基于3S技术的九段沙湿地DEM构建及动态变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
九段沙湿地位于长江口北槽与南槽之间,是国家级湿地自然保护区,也是上海市重要的后备土地资源之一。然而,由于长江三峡工程等的影响,长江的输沙率和含沙量将下降到长江口前沿潮滩的冲淤转换临界值之下,加之海平面的加速上升,今后几十年长江口前沿潮滩将遭受侵蚀。因此,九段沙湿地的动态变化问题倍受人们关注。
     本文通过3S技术,即遥感(RS)、全球定位系统(GPS)和地理信息系统(GIS)技术,对九段沙湿地在近20a来的冲淤动态变化进行了研究,其主要内容和成果如下:
     1、对利用RTK-GPS在九段沙湿地的实测散点数据进行投影坐标转换、基于理论最低潮位基准的高程换算和数据质量检测等预处理,为构建数字高程模型(DEM)提供可靠的数据。
     2、针对RTK-GPS实测数据分布极其不规则的特点,分别采用普通Kriging插值法构建栅格DEM、采用带边界约束条件的Delaunay三角剖分方法构建TIN,精度分析结果表明:两者的精度相近,但从DEM的表面光滑性来看,普通Kriging方法要优于约束TIN方法。
     3、通过研究提取遥感水边线的最佳波段与九段沙涨落潮情的关系,总结出在涨潮中期提取水边线的最佳波段是短波红外波段,而在其他潮情条件下提取水边线的最佳波段是红色波段。
     4、针对九段沙潮间带遥感水边线空间跨度大而且明显起伏的特点,提出了通过遥感水边点宋获取潮间带高程的方法,与把水边线当作等高线宋处理的方法相比,更具合理性。
     5、针对数据源包括等高线、水边点(接近于等高线分布)及散点数据,而且数据分布又非常不均匀的特点,采用带多种约束条件的狄洛尼TIN来逼近九段沙湿地的实际地形,获得了较可靠的多时相DEM数据。
     6、依据多吋相DEM数据,分别从面积变化、水平方向的空间冲淤变化以及垂直方向的沉积速率等方面,讨论了九段沙湿地在近20a来的沖淤动态变化特征。
     7、为了客观评价湿地的稳定性问题,提出了年均冲淤活跃度的概念,即年均冲淤活跃度=100%×((淤积面积+冲刷面积)/起始面积)/相隔年数。
Jiuduansha Wetland is located between the south and north troughs of Sand Bars in the Yangtze River estuary. It is one of national nature reserve and important land resource of Shanghai. However, because of the influence of the Three Gorges dam and other water conservancy projects and the accelerated sea level rise, it is likely the riverine sediment transport rate and the sediment concentration of the Yangtze River will decrease to less than the critical values in the coming decades to result in the tidal bank erosion in the Yangtze River estuary Foreland. So, the dynamic change of Jiuduansha wetland has attracted much attention.
     The dissertation has studied the dynamic erosion/sedimentation change of Jiuduansha wetland in the recent 20 years by 3S technology, i.e. remote sensing, global positioning system and geographic information system technology. The main contents and results as below:
     1. In order to obtain the reliable elevation data from the in situ measurement data by RTK-GPS in Jiuduansha wetland for DEM construction, the conversion relationship between geographic coordinate system and Shanghai local projected coordinate system is created, the elevation datum is converted to the theoretical depth datum, and the data quality is validated.
     2. To counter the problem of very irregular distribution of the in situ measurement data by RTK-GPS, the grid-DEM is generated by ordinary Kriging interpolation, and the TIN is generated by Delaunay triangulation with the boundary condition constraints. The results show that the two DEM precision are close, but ordinary Kriging interpolation is better than Delaunay triangulation in surface smoothing.
     3. By studying the relationship between the best band for waterline extraction and the tide condition, the conclusion is drawn that short wavelength infrared is the best band for waterline extraction in the middle of flood tide, and red band is the best band in the other tide condition.
     4. Aiming at Jiuduansha intertidal mudflat is so wide that the waterline is not horizontal completely and shouldn't be simply assumed as a contour, the dissertation develops an elevation acquisition method by waterpoints, which is more reasonable than by waterline.
     5. Aiming at the condition that the data source includes contours, waterpoints and scattered points, and the data distribution is very uneven, the Delaunay triangulation with several condition constraints is used to generate TINs, and multi-temporal DEMs are obtained.
     6. According to the multi-temporal DEMs, the dynamic change rules of Jiuduansha wetland are discussed in area change, horizontal erosion/sedimentation change and vertical sedimentation speed.
     7. A new parameter of annual erosion/sedimentation activity is defined in the dissertation to reasonably estimate the stability of Jiuduansha wetland.
引文
[1] B., Lohani, D.C., Mason. Construction of a digital elevation model of the Holderness Coast using the wateriine method and airborne thematic mapper data [J]. International Journal of Remote Sensing, 1999, 20(3): 593-607.
    [2] Chew L.P. Constrained Delaunay Triangulations [J]. Algorithmica, 1989, 4(1), 97-108.
    [3] Costanza R, d'Arge R, Groot R et al. The value of the world's ecosystem services and natural capital [J]. Nature, 1997, 387(15): 253-260.
    [4] Dwyer R A. Dwyer, R.A. A faster divide-and-conquer algorithm for constructing Delaunay triangulations. Algorithmica, 1987,2(2), 137-151.
    [5] Frazier P.S., Page K.J. Water body detection and delineation with Landsat TM data [J]. Photogrammetric Engineering and Remote Sensing, 2000, 66(12), 1461-1467.
    [6] Frouin R., Schwindling M., Deschamps P. Y. Spectral reflectance of sea foam in the visible and near-infrared: in situ measurements wateriine and remote sensing implications [J]. Journal of Geophysical Research, 1996, 101, 14361-14371.
    [7] Fuller R, Groom G, Mugisha S, et al. The integration of field survey and remote sensing for biodiversity assessment: a case study in the tropical forests and wetlands of Sango Bay, Uganda [J]. BiologicalConservation, 1998, 86:379-391.
    [8] Goodwin P, Mehta A J, Zedler J B. Tidal wetland restoration: an introduction [J]. Journal of Coastal Research, 2001, SI27:1-6.
    [9] Henry P. High-resolution wetland prospection, using GPS and GIS: landscape studies at Sutton Common (SouthYork-shire), and Meare Village East [J]. Remote Sensing of Environment, 2001, (28):365-375.
    [10] Herr A, Queen L. Crane Habitat Evaluation Using GIS and Remote Sensing [J]. Photogrammetric Engineer and Remote Sensing, 1998, 59(10):1531-1538.
    [11] Hiroya Yamano, Hiroto Shimazaki, Tsuneo Matsunaga, Albon Ishoda, et al. Evaluation of various satellite sensors for wateriine extraction in a coral reef environment: Majuro Atoll, Marshall Islands [J]. Geomorphology, 2006, 82(4): 398-411.
    [12] Joo-Hyung Ryu, Joong-Sun Won, Kyung Duck Min. Wateriine extraction from Landsat TM data in a tidal flat: A case study in Gomso Bay, Korea [J]. Remote Sensing of Environment, 2002, 83(3): 442-456.
    [13] Kevin White, Hesham M.El Asmar. Monitoring changing position of coastlines using thematic mapper imagery, an example from the Nile Delta [J]. Geomorphology, 1999, 29, 93- 105.
    [14] Lee, D.T., Schachter, B.J. Two algorithms for constructing a Delaunay triangulation [J]. International Journal of Computer and Information Sciences, 9(3), 219-42.
    [15] Lewis B A, Robinson J S. Triangulation of Planar Regions with Applications [J]. Computer Journal, 1978, 21 (4): 324-332.
    [16] Lohani, B., & Mason, D. C. Construction of a digital elevation model of the Holderness Coast using the waterline method and airborne thematic mapper data [J]. International Journal of Remote Sensing, 1999, 20(3): 593-607.
    [17] MaCaullagh M T, Ross C G.Delaunay triangulation of a random data set for isarthmic mapping[J].The Cartographic Journal, 1980,(17):93-99.
    [18] Macedonia G and Pareschi M T. An Algorithm for the Triangulation of Arbitrarily Distributed Points: Applications to Volume Estimateand Terrain Fitting [J]. Computers & Geosciences, 1991(17):859-874.
    [19] Marghany M M. TOPSAR Wave Spectra Model and Coastal Erosion Detection [J]. International Journal of Applied Earth Observation and Geoinformation, 2001, 3(4): 357-365.
    [20] Mason, D.C., Davenport, I.J., Flather, R.A., Gurney, C., et al. A sensitivity analysis of the waterline method of constructing a digital elevation model for intertidal areas in ERS SAR scene of eastern England [J]. Estuarine, Coastal and Shelf Science, 2001, 53(6): 759-778.
    [21] Mirante, A., Weingarten, N. The radial sweep algorithm for constructing triangulated irregular networks [J]. IEEE Computer Graphics and Applications, 1982,2(3), 11-21.
    [22] P.J. Green, R. Sibson. Computing Dirichlet tessellations in the plane [J]. The Computer Journal, 1978,21(2): 168-173.
    [23] Ridd M, Liu J. A comparison of four algorithms for change detection in an urban environment [J]. Remote Sensing Environment, 1998, 63: 95-100.
    [24] S. Dellepiane, R. De Laurentiis, F. Giordano. Coastline extraction from SAR images and a method for the evaluation of the coastline precision [J]. Pattern Recognition Letters, 2004, 25: 1461-1470.
    [25] Samuel Gan-Mora, Rex L. Clark, Bruce L. Upchurch. Implement lateral position accuracy under RTK-GPS tractor guidance[J].Computers and Electronics in Agriculture,2007,59:31-38.
    [26]Schmidt K.,Skidmore A.Spectraldiscrimination of vegetation types in a coastalwetland[J].Remote Sensing of Environment,2003,(85):92-108.
    [27]Shui-sen Chert,Liang-fu Chen,Qin-huo Liu,et al.Remote sensing and GIS-based integrated analysis of coastal changes and their environmental impacts in Lingding Bay,Pearl River Estuary,South China[J].Ocean & Coastal Management,2005,48(1):65-83.
    [28]Sloan S.W.A Fast Algorithm for Constructing Delaunay Triangulation in the Plane[J].Advanced Engineering Software,1987,9(1):34-55.
    [29]Steven A,Douglas A,Liou W.Accuracy of landsat-TM and GIS rule-based methods for forest wetland classification[J].Remote Sensing of Environment,1995,(53):133-144.
    [30]T.H.Sorensen,J.Bartholdy,C.Christiansen,J.B.T.Pedersen.Intertidal surface type mapping in the Danish Wadden Sea[J].Marine Geology,2006,235(2):87-99.
    [31]U.Thampanya,J.E.Vermaat b,S.Sinsakul,et al.Coastal erosion and mangrove progradation of Southern Thailand[J].Estuarine,Coastal and Shelf Science,2006,68:75-85.
    [32]U,Thampanya,J.E.Vermaat,S.Sinsakul,N.Panapitukkul.Coastal erosion and mangrove progradation of Southern Thailand[J].Estuarine,Coastal and Shelf Science,2006,68(1):75-85.
    [33]Yang Guo-Jing,Penelope Vounatsou,Zhou Xiao-Nong,et al.A review of geographic information system and remote sensing with applications to the epidemiology and control of schistosomiasis in China[J].Acta Tropica,2005,96:117-129.
    [34]Yue T,Liu J,Sven E,et al.Landscape change detection of the newly created wetland in Yellow River Delta[J].Ecological Modeling,2003,(164):21-31.[35]暴景阳.海洋深度丛准面的定义、标定与维持[J].海洋测绘,2000,(4):4-8.
    [36]曹建农编著.图像分割方法研究[M].西安:西安地图出版社,2006.
    [37]陈慧群,陈少克.一种基于格子分块的快速Delaunay三角剖分算法[J].计算机与数字工程,2007,35(2):9-12.
    [38]陈吉余,李道季,会文华.浦东国际机场东移与九段沙生态工程[J].中国工程科学,2001,3(4):1-8.
    [39]陈家宽.上海九段沙湿地自然保护区科学考察集[M].北京:科学出版社,2003,3-10.
    [40]陈学工,黄晶晶.基于最优凸壳技术的Delaunay三角剖分算法[J].计算机工程,2007,33(17):93-95.
    [41]崔林丽,唐娉,赵忠明,等.一种基于对象和多种特征整合的分类识别方法研究[J].遥感学报,2006,10(1):104-110.
    [42]都金康,黄水胜,冯学智,等.SPOT卫星图像的水体提取方法及分类研究[J].遥感学报,2001,5(3):214-219.
    [43]杜景龙,杨世伦,张文祥,等.长江口北槽深水航道工程对九段沙冲淤影响研究[J].海洋工程,2005,23(3):78-82.
    [44]韩震,恽才兴,蒋雪中,杨锋杰.温州地区淤泥质潮滩冲淤遥感反演研究[J].地理与地理信息科学,2003,19(6):31-34.
    [45]韩震,恽才兴.伶仃洋大铲湾潮滩冲淤遥感反演研究[J].海洋学报,2003,25(5):58-64.
    [46]何福红.基于3S技术的沟蚀研究方法构建与应用-以长江上游长山岭地区为例[D].2006.
    [47]胡红兵,程和琴,胡方西,等.长江口第二、三代冲积岛浅滩演变特征分析[J].泥沙研究,2004,49(6):57-63.
    [48]黄华梅,张利权.上海九段沙互花米草种群动态遥感研究[J].植物生态学报,2007,31(1):75-82.
    [49]黄建文,陈永富,鞠洪波.基于面向对象技术的退耕还林树冠遥感信息提取研究[J].2006,42(spl):68-71.
    [50]江晖.水体信息自动提取遥感研究-以丽江地区为例[D].2006,8-11.
    [51]劳顺根,胡连法.长江口深度基准面查考[J].海洋测绘,2003,23(2):40-43.
    [52]李道季,陈吉余.上海浦东东滩与九段沙生态环境的比较[J].长江流域资源与环境,1997,6(3):283-287.
    [53]李九发,万新宁,应铭,等.长江河口九段沙沙洲形成和演变过程研究[J].泥沙研究,2006,51(6):44-49.
    [54]李明,杨世伦,李鹏等.长江来沙锐减与海岸滩涂资源的危机[J].地理学报,2006,161(3):282-288.
    [55]李天文.GPS原理及应用[M].北京:科学出版社,2003.
    [56]梁振英.建立我国陆海统一高程/深度基准的构思模式[J].测绘科技动态,1999,(3):20-28
    [57]刘永和,谢洪波,袁策.一种基于三角网扩张法的Delaunay三角网逐块归并 算法[J].测绘科学,2007,32(3):52-55.
    [58]刘永学,李满春,张忍顺.江苏辐射沙洲水边线自动提取方法研究[J].海洋科学,2004,28(6):42-45.
    [59]刘振乾,徐新良,吕宪国.3S技术在三角洲湿地资源研究中的应用[J].地理学与国土研究,1999,15(4):87-91.
    [60]梅安新,彭望琭,秦其明,等.遥感导论[M].北京:高等教育出版社,2001.
    [61]聂庆华.地理信息系统及其在环境科学中的应用[M].北京:高等教育出版社,2006.
    [62]潘辉,罗彩莲,谭芳林.3S技术在湿地研究中的应用[J].湿地科学,2006,4(1):75-80.
    [63]沈焕庭.长江河口潮波特性及其对河槽演变的影响[A].中国地理学会1977年地貌学术讨论会论文集[C].北京:科学出版社,1981,53-60.
    [64]孙天纵,周坚华.城市遥感[M].上海:上海科学技术文献出版社,1995.
    [65]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005.
    [66]唐承佳,陆健健.长江口九段沙植物群落研究[J].生态学报,2003,23(2):399-403.
    [67]童庆禧,张兵,郑兰芬.高光谱遥感-原理、技术与应用[M].北京:高等教育出版社,2006.
    [68]万显荣,舒宁.一种基于种子点与连通性分析的快速水体边界提取方法[J].国土资源遥感,2000,4:44-49.
    [69]汪竹青.3S技术在环境监测中的应用[J].机械管理开发,2005,4(85):82-84.
    [70]王洪亮,李萍萍.3S技术在湿地资源调查研究中的应用[J].农业装备技术,2006,32(4):18-20.
    [71]王桥,杨一鹏,黄家柱,等.环境遥感[M].北京:科学出版社,2005.
    [72]王兴玲.3S技术与数字减灾[J].中国减灾,2005,4:43-45.
    [73]王占刚,潘懋,屈红刚,等.三维折剖面的Delaunay三角剖分算法[J].计算机工程与应用,2008,44(1):94-96.
    [74]吴华林,沈焕庭,吴加学.长江口海图深度基准面换算关系研究[J].海洋工程,2002,20(1):69-74.
    [75]吴健平,杨卫星.遥感数据监督分类中训练样本的纯化[J].国土资源遥感,1996,(1):36-41.
    [76]谢小平,付碧宏,王兆印,等.基于数字化海图与多时相卫星遥感的长江口九段沙形成演化研究[J].第四纪研究,2006,26(3):391-396.
    [77]熊秩群,吴健平.面向对象的城市绿地信息提取方法研究[J].华东师范大学学报(自然科学版),2006,4:84-90.
    [78]秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展,1999,18(1):81-87.
    [79]徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595.
    [80]徐豁,陈顺华,等.RTK确定高程的方法及其应用[J].遥感信息,2003,2:38-40.
    [81]徐双全.3S技术在上海滩涂管理中的应用[J].海洋测绘,2005,25(5):61-64.
    [82]杨世伦,杜景龙,郜昂,等.近半个世纪长江口九段沙湿地的冲淤演变[J].地理科学,2006,26(3):335-339.
    [83]杨世伦,贺松林,谢文辉.长江口九段沙的形成演变及其与南北楷发育的关系[J].海洋工程,1998,16(4):55-65.
    [84]杨世伦,赵庆英,丁平兴,谢文辉.长江口拦门沙河槽季节性冲淤的主控因子探讨[J].长江流域资源与环境,2001,10(3):258-265.
    [85]杨世伦,朱俊,李鹏.长江口前沿潮滩对来沙锐减和海面上升的响应[J].海洋科学进展,2005,23(2):152-158.
    [86]殷晓冬.高程基准与海图水深起算面问题研究[J].海洋测绘,2001,21(1):9-14.
    [87]虞志英,劳治声,金庆详,张勇等.淤泥质海岸工程建设对近岸地形和环境影响,北京:海洋出版社,2003.
    [88]恽才兴.海岸带及近海卫星遥感综合应用技术[M].北京:海洋出版社,2005.
    [89]翟翠允,段凌燕,耿志军,等.RTK测量中基准站的设置问题[J].海洋测绘,2007,27(3):63-66.
    [90]张超,陈丙成,邬伦.地理信息系统[M].北京:高等教育出版社,1995.
    [91]郑宗生,周云轩,蒋雪中,沈芳.崇明东滩水边线信息提取与潮滩DEM的建立[J].遥感技术与应用,2007,22(1):35-38.
    [92]周启呜,刘学军.数字地形分析[M].北京:科学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700