凝固性坏死组织超声散斑图分析及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的
     高强度聚焦超声技术(High Intensity Focused Ultrasound,HIFU)是建立在影像学基础上的治疗技术,没有影像学技术的发展就没有HIFU技术的发展。超声成像因其速度快、无辐射、操作简单而成为HIFU技术中最具有潜力的监控手段之一。诊断超声监控作为众多学者的研究热点,其基本原理是对治疗前后焦区处超声背向散射系数发生改变产生的回声增强现象进行监控。但回声增强这一现象通常是由空化气泡的散射引起的,随着时间的推移,增强的灰度值会逐渐减弱甚至消失,且灰度值的大小和实际的组织损伤没有明确的对应关系,也有学者在研究中发现有时虽有凝固性坏死发生而灰度并未增强。
     本文针对目前B超监测的缺点,提出利用图像处理手段,通过对比治疗前后诊断B超监控图像的相似性程度,以达到准确判断凝固性坏死的发生时间以及范围,从而实现HIFU的精确治疗。
     研究方法
     采用JC-200型高强度聚焦超声肿瘤治疗系统在90w功率下以定点点打方式辐照新鲜离体牛肝组织1s、2s、3s直至15s。储存辐照前、辐照后即刻、1min、2min、3min的超声声像图。根据散斑分析原理将采集的超声图像使用Matlab 7.0软件截取感兴趣的区域,选择两种相似性测度算法对图像进行相似性分析,通过判断相似程度大小来反映组织在HIFU辐照下的变化过程。
     结果
     (1)将JC-200自带的声像图分析软件Gray Val 1.0得到的判断结果与病理结果相比较,我们得出在本研究中,Gray Val 1.0判断的正确率为66.0%,错误率为34.0%。
     (2)利用互相关系数相似性测度评价散斑图像凝固性坏死时,发生凝固性坏死而Gray Val 1.0计算的辐照前后声像图靶区灰度差值大于5的图像与辐照前的散斑图像互相关系数绝对值小于0.79;发生凝固性坏死而Gray Val 1.0计算的辐照前后声像图靶区灰度差值小于5的图像与辐照前的散斑图像互相关系数绝对值小于0.85。
     (3)利用归一化互信息相似性测度判断时,此方法对噪声较敏感,单纯评价两张不同时刻HIFU辐照前的散斑图像I(A,B)均超过0.650,部分样本甚至达到0.700。而随着治疗时间的延长,虽然散斑图已发生了明显改变,归一化互信息值呈缓慢增长趋势,但幅度很小(增大不超过0.100)。
     综上所述,利用散斑分析原理检测声像图的相似性程度,可以作为一种新的HIFU治疗过程中凝固性坏死的检测方法。但关键之处在于如何选取最合适的相似性测度和感兴趣区域(Region Of Interest,ROI)大小,以实现凝固性坏死的准确检测。
Background and Purpose
     HIFU is based on the imaging techniques, it would never make progress without the development of imaging technology .Ultrasound has been regard as one of the most potential monitored methods as its speed, no radiation,and simple.The substance of ultrasound to monitor is that there will be echo enhancement phenomenon after HIFU treatment caused by the scattering of cavitation bubbles. While,as time goes by this phenomenon will gradually weaken or even disappear, and the gray value does not correspond to the actually size of tissue damage area.
     In this paper a new method has been proposed according to the shortcomings were discussed,by comparing the similarity of monitoring images before HIFU treatment to after.
     Research Methods
     JC-200 High-intensity focused ultrasound tumor therapy system has been used to radiate in vitro bovine liver with 90 w,time continues from 1 s,2s until 15s. Ultrasonographic of before HIFUradiation and immediately after radiation,1 min after radiation ,2min after radiation,3 min after radiation have been saved.According to the principles of ultrasound speckle analysis Matlab 7.0 has been used to obtain ROI,and then analysised the similarity of different images by two kinds of similarity measures .
     Results
     1) Gray Val 1.0 judge the results obtained Compared with the pathological results, in this study, the accuracy of Gray Val 1.0 was 64.0%, the error rate was 34.0%
     2) Cross correlation similarity has been used as the a measure to evaluate coagulation necrosis .The cross correlation similarity is less than 0.79 when both Gray Val 1.0 Calculation of target gray-scale ultrasonography before and after radiation the difference is greater than 5 and the pathological result is positive..The cross correlation similarity is less than 0.85 when both Gray Val 1.0 Calculation of target gray-scale ultrasonography before and after radiation the difference is less than 5 and the pathological result is positive.
     3) Normalized mutual information similarity has been used as the a measure to evaluate coagulation necrosis too.This method is more sensitive to noise.Simple evaluation of 2 different time speckle images before HIFU treatment I(A,B) are over 0.650,and even some samples to 0.700.With longer time of treatment,althogh the speckle pattern has significant changes,normalized mutual information values increased slowly (less than 0.100)
     In summary,speckle analysis would be a new method to detect coagulation necrosis.However how to choose the most suitable similarity measure and the size of ROI is the key way to make success.
引文
[1]Clarke R L,ter Haar G R.Temperature rise recorded during lesion formation by high-intensity focused ultrasound[J].Ultrasound Med Biol,1997,23(2):299-306.
    [2]Yang R,Reilly C R,Rescorla F J et al.High intensitu focused ultrasound in the treatment of experimental lever cancer[J].Aech Surg,1991,126(8):1002-1009.
    [3]ter Haar G R,Rivens I,Chen L,et al.High intensity focused ultrasound for the treatment of tar tumors[J].Phys Med Biol,1991,36(11):1495-1501.
    [4]Beerlage H P,Thuroffs,Debrugne F M,et al.Transrectal high intensity focused ultrasound using the ablatherm device in the treatment of localized prostate carcinoma[J].Urology,1999,54(2):273-277.
    [5]Hegarty N T,Fotzpatrick J M.High intensity focused ultrasound in benigh prostatic hyperplasia[J].Eur J Ultrsound,1999,9(1):55-60.
    [6]Madersbacher S,Kratzik C,Susani M,et al.Transcutaneous high-intensity focused ultrasound and irradiation:an prgan-preserving treatment of cancer in a solitary testis[J].Eur Urol,1998,33(2):1952-201.
    [7]Robinson J C,Lele P P.An analysis of lesiondevelopment in the braion and in plastic by high intensity focused ultrasound at lowmegaherta frequencies[J]. Acoust Soc Am,1972,51(4):1331-1351.
    [8]Burgess S E,Iwamoto T,Coleman D J,et al.Histologic changes in porcine eyes treatment with high-intensity focuesd ultrasound[J].Ann Ophthalmol,1987,19(4):133-138.
    [9]冯若,王智彪,顾美礼等.超声抗早孕[J].应用医学,1998,17(6):19-21.
    [10]Vaezy S,Marti R,Mourad P,et al.Hemostasis using high intensity focused ultrasound[J].Eur J Ultrasound,1999,9(1):79-87.
    [11]徐颖.HIFU治疗系统中监控超声成像的雾状伪像处理研究[D].重庆:重庆大学,2006.
    [12]王智彪,李发琪,冯若主编.超声治疗学原理与应用[M].南京大学出版社:171-183.
    [13] Hynynen K, Darkazanli A, Unger E, et al. MRI-guided noninvasive ultrasound surgery[J] .Med Phys,1993,20(5):107-115.
    [14] Hynynen K, Vykhodtseva N,Chung AH,et al. Thermal effects of focused ultrasound on the brain: determination with MR imaging[J]. Radiology,1997,20(4):247-253.
    [15] Bohris C,Schreiber W G,Jenne J,et al.Quantitative MR temperaturemonitoring og high-intensity focused ultrasound therpy[J].Magn Reson Imaging,1999,17(4):603-610.
    [16] Young S W,Marincek B,Hahn G M.Ultrasonic hyperthermia for animal tumor treatment:CT assessment[J].Am J Roentgenol,1980,13(5):363-367.
    [17] ter haar GR .High-intensity fpcused ultrasound for the treatmentof tumors[J].Echocardiography,2001,18(6):317-322.
    [18] Sinille A,Prat F,Chapelon J Y,et al.Chatacterization of extracorporeal ablation of normal anf tumor-bearing liver tissue by high intensity focused ultrasound[J].Ultrasound Med biol,1993,19(10):803-813.
    [19] ter Har GR,Sinnett D,Rivens I.High intensity focused ultrasound:a surgical techique for the treatment of discrete liver tumors[J].Phys Med Biol,1989,34(13):1743-1750.
    [20]Yang R,Kopecky K K,Rescorla F,et al.Sonographic and focused ultrasound[J].Invest Radiol,1993,9(28):796-801.
    [21] Vaezy S,Marti R,Mourad ,et al.Hemostasis using high intensity focused ultrasound,1999,9(4):79-87.
    [22]Sedelaar J P,Ammink R G,Van Leenders G J,et al.The application of three-dimensional contrast-enhanced ultrasound to measure volume of affected tissure after HIFU treatment for localized prostate cancer[J].Europe Urology,2005,5(37):559-568.
    [23]Stafford R J,Kallel F,Price R E,et al.Elastographic imaging of thermal lessions in soft tissue:a preliminary study in vitro[J].Ultrasound inMed &Bio,1998,24(9):1449-1458.
    [24]Kallel F,Stafford R J,Price R E,et al.The feasibility of elastographic visualization of hifu-induced thermal lessions in soft tissue[J].Ultrasound in Med &Bio.1999,25(4):641-647.
    [25]Righetti R,Kallel F,Stafford R J,et al.Elastographic charaterization of hifu-induced lessions in canina livers[J].Ultrasound in Med&Biol,1999,25(7):1099-1113.
    [26]Miller N R,Bamber J C,ter haar G R.Imaging of temperature-induced echo strain:preliminary in vitro study to assess feasibility for guiding focused ultrasound surgery[J].Ultrasound Med Biol,2004,30:345-356.
    [27]罗建文,丁楚雄,白净等.超声组织成像用于高强度聚焦超声损伤的检测[J].北京生物医学工程,2006,25(3):235-239.
    [28]白培瑞,万习明,王素品等.超声弹性成像中一种检测组织非均匀性的新方法,自然科学进展,2006,16(1):101-106.
    [29]Worthington A E,Trachenberg J,Sherar M D.Ultrasound properties of human prostate tissue during heating[J].Ultrasound Med Biol,2002,28(3):1311-1318.
    [30]Worthington A E,Sherar M D.Changes in ultrasound properties of porcine kidney tissue during heating[J].Ultrasound Med Biol,2001,27(6):673-682.
    [31]钟徽,江一峰,万明习等.高强度聚焦超声软组织损伤背向散射积分减影监控成像[J].航天医学与医学工程,2006,3(19):217-221.
    [32]邹建中.HIFU高强度聚焦超声治疗肿瘤的超声定位、实时监控及疗效评价[J].临床医学超声杂志,2001,3增刊:23-29.
    [33]ter haar.Acoustic surgery[J].Physics Today,2001,54(12):29—34.
    [34] Pallotta S,Bucciolini M,Russo S,et al.Accuracy evaluation of image registration and segmentation tools used in conformal treatment planning of prostate cancer[J].Comput Med Imaging Graph,2006,30(2):1-7
    [35]Voirin D,:Payana Y,Amavizcaa M,et al.Vomputer-aided hepatic tumorablation:requirements and preliminary results[J].CR Biol,2002,32(5):309-319
    [36]项林清,马培荪,许剑波等.立体定位高强度聚焦超声手术的运动控制系统[J].计算机测量与控制,2003,11(5):641-647
    [37]邢占峰,超声医学图像处理中若干问题的研究[D].天津:天津大学,2001年.
    [38]王晓婧.散斑跟踪技术在超声心动图图像分析处理中的应用研究[D].山东:山东大学,2007.
    [39]张海澜,王蜀楚,应崇福.B超图像的斑纹噪声和人体软组织的随机特性[J].声学学报,1991,5(6):35-38.
    [40]Martin E.Anderson,Gregg E.Trahey.A seminar on k-space applied to medical ultrasound[D].USA,Duke University.2000.
    [41]郝晓辉,高上凯,高小榕.一种新的超声散斑点噪声抑制方法[J].中国生物医学工程学报,2001,20(6):494-501.
    [42]朱鸿茂,刘永辉,胡鹏等.界面反射超声散斑统计特性[J].声学学报, 2002,27(3):213-217.
    [43]Trahey G E,Allison J W,Ramm O T.Angle in dependent ultrasounics detection of blood flow[J].IEEE Trans,Biomed.Eng.1987,34(5):965-967
    [44]Robinson D E,Chen F,Wilson L S,Measurement of velocity of propogation from ultrasounic pulse-echo data,3-D flow vector estimation with a triple-beam lens transducer-exprimental result[J],Ultrasound Med.Biol,1982,8(12):413-420.
    [45]James R,Mirmehdi M,McNally D.Computer vision elastography speckle adaptive motion estimation for elastography using ultrasound sequences[J].IEEE Trans.Med.Imaging,2005 24(6):755-766.
    [46]James R,Mirmehdi M,McNally D.Combined Ultrasound Speckle Pattern Similarity Measures[J].Medical Image Understanding and Analysis,2004,9(1): 149-15.
    [47]Cohen B, Dinsterin H.Motion estimation in noisy ultrasound images by maximum liklihood.Pattern Recognition,200.Proceedings,15th Internationalconference,200.3:182-185.
    [48]Ben A,Shmuel Einav,Morteza Gharib ,Digital Ultrasound Speckle image velocimetry for quantitative cardiovascular flow visualizayion.2003 Summer Bioengieering Conference,June 25-29,Sonesta Beach Resort in Key Biscayne,Florida.
    [49]Jonat C,Lizelle H,et al.Differentiation of subendocardial and ransmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function[J].J Am Collcardiol,2006,48(10):2030-2033.
    [50]Bohs L N,Trahey G E.A novel method for angle independent ultrasonic inaging of blood flow and tissue motion[J].IEEE Trans Biomed Eng,1991,38(12):280-286.
    [51]Gallippi C M,Bohs L N,Anderson M E,et al.Trahey GE.Lateral blood velocity measurement in the carotid artery via speckle tracking[J].IEEE International Ultrasonics Symposium, 2001,10(2):1451-1455.
    [1]郝晓辉,高上凯,高小榕.一种新的超声散斑点噪声抑制方法[J].中国生物医学工程学报,2001,20(6):494-501.
    [2]朱鸿茂,刘永辉,胡鹏等.界面反射超声散斑统计特性[J].声学学报,2002,27(3):213-217.
    [3]张海澜,王蜀楚,应崇福。B超图像的斑纹噪声和人体软组织的随机特性[J].声学学报,1991,5(6):35-38.
    [4]Trahey G E,Allison J W,Ramm O T.Angle in dependent ultrasounics detection of blood flow[J].IEEE Trans,Biomed.Eng.1987,34(5):965-967.
    [5]王晓婧.散斑跟踪技术在超声心动图图像分析处理中的应用研究[D].山东:山东大学,2007.
    [6]Robinson D E,Chen F,Wilson L S,Measurement of velocity of propogation from ultrasounic pulse-echo data,3-D flow vector estimation with a triple-beam lens transducer-exprimental result[J].Ultrasound Med.Biol,1982,8(12):413-420.
    [7]James R,Mirmehdi M,McNally D.Computer vision elastography speckle adaptive motion estimation for elastography using ultrasound sequences[J].IEEE Trans.Med.Imaging 2005,24(6):755-766.
    [8]James R,Mirmehdi M,McNally D.Combined Ultrasound Speckle Pattern Similarity Measures[J].Medical Image Understanding and Analysis,2004,9(1): 149-15.
    [9]Cohen B, Dinsterin H.Motion estimation in noisy ultrasound images by maximum liklihood.Pattern Recognition.200.Proceedings,15th International conference,200.3:182-185.
    [10]Ben A,Shmuel Einav,Morteza Gharib ,Digital Ultrasound Speckle image velocimetry for quantitative cardiovascular flow visualizayion.2003 Summer Bioengieering Conference,June 25-29,Sonesta Beach Resort in Key Biscayne,Florida.
    [11]Jonat C,Lizelle H,et al.Differentiation of subendocardial and ransmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function[J].J Am Collcardiol,2006,48(10):2030-2033.
    [12]Bohs L N,Trahey G E.A novel method for angle independent ultrasonic inaging of blood flow and tissue motion[J].IEEE Trans Biomed Eng,1991,38(12):280-286.
    [13]Gallippi C M,Bohs L N,Anderson M E,et al.Trahey GE.Lateral blood velocity measurement in the carotid artery via speckle tracking[J].IEEE International Ultrasonics Symposium, 2001,10(2):1451-1455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700