茶叶浸提物对功能性酶活性和二级结构的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了绿茶、铁观音、红茶和六堡茶浸提物及茶多酚对血管紧张素转化酶(ACE)、胰脂肪酶(PPL)和胰α-淀粉酶(PPA)等三种功能性酶活性的影响,并选取PPL和PPA,研究其与茶源物质相互作用后紫外差示光谱、荧光猝灭光谱和圆二色谱的变化。
     首先比较了紫外可见光法和高效液相色谱法对研究茶多酚ACE活性的适用性,得出一种直接进样、等梯度洗脱便能达到良好分析效果的RP-HPLC测定方法。以马尿酰-组氨酰-亮氨酸(HHL)为反应底物,ACE为催化剂,反应所生成的马尿酸为测定指标,未加酶抑制剂的反应为空白对照。使用Intersil ODS-3色谱柱(4.6mm i.d.×250mm,5μm),柱温35℃,流动相为甲醇-超纯水(体积比35:65,各含0.05%(v/v)三氟乙酸及0.1%(v/v)三乙胺),流速0.8 mL/min,检测波长228nm。在马尿酸浓度为5-50μg/mL时,马尿酸浓度与其峰面积呈良好的线性关系(R2=0.9997),马尿酸的回收率为93.55%-101.50%,相对标准偏差(RSD)为2.95%。采用此法测得绿茶茶多酚对ACE具有一定的抑制作用,抑制率随着茶多酚浓度的升高呈现先升高再降低的总体趋势,最大的抑制率为29.44%,此时茶多酚浓度为2mg/mL。
     其次研究了茶多酚对PPL和PPA活性的影响。结果表明其对PPL和PPA均有显著的抑制作用,茶多酚对PPL和PPA的半抑制浓度IC50分别为1.23和0.82mg/mL,为可逆性抑制,可逆抑制反应的类型均为非竞争性抑制,抑制常数Ki分别为2.49和1.08mg/mL。通过茶浸提物对PPA抑制活性的研究发现,绿茶、铁观音、红茶和六堡茶浸提物的半抑制浓度IC50分别为8.99,8.89,7.90和40.8mg/mL。抑制动力学结果表明四种茶浸提物对PPA的抑制反应均为可逆抑制,可逆抑制的抑制类型均为非竞争性抑制,抑制常数Ki分别为:11.59,10.37,9.52和43.29mg/mL。
     紫外差示光谱结果表明,不同浓度的茶多酚和茶浸提物均能引起PPL和PPA紫外吸收光谱的变化,光谱谱峰升高,峰位红移,浓度越高,变化幅度越大。四种茶浸提液相比,红茶的影响程度最大,六堡茶最小。以278nm和295nm波长光进行激发,研究了四种茶浸提物和茶多酚与PPL和PPA相互作用后的荧光猝灭光谱,结果显示随着茶源物质浓度的增加,PPL和PPA的荧光发射强度逐渐降低,峰位发生红移。结合Stern-Volmer方程,推断四种茶浸提液和茶多酚对PPL和PPA的荧光猝灭均为以非共价键结合的某种不发光的配合物引起的静态猝灭。
     通过圆二色谱技术,研究了四种茶浸提液对PPL和PPA圆二色谱及二级结构的影响,结果显示四种茶浸提物均能促使PPA和PPL双负峰往单一负峰转变,茶叶发酵程度越低,即茶多酚的含量越高,转变越明显,峰高变化也越显著。与茶浸提物相互作用后PPA和PPL均变现出α-螺旋含量降低,而β-折叠含量增多,此种结构变化与酶的失活具有相关性。
The effects of green tea, Oolong tea, black tea, liupao tea and tea polyphenols(TP) on the activity of angiotensin converting enzyme(ACE), porcine pancreas lipase(PPL) and porcine pancreasα-amylase(PPA) were studied in this paper. PPL and PPA were selected to study the changes of UV difference spectra, fluorescence spectra and circular dichroism(CD) after treatment with those tea source materials.
     Firstly, UV-visible spectrophotometry and HPLC method were compared to verify their applicability. An simple, reliable and precise RP-HPLC method was established for the analysis of ACE inhibitory activity of green tea polyphenols(GTP) with N-hippuryl-His-Leu (HHL) tetrahydrate as the reaction substrate and hippurid acid as the reaction product. The chromatographic conditions were as follows:Column, Intersile ODS-3(4.6mm i.d.×250mm, 5μm); column temperature,35℃; mobile phase, methanol-ditilled water(35:65, v/v, both containing 0.05%(v/v) trifluoroacetic acid and 0.1% triethylamine); flow rate,0.8mL/min; detection wavelength,228nm. An excellent linearity over the range of 5-50μg/mL(R2=0.9997) was observed. The recoveries of hippuric acid were 93.55%-101.50% with a relative standard deviation(RSD) as 2.95%. Measured by this method, GTP showed ACE inhibitory activity The maximum inhibitory rate reached to 29.44% at 2mg/mL of GTP concentration.
     Secondly, the effects of TP to the activity of PPL and PPA were studied. Results showed that TP had a significant inhibitory effects to both PPL and PPA, the IC5o were 1.23 and 0.82mg/mL respectively. The inhibitory types were both reversible via non-competitive inhibition with the Ki as 2.49 and 1.08mg/mL respectively. When comes to the four types of tea, the content of TP and solids were reduced with their degree of fermention and their IC50 to PPA were gained through inhibitory research. Meantime, the kinetics equations were established to analyse the inhibition type. Results showed that they were all reversible via non-competitive with the Ki as 11.59,10.37,9.52 and 43.29mg/mL.
     Thirdly, the results of UV difference spectra suggested that the UV spectra of PPL and PPA could be changed by different concentration of TP and tea extracts with the peak height increasing and the peak location red shifting, the higher the concentration the more distinctive the change. Compared with the four types of tea extracts, the black tea had the greatest influence while the liupao tea had the smallest. This phenomenon maybe caused from the change of the spacial structure and microenvironment of aromatic amino-acid residues in PPL and PPA by tea sources, which led to the change of PPL and PPA enzyme molecular conformation so as to affect their catalytic activity. What's more, the bindings of TP and the four types of tea to PPL and PPA were studied by fluorescence quenching spectra with 278nm and 295nm wavelength light as stimulated emission, results showed the fluorescent intensity reduced with the concentration increasement and the peak location red shiftment. And the quenching mechanism was researched according to the characteristic feature of Stern-Volmer equation, from which we concluded it was static quenching led by some non-luminous complexes combined with non-covalent bond.
     Finally, the CD spectra and secondary structure of PPL and PPA after treament with the four types of tea extracts and TP were obtained using CD technique. Results exhibited that all the tea sources could lead to the change of CD peak height, shape and location, the higher the concentration the more distinctive the change. The two characteristic negative peak of PPL and PPA turned to single by the impact of tea sources and the peak height changed remarkably with the content of TP. As for the secondary structure, the content ofα-helix reduced while theβ-sheet increased after interaction with tea sources. The reduction ofα-helix indicated that the orientation of hydrogen bond changed and the increasement ofβ-sheet caused the unnatural sheet mistakes come up, which two aspects made the nature conformation of enzyme protein can't form so as to the activity of enzyme inactivated.
引文
[1]宛晓春.茶叶生物化学(第三版)[M].北京:中国农业出版社,2003:8-11,30-31,119-194
    [2]朱自振.茶史初探.北京:中国农业出版[M],1996:2-11
    [3]何小维,王雪霞,许文玲.浅谈茶的保健功能及茶保健品的发展现状[J].农产品加工工,,2006(4):62-64
    [4]李凯年.茶叶化学成分含量及其对人体的影响[J].营养保健,2004,9:44-45
    [5]顾谦,陆锦时,叶宝存.茶叶化学[M].合肥:中国科学技术大学出版杜,2002.109-364
    [6]边世平.茶叶的化学成分及其保健作用[J].青海大学学报,2004,22(4):64-65
    [7]魏泱,丁明玉.茶多酚的色谱分析法[J].色谱,2000,18(1):35-38
    [8]LI J K. Survey of catechins, gallic acid and methylxanthines in green,oolong,puerh and black teas[J]. J Agile food Chem,1998,46:3635-3642
    [9]JANKON J,SELMAN S H,SWIERCZ R,et al.Why drinking green tea could prevent cancer[J]. Nature,1997,387:561
    [10]朱桂勤,李建科.茶多酚的功能研究进展[J].食品研究与开发,2005,26(1):33
    [11]杨崇仁,陈可可,张颖君.茶叶的分类与普洱茶的定义[J].茶叶科学技术,2006,2:37
    [12]施兆鹏,胡建程,刘勤晋,等.茶叶加工学[M].北京:中国农业出版社,1997
    [13]杜晓,王孝仕,何春雷.蒸青绿茶加工过程中品质生化成分的变化[J].西南农业大学学报,2006,19(1):116-119
    [14]涂云飞.做青过程中儿茶素和茶黄素变化研究[J].中国茶叶加工,2007(4):14-16
    [15]黄福平.武夷肉桂和安溪铁观音在制造过程中主要化学成分变化比较[J].安徽农业大学学报,1999:26(4):470-473
    [16]方世辉,王先锋,汪惜生.发酵温度和程度对工夫红茶品质的影响[J].中国茶叶加工工,,2004(2):19-21
    [17]Khan N,Mukhtar H.Tea polyphenols for health promotion[J]. Life Sci,2007,81:519-533
    [18]李大祥,方世辉,杨荣俊,等.绿茶、红茶加工工艺对茶鲜叶中多酚类物质的影响[J].中国茶叶加工2005,(4):23,24-29
    [19]廖庆梅.谈谈六堡茶的加工技术及工艺[J].茶业通报,2000,22(3):30-32
    [20]何志强.弘扬六堡茶文化,做强六堡茶产业[J].中国茶业,2007,4:32,38
    [21]陈小强,叶阳,成浩,等.三类茶中茶氨酸、咖啡碱及多酚类的比较分析[J].食品研究与 开发,2007,28(12):141-144
    [22]折改梅,张香兰,陈可可,等.茶氨酸和没食子酸在普洱茶中的含量变化[J].云南植物研究,2005,27(5):572-576
    [23]张绵松,孟秀梅,袁文鹏,等.海蜇血管紧张素转化酶抑制肽的超滤分离[J].食品与药品,2010,12(1):20
    [24]于一丁,于志鹏,赵文竹,等.血管紧张素转化酶抑制肽稳定性研究[J].食品工业科技,2010,31(1):412
    [25]农小宝.高血压药物治疗研究进展[J].内科,2009,,4(4):607-609
    [26]Pefefer JM,Pefefer MA.Braunwaid E. Influence of chronic captopril therapy on the infarcted left ventricle of the rat[J].Circ Res.1985,57:84-95
    [27]赵任岚,许传莲.血管紧张素转换酶的结构功能及相关抑制剂[J].生物工程学报,2008,24(2):171-176
    [28]Qing C M, Suzanne O,Purification and assay methods for angiotensin-converting enzyme[J].J Chromatography,1996,743:105-122
    [29]Cushman D W,Ondftti M A. Design of potent competitive inhibition of anfiotensin converting enzyme[J].BioChem,1977,15:5485-5488
    [30]张海英.浅谈肥胖的研究进展[J].中国伤残医学,2010,18(1):156
    [31]郑毅,叶海梅,吴朝娟,等.脂肪酶活力测定研究进展[J].工业微生物,2005,35(9):36
    [32]杨汉博,王峰.动物消化道脂肪酶研究概述[J].饲料广角,2009,5:34
    [33]Shishikura A, Fujimoto K, Suzuki T, et al. Improved Lipase-Catalyzed Incorporation of Long-Chain Fatty Acids into Medium-Chain Triglycerides Assisted by Supercritical Carbon Dioxide Extraction[J]. J. Am. Oil Chem. Soc.,1994,71(9):961-967
    [34]Rahul B Birari Kamlesh K Bhutani. Pancreatic lipase inhibitors from natural sources: unexplored potential[J]. Drug Discovery Today,2007,12(19/20):479-489
    [35]杨英,冯超,吴琴琴,等.糖尿病的健康管理[J].现代预防医学,2009,36(3):570
    [36]American Diabetes Association. Hypertension management in adults with diabetes [J].Diabetes Care,2004.27:65-67
    [37]Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis:Epidemiology, pathophysiology and management[J].JAMA,2002,287:2570-2581
    [38]Matsushita H, Takenaka M, Ogawa H. Porcine pancreatic α-amylase shows binding Angiotensin Converting Enzyme[J].Anal Biochem,1979,95:540-548
    [52]Jianping Wu,Rotimi E Aluko,Alister D Muir. Improved method for direct high-performance liquid chromatography assay of angiotensin-converting enzyme catalyzed reactions [J]. Journal of Chromatography A,2002,(950):125-130
    [53]Xiaofeng Xiao,Xubiao Luo.Bo Chen,et al.Determination of angiotensin converting-enzyme inhibitory activity by high-performance liquid chromatography/electrospray massspectrometry[J]. Journal of Chromatography B,2006, (834):48-54
    [54]Sigrid Van Dyck,Sona Novakova,Ann Van Schepdael,et al.Inhibition study of angiotensin converting enzyme by capillary electrophoresis after enzymatic reaction at capil-lary inlet[J].Journal of Chromatography A,2003,(1013):149-156
    [55]Hiroyuki Fujita,Tomobide Yamagami,Kazunori Ohshima. Effect of an ace-inhibitory agent,katsuobushi oliopeptide, in the spontaneously hypertensive rat and in borderline and mildly hypertensive subjects [J]. Nutrition Research,2001, (21):1149-1158
    [56]Gargouri Y,Julien R,Pieroni G,et al.Studies on the inhibition of pancreatic and microbial lipases by soybean proteins[J].Lipid Res,1984(25):1214
    [57]Zheng Q Koike,K Han L K.New biologically active triterpenoid saponins from Scabiosa tschiliensis[J].Nat.Prod,2004(67):604-613
    [58]Ono Y,Hattori E,Fukaya Y,et al.Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats[J].Ethnopharmacol,2006,8 (106):238-244
    [59]Moreno D A,Ilic N,Diego A, Alexander Poulev,et al.Inhibitory effects of grape seed extract on lipases[J]. Nutrition,2003,19(10):876-879
    [60]刘志芳,田萌,马跃文,等.熊果酸和齐墩果酸对胰脂肪酶活性及构象的影响[J].时珍国医国药,2009,20(10):2600-2602
    [61]尹瑞卿,丁玉,陈明达,等.黄芩苷对胰脂肪酶的抑制机理研究[J].安徽农业科学,2009,37(24):11534-11536
    [62]朱晓青,吕敬慈,霍世欣,等.荷叶生物碱对胰脂肪酶的抑制作用[J].上海大学学报(自然科学版),2007(1):85-87
    [63]张海燕,丁玉,尹瑞卿,等.脂肪酶酶活性的最新研究[J].生物学通报,2007,42(3):16-17
    [64]Gibbs BF, Alli I, Characterization of a purified α-amlylase inhibitor from white kidney beans(phaseolus Vulganis)[J]. Food Research International,1998,31:217-225
    [65]Jack Lee S C, Whitaker J. The structure of maturally-occuring α-amlylase inhibitors[J]. Food of 21st Century-Food and Resource, Technology, Environment,2000,81-27
    [66]徐亲民,沈林明.植物中胰α-淀粉酶抑制剂的筛选[J].中国医药工业杂志,1991,22(7):302-303
    [67]柳钟勋.微生物来源的酶抑制剂的研究进展[J].抗生素,1984,9(3):166-175
    [68]徐成勇,诸葛建.微生物来源的酶抑制剂研究进展[J].微生物学报,1999,39(2):185-187
    [69]王文君,姚江武,陶涛.红茶和绿茶多酚对猪胰腺α-淀粉酶抑制效果的动力学研究[J].口腔医学研究,2009,25(4):442-445
    [70]张冬英,黄业伟.袁文侠,等.普洱茶渥堆中α-淀粉酶淀粉酶抑制剂含量变化研究[J].西南农业学报,2008,21(5):1282-1285
    [71]刘雯,裘晓丹,雷芳,等.茶碱对胰α-淀粉酶的抑制类型及光谱性质[J].天然产物研究与开发,2008,20:298-301
    [72]谢丽源.菌源性α-淀粉酶抑制剂研究进展[J].四川食品与发酵,2002,38(114):16
    [73]Donovan JW.Ultraviolet difference spectroscopy:new techniques and applications [J]. Methods Enzymol.1973,27:497-525
    [74]Ichikawa T,Terada H.Effect of dodecyl sulfate on the spectral properties of phenylalanyl residues in serum albumin detected by second derivative spectrophotometry[J].Biolchem Biophys Acta,1981,671:33-37
    [75]Ragone R.Colonna G,Balestrieri C,Servillo L,et al.Determination of tyrosine exposure in proteins by second-derivative spectroscopy[J].Biochemistry,1984,23:1871-1875
    [76]刘峥,夏之宁.光谱法在分子间相互作用中的应用[J].激光杂志,2001,22(6):9-11
    [77]Murali J,Jayakumar R.Spectroscopic studies on native and protofibrillar insulin[J]. Journal of Structural Biology,2005,150:180-189
    [78]Liang Y,Du F,Sanglier S,Zhou BR.Unfolding of rabbit muscle creatine kinase induced by acid.A study using electrospray ionization mass spectrometry,isothermal titration calorimetry.and fluorescence spectro-scopy[J].Journal of Biology Chemistry,2003,278: 30098-30105
    [79]鲁子贤,崔涛.圆二色性和旋光色散在分子生物学中的应用[M].北京:科学出版社,1987
    [80]Krell T,Horsburgh MJ,Cooper A,Kelly SM,Coggins JR.Localization of the active site of type II dehydroquinases.Identification of a common arginine-containing motif in the two classes of dehydroquinases[J].Journal of Biology Chemistry.1996,271:24492-24497
    [81]林应章,周筠梅.振动光谱与蛋白质二级结构[J].生物物理学报,1989,5:428-438
    [82]Dong A.,Huang P.,Caughey W.S.Protein secondary structures in water from second-derivative amide I infrared spectra[J].Biochemistry,1990.29(13):3303-3308
    [83]Dutzler R, Campbell E B, MaeKinnon R. Garing th eseleetivity filter in CIC chloride channels[J]. Science,2003,300:108-112
    [84]胡红雨,鲁子贤.核磁共振法研究蛋白质和多肽的结构和功能[J].化学通报,1995,7:12-22
    [85]施蕴渝,吴季辉.核磁共振波谱研究蛋白质三维结构及功能[J].中国科学技术大学学报,2008,38(8):941-949
    [86]郑建全,郭俊霞,金宗濂.红曲对自发性高血压大鼠降压机理研究[J].食品工业科技,2007,28(3):207
    [87]Ruiz J A G, Ramos M, Recio I. Angiotensin converting enzyme-inhibitory activity of peptides isolated from Mtory Peanchego cheese. Stability under simulated gastro-intestinal digestion[J].International Dairy Journal,2004,14:1075-1080
    [88]Van Zwieten.原发性高血压药物治疗的新进展[J].高血压杂志,2002,10(5):402-408
    [89]金融,王恬,许毅.植物源降血压肽研究进展[J].中国油脂,2007,32(9):22
    [90]Xin Mei, Dao-Hui Lin, Yi Xu, et al. Effects of phenanthrene on chemical composition and enzyme activity in fresh tea leaves[J]. Food Chemistry,2009,115:569-573
    [91]NakamuraY,YamamotoN,SakaiK,et al.Purifieation and Characterization of Angiotensinl-Converting Enzyme Ihibitors from Sour Milk[J]J Dairy Sci,1995,78:777-783
    [92]Enyonam Quist, R. Dixon Phillips, Firibu K. Saalia. Angiotensin converting enzyme inhibitory activity of proteolytic digests of peanut (Arachis hypogaea L.) flour[J]. Food Science and Technology,2009,42:694-699
    [93]I.Chuan Sheih, Tony J. Fang, Tung-Kung Wu. Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste[J]. Food Chemistry,2009,115:279-284
    [94]陈宗懋.茶叶内含成分及其保健功效[J].中国茶业,2009,5:4-5
    [95]ChiesiM,Huppertz C, Hofbauer K G. Pharmacotherapy of obesity, targets and perspectives[J]. Trends Pharm acol Sci,2001,22:247-254
    [96]陈睿,曾阳,黄元,等.灰栒子提取物对α-淀粉抑制作用的初步研究[J].食品科技,2009,34(11):243-245
    [97]纪建业.脂肪酶活力测定方法的改进[J].通化师范学院学报,2005,26(6):51-53
    [98]B.施特尔巴赫著,钱喜渊译.酶的测定方法[M].北京:中国轻工业出版社,1992:37-41
    [99]陈曾,刘兢,罗丹.生物化学实验[M].合肥:中国科技大学出版社,1994
    [100]刘睿,潘思轶,刘亮.高粱原花青素对活力的抑制动力学研究[J].食品科学,2005,26(9):189-192
    [101]王镜岩,朱圣庚,徐长法,等.生物化学[M].北京:高等教育出版社,2002,9,170-173
    [102]Yukihiko Hara, MiwaHonda. The Inhibition of a-Amylase by Tea Polyphenols[J]. Agric Biol Chem,1990(54):1939-1945
    [103]刁家志,陆珊,赵巍,等.葛根素与胰蛋白酶相互作用研究[J].化学研究与应用.2006,18(3):280-283
    [104]杨冉,屈凌波,陈晓岚,等.柚皮素、柚皮苷与溶菌酶相互作用的荧光光谱法研究[J].化学学报,2006,64(13):1349-1354
    [105]王守业,徐小龙,刘清亮,等.荧光光谱在蛋白质分子构象研究中的应用[J].化学进展,2001,13(4):257-259
    [106]盛良全,闫向阳,徐华杰,等.烟碱与牛血清白蛋白相互作用的光谱研究[J].光谱学与光谱分析,2007.27:306
    [107]Bruno Stellmach. Best immungs methoden Enzyme[M].Beijing:China Light Industry Press,1988:37
    [108]雍克岚,吕敬慈,吕蔚.应用三维荧光光谱和可变角同步荧光扫描分析天然荧光氨基酸的含量[J].化学世界,2000,41(11):601
    [109]郭尧君.荧光实验技术及其在分子生物学中的应用[M].北京:科学出版社,1979.123
    [110]张丽娟,张宜欣,许子华.姜黄素与牛血清白蛋白结合的反应机制研究[J].中医药导报,2010,16(2):65-68
    [111]陈国珍.荧光分析法[M].北京:科学出版社,1990.105,502
    [112]Zhang J.Research on conformational changes of trypsin in different concentrations of GuHCl by fluorescence spectra[J]. Spectrosc Spectra Anal,2004,24:456
    [113]吴秋华,王春,王志,等.防己诺林碱与牛血清白蛋白相互作用的研究[J].光谱学与光 谱分析,2007,27(12):2498
    [114]Muzzarelli R A A, Tanfani F. The Npermethylation of chitosan and the preparation of Ntrimethyl chitosan iodide[J]. Carbohydrate Polymers,1985,5:297-307
    [115]苏波,贾旭,冷晓莲,等.喜树碱对胰α-淀粉酶部分性质的影响[J].天然产物研究与开发,2007,3:452
    [116]S oares S, Mateus N, De Freitas V. Interaction of different polyphenols with bovine serum album in (BSA) and human salivary a-amylase (HSA) by fluorescence quenching [J]. J Agric Food Chem,2007,55 (16):6726-6735
    [117]Moynihan P, L ingstrom P, Rugg Gunn AJ, et al. The role of dietary control, in:O. Fejerskov, E. Kidd (Eds.), Dental Caries:The Disease and its Clinical Management[M]. Black well Munksgaard, Oxford,2003,222-244
    [118]HAO Bo-lin, LIU Ji-xing. Theory Physics and Life Science. Shanghai Scientific and Technologi-cal Education Publishing House,1997,3
    [119]GREENF IELDN, FASMAN G D. Computed circular dichroism spectra for the evaluation of protein conformation[J]. Biochemistry,1969,8 (10):4108-4116
    [120]PROVENCHER S W,GLOCKNER J. Estimation ofglobular protein secondary structure from circular dichroism[J]. Biochemistry,1981,20 (1):33-37
    [121]HENNESSEY J P,JOHNSON W C Jr.Information content in the circular dichroism of proteins[J].Biochemistry,1981,20(5):1085-1094
    [122]袁观宇.生物物理学[M].科学出版社,2006,237
    [123]赵南明,周海梦.生物物理学[M]北京:高等教育出版社,2000.330-344
    [124]Yee-Hsiung Chen, Jen Tsi Yang, Kue Hung Chau, Determination of the helix and p form of proteins in aqueous solution by circular dichroism[J].Biochemistry,1974,13(16),3350
    [125]Sreerama H, Venyaminov S Y, Woody R W. Internal Structure of Wet and Dry Polypeptide Multilayer NanofilmsAnal[J]. Biochem.,2000,287:243
    [126]姚占全,敖敦格日勒,许强,等.应用圆二色光谱研究电场对脂肪酶二级结构的影响[J].光谱学与光谱分析,2006,2311-2314
    [127]李宏高,江建军.生物化学[M].北京:科学出版社,2004
    [128]Chen Y H, Yang J T, Martinez H M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion[J]. Biochemistry,1972, 11(22):4120-4131
    [129]Adler A J, Greenf Ieldn. Fasman G D. Complexes of deoxyribonucleic acid with lysine-rich histone phosphorylated at two separate sites:circular dichroism studies[J].Arch Biochem Biophys.1972,153(2):769-777

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700