.
    Sander T,Konig S,Rothe GM,Janben A,Weisgerber H(2000)Genetic variation of European beech(Fagus sylvatica L.)along an altitudinal transect at mount Vogelsberg in Hesse,Germany.Molecular Ecology 9,1349-1361.
    Schaal BA,Olsen KM(2000)Gene genealogies and population variation in plants.Proceedings of the National Academy of Sciences,USA 97,7024-7029.
    Schonswetter P,Stehlik I,Holderegger R,Tribsce A(2005)Molecular evidence for glacial refugia of mountain plants in the European Alps.Molecular Ecology 14,3547-3555.
    Sebastiani F,Camevale S,Vendramin GG(2004)A new set of mono- and dinucleotide chloroplast microsatellites in Fagaceae.Molecular Ecology Notes 4,259-261.
    Selkoe KA,Toonen RJ(2006)Microsatellites for ecologists:a practical guide to using and evaluating microsatellite markers.Ecology Letters 9,615-629.
    Shanjani PS,Vettori C,Giannini R,Khavari-Nejad RA(2004)Intraspecific variation and geographic patterns ofFagus orientalis Lipsky chloroplast DNA.Silvae Genetica 53,5-6.
    Shen CF(1984)The taxonomy and pollenmorphology of the Fagaceae in Taiwan Department of Forestry,National Taiwan University,Taipei,China.
    Shen CF(1992)A monograph of the genus Fagus Tourn.ex L.(Fagaceae),The City University of New York,USA.
    Slatkin M(1995)A measure of population subdivision based on microsatellite allele frequencies.Genetics 139,457 462.
    Soltis DE,Gitzendanner MA,Strenge DD,Soltis PS(1997)Chloroplast DNA intraspecific phylogeography of plantsfrom the Pacific Northwest of North America.Plant Systematics and Evolution 206, 353 373.
    Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative Phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7, 453-464.
    Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.
    Tajima F (1996) The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics 143, 1457-1465.
    
    Takhtajan A (1969) Flowering plants: Origin and Dispersal Oliver and Boyd Ltd., Edinburgh.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596-1599.
    Tanai T (1967) Tertiary floras change in Japan Hokkaido Univeristy Press, Sappore.
    Tanaka K, Tsumura Y, Nakamura T (1999) Development and polymorphism of microsatellite markers for Fagus crenata and the closely related species, F. japonica. Theoretical and Applied Genetics 99, 11-15.
    Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology 7, 381-397.
    Templeton AR (2004) Statistical Phylogeography: methods of evaluating and minimizing inference errors. Molecular Ecology 13, 789-809.
    Templeton AR (2008) Nested clade analysis: an extensively validated method for strong phylogeographic inference. Molecular Ecology 17, 1877-1880.
    Templeton AR, Boerwinkle E, Sing CF (1987) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of Alcohol Dehydrogenase activity in Drosophila. Genetics 117, 343-351.
    Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. cladogram estimation. Genetics 132, 619-633.
    Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in Tiger Salamander, Ambystoma tigrinum. Genetics 140, 767-782.
    Templeton AR, Sing CF (1993) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134, 659-669.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Research 24,4876-4882.
    Tomaru N,Takahashi M,Tsumura Y,Ohba K(1998)Intraspecific variation and phylogeographic patterns of Fagus crenata(Fagaceae)mitochondrial DNA.American Journal of Botany 85,629-636.
    Tremblay NO,Schoen DJ(1999)Molecular phylogeography of Dryas integrifolia:glacial refugia and postglacial recolonization.Molecular Ecology 8,1187-1198.
    van der Knaap WO,van Leeuwen JFN,Finsinger W,Gobet E,Pini R,Schweizer A,Valsecchi V,Ammann B(2005)Migration and population expansion of Abies,Fagus,Picea,and Quercus since 15000 years in and across the Alps,based on pollen-percentage threshold values.Quaternary Science Reviews 24,645-680.
    Van Dijk P,Bakx-Schotman T(1998)Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago media.Molecular Ecology 6,345-352.
    Vettori C,Vendramin GG,Anzidei M,Pastorelli R,Paffetti D,Giannini R(2004)Geographic distribution of chloroplast variation in Italian populations of beech(Fagus sylvatica L.).Theoretical and Applied Genetics 109,1-9.
    Viard F,El-Kassably Y,Ritland K(2001)Diversity and genetic structure in populations of Pseudotsuga menziesii(Pinaceae)at chloroplast microsatellite loci.Genome 44,336-344.
    Vornam B,Decarli N,Gailing O(2004)Spatial distribution of genetic variation in a natural beech stand(Fagus sylvatica L)based on microsatellite markers.Conservation Genetics 5,561-570.
    Wang KS(2004)Gene flow in European beech(Fagus sylvatica L.).Genetica 122,105-113.
    Weider LJ,Hobek A(2003)Glacial refugia,haplotype distributions,and clonal richness of the Daphnia pulex complex in arctic Canada.Molecular Ecology 12,463-473.
    Winkler MG,Wang PK(1993)The late-quanternary vegation and climate of China.In:Global climates since the last glacial maximum.University of Minnesota Press,London.
    Young AG,Boyle T,Brown A(1996)The population genetic consequences of habitat fragmentation for plants.Trends in Ecology & Evolution 11,413-418.
    Zhang DX,Hewiitt GM(2003)Nuclear DNA analyses in genetic studies of populations:practice,problems and prospects.Molecular Ecology 12,563-584.
    Zhang Q,Chiang TY,George M,Liu J,Abbott RJ(2005)Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii(Cupressaceae)inferred from chloroplast DNA sequence variation.Molecular Ecology 14,3513-3524.
    Zink RM(2002)Methods in comparative phylogeography,and their application to studying evolution in the North American aridlands.Integrative and Comparative Biology 42, 953-959.
    陈灵芝(1993)中国的生物多样性现状及其保护对策 科学出版社.
    方精云,郭庆华,刘国华(1999)我国水青冈属植物的地理分布格局及其与地形的关系.植物学报41,766-774.
    洪必恭,安树青(1993)中国水青冈地理分布初探.植物学报35,229-233.
    吉成均,沈海花,方精云,谢长富,樊拥军(2002)基于RAPD标记的我国水青冈属植物的分类研究.北京大学学报(自然科学版)38,817-822.
    雷作淇,郑卓(1993)雷州半岛田洋火山口盆地第四纪孢粉植物群与古气候.植物学报35(增刊),128-138.
    李浩敏,杨桂英(1984)吉林敦化球梨沟中新世植物群.古生物学报23,598-609.
    李建强,王恒昌,李晓东,李新伟(2003)基于细胞核rDNA ITS片段的水青冈属的分子系统发育.武汉植物学研究21,31-36.
    林金星,李正理(1992)壳斗科植物分类系统的变迁及争论焦点 东北林业大学出版社,哈尔滨.
    刘敏(2008)基于叶绿体DNA序列的亮叶水青冈(Fagus lucida)系统地理学研究,华东师范大学2008届本科生毕业论文.
    石苗苗(2008)中国苦槠边缘区和核心区种群遗传结构的比较,华东师范大学2008届研究生硕士学位论文.
    唐领余,沈才明,于革,韩辉友(1996)长江中下游及其以南地区10000年来气候变化序列探讨.In:中国历史气候变化(ed.张丕远),pp.108-194.山东科学技术出版社,济南.
    陶君容,杜乃秋(1982)云南腾冲新第三纪植物群及其时代.植物学报24,273-281.
    王惠霖(1986)福建冰川遗迹质疑.福建地质5,48-63.
    吴刚(1997)中国水青冈分布、生长和更新特点.生态学杂志16,47-51.
    徐立安,李新军,潘惠新,邹惠渝,尹佟明,黄敏仁(2001)用SSR研究栲树群体遗传结构.植物学报43,409-412.
    杨怀仁(1979)第四纪气候变化.冰川冻土01,25-34.
    张欣(2006)千岛湖区岛屿生境苦槠种群的维持机制及生态恢复,华东师范大学2006届研究生博士学位论文.
    张永田,黄成就(1988)壳斗科植物摘录--水青冈属(Fagus L.).植物分类学报26,111-119.
    郑芬(1989)福建省明溪组早更新世孢粉组合特征.中国区域地质(3),226-232.
    中国科学院植物所(1987)中国高等植物图鉴(补编2)科学出版社,北京.
    中国新生代植物编写组(1978)中国新生代植物化石.In:中国植物化石(eds.中国科学院北京植物研究所,南京地质古生物研究所),pp.42-57.科学出版社,北京.
    中国植物志编委会(1998)中国植物志(22卷)科学出版社,北京.
    周浙昆(1999)壳斗科的地质历史及其系统学和植物地理学意义.植物分类学报37,369-385.
    邹喻苹,葛颂,王晓东(2001)系统与进化植物学中的分子标记.科学技术出版社,北京.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700