中国大陆太阳辐射及其与气象要素关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球-大气系统的辐射收支对大气和海洋的热力及环流状况起着决定性的作用,塑造了地球气候的主要特征,到达地面的太阳辐射量是影响气候和环境最重要的物理量之一。因此对地面太阳辐射的研究具有特别的意义,能够帮助了解地面辐射变化对环境、区域气候的变化带来的影响。
     本文利用中国大陆122个常规地面辐射观测站1961-2000年地面观测太阳辐射的逐日总辐射、直接辐射、散射辐射和净辐射资料,首先对资料进行质量控制阈值检验,在剔除错误数据和缺测数据的基础上,按照中国地理气候区域的特征并考虑年总辐射,将中国大陆划分为5个不同的辐射区域(东北区;西北区;青藏区;中南区,华东区),系统地分析研究了这40年来我国太阳辐射时空分布状况和变化趋势。分析了各区近40年来总辐射、直接辐射、散射辐射量的年代际距平变化;然后结合全国729个常规气象观测站点1961-2000年逐日云量资料和能见度资料提出了一种估算一年中任何一天太阳总辐射的计算模型,并作误差分析;最后结合全国729个站点逐日平均气温,194个站点逐日最高气温和最低气温分析地面接收到的太阳辐射和气温之间的相关关系,获得了一些创新性的研究成果,归纳起来主要有:
     (1)中国大陆5个辐射气候区域的总辐射和直接辐射量在1961-1990年之间呈下降趋势,在上世纪80年代达到最低值,以青藏高原西南部地区降幅最明显;在1991-2000年总辐射和直接辐射量有回升趋势,其中青藏高原地区回升最显著,但均未达到历史最高水平。这与全球范围内出现的Dimming和Brightening现象相对应。东北区;西北区;青藏区;中南区;华东区各区总辐射近40年来年均下降率分别为-1.24%/10a,-1.66%/10a,-1.60%/10a,-1.89%/10a和-1.93%/10a。各区近40年来散射辐射量除东北无明显变化外,南疆和青藏高原有降低趋势,而南方有略微增加趋势。
     (2)通过对云量的分析发现西北地区低云量略增加,而其他地区低云量和总云量都有不同程度的下降趋势,各区总云量近40年来年均下降率为:-2.99%/10a,-1.68%/10a,-3.10%/10a,-1.17%/10a和-1.01%/10a,低云量变化率为:-1.51%/10a,4.46%/10a,-1.47%/10a,-0.89%/10a和-0.75%/10a。全国能见度在1961-2000年间不断下降,与辐射下降趋势相吻合。初步认为总辐射在1980年以前的下降原因是大气颗粒物增多造成,但1980年后能见度年际变幅不是影响辐射年际变幅的主要原因。
     (3)全国平均气温在1961-2000年间呈上升趋势,40年来平均上升0.84℃,年均日较差呈显著下降趋势,40年来全国平均下降0.92℃。逐日平均气温、最高气温、最低气温与总辐射、直接辐射、散射辐射和净辐射显著正相关。而年平均的各气温要素与年总辐射呈反相关的变化趋势,说明大气气溶胶和温室气体的增加,一方面引起到达地面的太阳辐射下降,另一面减少长波射出,使近地面气温上升。春季接收辐射大于秋季,但是春季气温和秋季相差不大,这是气温对太阳响应滞后的结果
     (4)基于云量和水平能见度提出的总辐射估算模型能较好的估算出太阳总辐射量。对中国大陆16个不同的代表站用多元回归拟合求得拟合值与实测值结果进行比较与统计检验表明:总辐射拟合值与实测值之间相关显著(相关系数为0.76-0.92),拟合方法的均方根偏差RMSE为3.6 MJ/m~2·d;平均偏差MBE为0.003MJ/m~2·d;平均绝对偏差MABE为2.72 MJ/m~2·d;平均绝对误差MAPE为19.10%。本方法的优点是简单实用,仅需要目测当地云量和能见度就能快速估算出当日太阳总辐射量,对临近地区也能普遍适用。
The radiation budget of the Earth-atmosphere system plays a crucial effect to the heat and circulation station of the atmosphere and ocean,and forms the primary properties of the Earth climate.The radiation reached to Earth is one of physic factors affecting the climate and environment.So the research of ground solar radiation has significant sense to understand the effects of ground radiation's change to the change of environment and regional climate.
     Based on the data of 122 routine ground radiation observatories' Global radiation, Direct radiation,Scatter radiation and net radiation from 1961 to 2000,the quality control of the data used in the study were processed by the method of limitation test, to remove all the wrong data and missing data.We divide Chinese mainland into 5 different types of radiation region.In the study,the time and spatial distribution and the change properties of the solar radiation in China during this 40 years was analyzed Then in the combination of the data of each day's cloud cover and the visibility,a new model to calculate the solar Global radiation of any day in a year was put forwarded, and it's tested through the error analysis.In the end,the correlation between the temperature and the solar radiation received by the ground was presented in the combination of 729 stations' daily average temperature and 194 stations' daily maximum and minimum temperature,and tested by the significant test.The innovated research results are as follows:
     (1)Global radiation and Direct radiation declined during 1961-1990,but increased during 1990 to 2000,Increasing coefficient was significant in Tibetan plateau,but solar radiations did not get to the highest values in all areas.This phenomenon is anastomosis to "Dimming" and "Brightening" in all over the word. The decline rate of Global radiation is -1.24%/10a,-1.66%/10a,-1.60%/10a, -1.89%/10a and -1.93%/10a in every area.In recent 40 years,variation of Scatter radiation was not significant in northeast China,but declined in south Xin-Jiang and Qinghai-Tibet plateau and a little bit increase in South China.
     (2)By using statistical analysis on cloud cover,we found that low cloud cover increased in northwest China and both total cloud cover and low cloud cover decreased in other areas.The decline rate of total cloud cover is -2.99%/10a, -1.68%/10a,-3.10%/10a,-1.17%/10a and -1.01%/10a;the variation of low cloud cover is -1.51%/10a,4.46%/10a,-1.47%/10a,-0.89%/10a and -0.75%/10a in every area.The visibility in China was declined during 1961 to 2000,the downward trend was anastomosis to Global radiation.So we concluded that the reason of Global radiation decline before 1980 was caused by increased atmospheric particles.
     (3)The average temperature was increased during 1961 to 2000,increasing 0.84℃in recent 40 years,the DTR was a downward trend,decreased by 0.92℃. There was a significant correlation between average temperature,High temperature, Low temperature and Global radiation,Direct radiation,Scatter radiation and Net radiation,but also has inverse correlation between temperature and radiation.It shows that the increasing of atmospheric aerosol and greenhouse gases on the one hand it cause the decreasing of surface radiation,on the other hand it prevent long wave radiation.Lead to surface temperature increase.In spring surface receive radiation more than autumn,but temperature had not changed distinctly.The disproportion of radiation-temperature is corresponding with unique geography and climate in China.
     (4)The operative model based on cloud cover and visibility was built to estimate daily solar radiation easily.Compared the multivariate regression fitting value with the measured value,the results for 16 representative stations in the different region showed that:the fitted solar radiation value had significantly related to the observation value(R=0.76-0.92),RMSE was 3.6 MJ/m~2·d;MBE was 0.003 MJ/m~2·d; MABE was 2.72 MJ/m~2·d;MAPE was 19.10%.by using routine observation data of cloud cover and visibility,daily solar radiation can be easily estimated.
引文
Abakumova,G.M.,Feigelson,E.M.,Bussak,V.,Stadnik,V.V.,1996: Evaluation of long term changes in radiation, cloudiness and surface temperature on the territory of the former Soviet Union[J].Climate9,1319-1327.
    Almorox J, Hontoria C. Global solar radiation estimation using sunshine duration in Spain[J].Energy Conversion and management, 2004, 45(9-10): 1529-1535
    Blattenv W G et al. Monte Carlo studies of the sky radiation at twilight[J]. Appl. Oppt. Opt 1974, 9: 2522-2528
    Cess, R D et al. Absorption of solar radiation by clouds, Observations versus models [J].Science, 1995,267:496-499.
    Easterling D R, B Horton, P D Jones et al. Maximum and minimum temperature trends for the global. Science, 1997,277: 364-367.
    Gates D M. Biophysical Ecology (NewYork: Springer-Verlag), 1980
    Geiger M, Diabate L, Menard L. A web service for controlling the quality of measurements of global solar irradiation [J]. Solar Energy, 2002, 73(6): 475-80
    Gilgen H, Wild M, Ohmura A. Means and trends of short wave irradiance at the surface estimated from Global Energy Balance Archive Data[J]. Climate 1998,(11): 2042-2061.
    Hunt L A, Kuchar L, Swanton C J. Estimation of solar radiation for use in crop modelmg[J]. Agricultural and Forest Meteorology, 1998, 91(3-4): 293-300
    Iqbal M. An Introduction to Solar Radiation[M]. Academic Press, Toronto. New York, London, 1983. 231-237
    John A Duffie, William A Beckman. Solar Engineering of Thermal Processes[M]. John Wiley & Sons, Inc, 1980. 62-98
    Karl T R, G Kukla, J Gavin. Decreasing diurnal temperature range in the United States and Canada from 1941 through 1980. J. Climate Appl. Meteor., 1984, 23(11):1489-1540.
    Karl T R, G Kukla, V N Razuvayev et al. Global warming: evidence for asymmetric diurnal temperature change. Geophys. Res. Lett., 1991,18(12):2253-2256.
    Karl T R,P D Jones,R W Knight et al.A new perspective on recent global warming:asymmetric trends of daily maximum and minimum temperature.Bull.Amer.Soc.,1993,74(6):1007-1023.
    Kreith F,Kreider J F.Principles of Solar Engineering(NewYork:McGraw-Hill).1978
    Lean J.The Sun's variable radiation and it's relevance to the Earth[J].Ann.Rev.Astron.Astrophys,1997,(35):33-67.
    Peman H L.Natural evaporation from open water,bare soil and grass[J].Proc.Roy.Soc.A,1948,193:120-145
    Pileskie P,F P J Valero.Direct observations of excess solar absorption by clouds [J].Science,1995,(257):1626-1629.
    Podesta,Guillermo P,Liliana Nez,et al.Villanueva and Mara A.Skansi[J].Estimating daily solar radiation in the Argentin Pampas,Agricultural and Forest Meteorology,2004,123(1-2):41-53.
    Ramanathan V,B Subasilar,G J Zhang.et al.Warm pool heat budget and short-wave cloud forcing,A missing physics[J].Science,1995,(267):499-503.
    Roger G,Barry.Mountain Weather and Climate,Methuen,London and New York[M].1981.289.
    Stanhill G,S Moreshet.Global radiation climate changes:The world radiation network[J].Climate Change,1992,21:57-75.
    Wild M,Gilgen H,Roesch A.From Dimming to Brightening:Decadal Changes in Solar Radiation at Earth's Surface[J].Science,2005,(308):847-850.
    Zhitorchuk,Yu.V.,Stadnyuk,V.V.,Shanina,I.N,Study of linear trends of temporal series of solar radiation[J].Izvest.Akad.Nauk.(Ser.Phys.Oceans)1994,30,389-396(in Russian).
    陈渭民,边多,郁凡.由卫星资料估算晴空大气太阳直接辐射和散射辐射[J].气象学报,2000,(04):457-469
    陈志华,石广玉.1957-2000年中国地面太阳辐射状况的研究[D].中国科学院硕士学位论文,2005,7
    成天涛,沈志宝.中国西北大气沙尘光学特性的数值试验[J].高原气象,2001, 20(3):292-29.7
    方先金.中国大气透明度系数的研究[J].南京气象学院学报,1985,(3):293-305
    冯松,姚檀栋,江灏等.青藏高原近600年的气温变化[J].高原气象,2001,20(1):105-108
    胡波,王跃思,刘广仁.北京城市紫外辐射变化特征及经验估算方程[J].高原气象,2007,26(3):512-518
    胡丽琴,刘长盛.云层与气溶胶对大气吸收太阳辐射的影响[J].高原气象,2001,20(3):265-270
    胡列群.塔克拉玛干沙漠及周围地区直接太阳辐射研究[J].干旱区研究,1993,13(3):6-12
    季国良,袁福茂,水登朝,等.青藏高原气象科学实验文集(一)[C].北京:科学出版社,1984.10-22
    贾朋群,石广玉.近50年火山喷发和太阳活动对中国气候影响的研究[J].高原气象,2001,20(3):226-233.
    李刚,季国良.中国西北地区大气气溶胶散射光学厚度分析[J].高原气象,2001,20(3):283-290
    李韧,季国良,杨文,等.敦煌地区晴空散射辐射影响因子的统计特征[J].高原气象,2004,23(1):117-122
    李克让,林贤超.近四十年来我国气温的长期变化趋势[J].地理研究,1990,9(4):26-37
    李晓文,李维亮,周秀骥.中国近30年太阳辐射状况研究[J].应用气象学报,1998,9(1):25-32
    李耀辉,李栋梁,赵庆云.中国西北春季降水与太平洋秋季海温的异常特征及其相关分析[J].高原气象,2000,19(1):100-110
    刘洪利,朱文琴,宜树华,等.中国地区云的气候特征分析[J].气象学报,2003,8(4):466-475
    罗云峰,李维亮,周秀骥.20世纪80年代中国地区大气气溶胶光学厚度的平均状况分析[J].气象学报,2001,59(1):77-87
    马有哲,刘小宁,许松.中国太阳辐射数据集及其质量检验分析[J].气象科技, 1998,(2):53-56
    邱金恒,潘继东,杨理权,等.中国10个地方大气气溶胶1980-1994年间变化特征研究[J].大气科学,1997,21(6):726-733
    沈觉成,高家表.南京地区的辐射平衡特征[A].青藏高原气象科学文集(二)[C].北京:科学出版社,1984.75-84
    沈志宝,魏丽.黑河地区大气沙尘对地面辐射能收支的影响[J].高原气象,1999,(01):2-9
    沈志宝,魏丽.我国西北大气沙尘气溶胶的辐射效应[J].大气科学,2000,(04):109-116
    沈志宝,魏丽.中国西北大气沙尘对地气系统和大气辐射加热的影响[J].高原气象,1999,(03):172-182
    沈志宝,文军.沙漠地区春季的大气浑浊度及沙尘大气对地面辐射平衡的影响[J].高原气象,1994,13(3):330-338
    盛裴轩,毛节泰,李建国,等.大气物理学[M].北京:北京大学出版社,2003,89-91
    田辉,文军,马耀明,等.复杂地形下黑河流域的太阳辐射计算[J].高原气象,2007,26(4):667-676
    童成立,张文菊,汤阳,等.逐日太阳辐射的模拟计算[J].中国农业气象,2005,26(3):165-169
    王炳忠,张富国,李立贤,等.中国的太阳能资源及其计算[J].太阳能学报,1980,(1):1-9
    王炳忠.中国太阳能资源利用区划[J].太阳能学报,1983,(3):1-5
    翁笃鸣,陈万隆,陈留华.拉萨河谷的太阳辐射特征研究(二)[A].青藏高原气象科学实验文集(一)[C].北京:科学出版社,1984.82-94.
    翁笃鸣,高庆先,姚志国.中国大气净辐射的气候特征[J].南京气象学院学报,1996,19(4):451-455.
    翁笃鸣,李炬.中国地气系统净辐射的气候特征[J].南京气象学院学报,1995,18(2):256-262.
    翁笃鸣.太阳辐射在形成中国气温年变程中的作用[J].地理学报,1963,29(2):146-154.
    翁笃鸣.中国辐射气候[M].北京:气象出版社,1997,11-29
    吴伟,王式功.中国北方云的时空分布及其气候特征研究[D].兰州大学硕士研究生学位论文,2005,5.
    许吟隆,RichardJones.利用ECMWF再分析数据验证PRECIS对中国区域气候的模拟能力[J].中国农业气象,2004,25(1):5-9
    曾昭美,严中伟.近40年中国云量变化的分析[J].大气科学,1993,17(6):688-696.
    张基嘉,朱抱真,朱福康,等.青藏高原气象学进展[M].北京:科学出版社,1988.28-53.
    赵红岩,李栋梁,郭维栋.中国冬季地温场变化特征及与夏季降水场的关系[J].高原气象,2002,21(1):2-58
    祝昌汉.再论总辐射气候学计算方法(二)[J].南京气象学院学报,1982,5(2):196-206
    祝昌汉.再论总辐射气候学计算方法(一)[J].南京气象学院学报,1982,5(1):15-24
    邹基玲,侯旭宏,季国良.黑河地区夏末太阳辐射特征的初步分析[J].高原气象,1992,11(4):381-388
    左大康,王懿贤,陈建绥.中国地区太阳总辐射的空间分布特征[J].气象学报,1963,33(1):78-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700