高分子/无机核壳粒子的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子/无机复合材料兼有高分子材料与无机材料的特性,并能通过材料功能的复合,实现性能的互补与优化。其中,核壳材料因其特殊结构和组成不同而呈现光、电、磁等特性,近年来倍受关注。
     本工作采用乳液聚合技术,合成了单分散的高分子乳胶球,并在乳胶球表面通过无机物先驱体的原位沉积或原位反应,得到具有核壳结构的纳米粒子。本文针对苯乙烯和丙烯酸丁酯两种乳液聚合体系进行研究,通过选用不同乳化剂赋予乳胶球特殊功能。合成的乳胶球具有良好的单分散性,通过改变单体/表面活性剂比例可以得到不同粒径分布的乳胶球。在第二步无机物外包覆过程中,适当改变反应介质,温度,酸碱性,以及无机物先驱体可以获得不同包覆物的核壳材料。这些研究工作为扩展纳米材料在各领域的实际应用提供了可能。
In recent years, there has been increasing interest in core-shell materials due to its potential in developing novel materials with unique functions. The exterior coating structure is very useful in many applications in order to enhance the stability of dispersions, to protect the particles from interaction with surrounding medium, and to endow the core optical, conductive, magnetic, adsorptive, and surface reactive properties. Polymer organic-inorganic core-shell particles attract scientists attention because it realize the molecular scale fabrication. Combining the properties of organic and inorganic components, this kind of materials has excellent and special capability as compared to its components. The inorganic shell can improve the internal domain thermal stability, mechanical strength and scratch resistance. The latex core exhibits elasticity and film formation ability. The latex coated with inorganic matter impart the core-shell particles with improved chemical and physical properties, creating synergistic effects.
     Many studies for coating process have been proceeded comprised of in situ deposition as well as layer-by-layer (LbL) technique. In situ deposition is to prepare the core-shell particles by controlled precipitation of inorganic precursors onto the core domain. The second approach, LbL technique is versatile method to synthesize core-shell materials. It’s based on electrostatic interaction between particles, the species having opposite charge with core and absorbing on the surface of the core. The coated particles subsequently centrifuged and washed could be deposited in order to obtain the desirable coating thickness. Disadvantages of this technique are not only the time-consuming sequential polyelectrolyte deposition cycles and purification steps, but also the incorporation of redundant polyelectrolyte into shell. Chemical coprecipitation is first to immerge the polymer colloid with inorganic salts, next, by using in situ reaction, the organic core were coated with inorganic shell.
     Titania is of interest as both a catalyst and a catalyst support. However, titania when present as a high surface area powder is not thermally stable and loses surface area readily. The production of core-shell materials comprising TiO2 nanoparticles is expected to be of benefit to various applications. Titanium dioxide has been coated on various inorganic and organic particles using titania precursors and by carrying out subsequent reactions on the particle surface. The preparation of TiO2-coated particles is generally exceptionally difficult due to the highly reactive property of the titania precursors, making it difficult to control their precipitation. This usually causes the core particles to aggregate or the titania to form separate particles.
     In this article, the TiO2-coated particles can be prepared in a simple method. First, functional PS particles were synthesized by copolymerizing a polymerizable surfactant with styrene. Next, we used the stable dispersions of polystyrene nanoparticles as templates, with which we coated with titania by in situ hydrolysis of TBT. No surface treatment and centrifugation/redispersion cycle process were needed during the whole experiment. The core-shell particles can be turned into spherical hollow titania shells by calcinations of the dried particles in a furnace. This way, we obtained colloidal crystals consisting of hollow shells. In addition, by changing different kinds of comonomer, polymer particles with functional surfaces were prepared. Coating process with SiO2、ZnS can be achieved.
     It is well known that silver is superior to other nanostructured metal materials for many reasons such as electrical conductivity, antimicrobial effects, optical properties and oxidative catalysis. Therefore, fabrication of silver-coated latex particles is of special interest, and several routes have been reported in the literature, including surface precipitation reaction, thermal evaporation techniques or sputtering onto latex particles and self-assembly. However, in most cases, irregular thickness, a large number of non-coated particles, merely metal islands and incomplete surface coverage were usually obtained by these methods. Particles coated with silver nanoshells are generally difficult to synthesize because the reduction reaction is too fast to be controlled. Thus, we attempted to slow the rate of the silver reduction and coated PBuA latex particles with silver by the decomposition of the silver complex. Monodisperse brush polymer nanospheres were synthesized by copolymerizing one kind of polymerizable surfactant with butyl acrylate. BDDA was used as a cross-linker during the semicontinuous emulsion polymerization. Ag-PBuA composite microspheres were abtained by using polymer microspheres as templates. Using the same templates, we attempted to abtain Al2O3-PBuA composite microspheres. The composite particles were characterized by IR, TEM, and XRD.
     The study for magnetic polymer composite particles began in the seventies of the 19th century. It is a microparticles with a certain magnetism and a special structure by a proper method to combine polymer and magnetic inorganic matter. Colloidal particles with magnetic properties have become increasingly important both technologically and for fundamental studies due to the tunable anisotropic interaction they exhibit. Particles covered with magnetic materials have been used or proposed as beads for cell separation, or as pigments, catalysts, coating, flocculents, toners, etc. In this work, amphiphilic graft copolymer consisting of an acrylic backbone and poly(ethylene glyol) chains was prepared and characterized. It was used as surfactant to stabilize emulsion polymerization of St or BuA. The effect of the amount of the surfactant was investigated. Finally, the feasibility of using PS emulsion particles as templates, with which we coated with Fe3O4 by in situ reaction of Fe3+ and Fe2+ in the present of OH-1 was studied.
     In summary, by using different kinds of emulsifier, functional polymer particles were successfully prepared. And in a easy way, various kinds of inorganic/polymer composites were obtained. No surface treatment and centrifugation/redispersion cycle process were needed during the whole experiment.
引文
[1] M. S. Fleming, T. K. Mandal, and D. R. Walt, Nanosphere-Microsphere Assembly: Methods for Core-Shell Materials Preparation, Chem. Mater., 2001, 13, 2210-2216.
    [2] J. J. Schneider, Adv. Mater., 2001, 13(7), 529-533.
    [3] E. Matijevic, Preparation and Properties of Uniform Size Colloids, Chem. Mater., 1993, 5, 412-426.
    [4] A. Hanprasopwattana, S. Srinivasan, A.G. Sault, and A. K. Datye, Synthesis of Nanosized Gold-Silica Core-Shell Particles, Langmuir, 1996, 12(18), 4329-4335.
    [5] 刘润静, 邹海魁, 郭奋等, 核壳结构型纳米 CaCO3-SiO2.nH2O 复合粒子的制备, 材料研究学报, 2001,15(1), 61-64.
    [6] 程彬, 朱玉瑞, 江万权等, 无机-高分子磁性复合粒子的制备与表征, 化学物理学报, 2000, 13, 359-362.
    [7] 臧丽坤, 陈运, 吴镇江等, 一种制备 Ni/Al2O3 复合陶瓷的新方法, 功能材料, 2002, 33(5), 548-550.
    [8] M. Ocana, and A. R. Gonzale Elipe, Preparation and characterization of uniform spherical silica particles coated with Ni and Co compounds, Colloids and Surfaces A: Physicochemical and Engineeing Aspects, 1999, 157, 315-324.
    [9] K. S. Suslick, S. B. Choe, A. A. Cichowlas, and M. W. Grinstaff, Sonochemical synthesis of amorphous iron, Nature, 1991, 353, 414-416.
    [10] A. Dokoutchaev, I. T. James, S. C. Koene, S. Pathak, G. K. S. Prakash, and M. E. Thompson, Colloidal Metal Deposition onto Functionalized Polystyrene Microspheres, Chem. Mater., 1999, 11, 2389-2399.
    [11] M. L. Breen, A. D. Dinsmore, et al, Sonochemically Produced ZnS-Coated Polystyrene Core-Shell Particles for Use in Photonic Crystals, Langmuir, 2001, 17, 903-907.
    [12] Y. R. Ma, L. M. Qi, J. M. Ma, and H. M. Cheng, Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions, Langmuir, 2003, 19, 4040-4042.
    [13] J. Yin, et al, Preparation of ZnS/PS microspheres and ZnS hollow shells, Materials Letters, 2003, 57, 3859–3863.
    [14] Y. Chujo, Organic-inorganic hybrid materials, Current Opinion in Solid State& Materials Science, 1996, 1(6), 806-811.
    [15] C. Guizard, A. Bac, et al, Hybrid organic-inorganic membranes with specific transport properties, Separation and Purification Technology, 2001, 25, 167-180.
    [16] E. Bescher, and J. D. Mackenzie, Hybrid organic-inorganic sensors, Materials Science and Engineering, 1998, C6, 145-154.
    [17] I. Tissot, C. Novat, et al, Hybrid Latex Particles Coated with Silica, Macromolecules, 2001, 34, 5737-5739.
    [18] P. Wang, D. Chen, and F. Q. Tang, Preparation of Titania-Coated Polystyrene Particles in Mixed Solvents by Ammonia Catalysis, Langmuir, 2006, 22, 4832-4835.
    [19] A. Imhof, Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells, Langmuir, 2001, 17, 3579-3585.
    [20] H. Xu, L. L. Cui, N. H. Tong, and H. C. Gu, Development of High Magnetization Fe3O4/Polystyrene/Silica Nanospheres via Combined Miniemulsion/Emulsion Polymerization, J. Am. Chem. Soc., 2006, 128(49), 15582-15583.
    [21] 魏建红, 官建国, 石兢等, 核壳型聚苯胺/钛酸钡的结构及其电流变性能,化学物理学报, 2003, 16(5), 401-405.
    [22] E. Bourgeat-Lami, I. Tissot, and F. Lefebvre, Synthesis and Characterization of SiOH-Functionalized Polymer Latexes Using Methacryloxy Propyl Trimethoxysilane in Emulsion Polymerization, Macromolecules, 2002, 35(16), 6185-6191.
    [23] I. Tissot, J. P. Reymond, F. Lefebvre, and E. Bourgeat-Lami, SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles, Chem. Mater., 2002, 14(3), 1325-1331.
    [24] Y. Lu, J. McLellan, and Y. N. Xia, Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells, Langmuir, 2004, 20, 3464-3470.
    [25] J. Zhou, M. Chen, X. G. Qiao, and L. M. Wu, Facile Preparation Method of SiO2/PS/TiO2 Multilayer Core-Shell Hybrid Microspheres, Langmuir, 2006, 22, 10175-10179.
    [26] H. Shiho, Y. Manabe, and N. Kawahashi, Magnetic compounds as coatings on polymer particles and magnetic properties of the composite particles, J. Mater. Chem., 2000, 10, 333-336.
    [27] H. Kawaguchi, K. Fujimoto, Y. Nakazawa, et al, Modification and functionalization of hydrogel microspheres, Colloids Surf. A, 1996, 109, 147-154.
    [28] H. Bamnolker, B. Nitzan, S. Gura, et al, New solid and hollow, magnetic and non-magnetic, organic-inorganic monodispersed hybrid microspheres: synthesis and characterization, J. Mater. Sci. Lett., 1997, 16, 1412-1415.
    [29] C. X. Song, Z. S. Hu, et al, Preparation and characterization of silver/TiO2 composite hollow spheres, Journal of Colloid and Interface Science, 2004, 272(2), 340-344.
    [30] J. G. Zhang, N. Coombs, et al, A New Approach to Hybrid Polymer-Metal and Polymer-Semiconductor Particles, Adv. Mater., 2002, 14(23), 1756-1759.
    [31] A. B. R. Mayer, W. Grebner, and R. Wannemacher, Preparation of Silver-Latex Composites, J. Phys. Chem. B, 2000, 104, 7278-7285.
    [32] J. G. Park, J. W. Kim, et al, Monodisperse polymer/metal composite particles by electroless chemical deposition: Effect of surface functionality of polymer particles, Journal of Applied Polymer Science, 2003, 87, 420-424.
    [33] P. H. Wang, and C. Y. Pan, Preparation of styrene/methacrylic acid copolymer microspheres and their composites with metal particles, Colloid Polym. Sci., 2000, 278, 581-586.
    [34] P. H. Wang, and C. Y. Pan, Polymer-metal composite particles: Metal particles on poly(St-co-MAA) microspheres, Journal of Applied Polymer Science, 2000, 75, 1693-1698.
    [35] J. H. Zhang, J. B. Liu, et al, Facile Methods to Coat Polystyrene and Silica Colloids with Metal, Adv. Funct. Mater., 2004, 14(11), 1089-1096.
    [36] ZHOU, Chang-Hua(周长华) ZHOU, Jing-Fang(周静芳) WU, Zhi-Shen(吴志申) ZHANG, Zhi-Jun(张治军) ZHANG, Ping-Yu(张平余), Synthesis and Characterization of Copolymercore-Silvershell Composite Microspheres, Chinese Journal of Chemistry, 2005, 23, 1071-1075.
    [37] M. Agrawal, A. Pich, N. E. Zafeiropoulos, et al, Polystyrene-ZnO Composite Particles with Controlled Morphology, Chem. Mater., 2007, 19, 1845-1852.
    [38] For a review, see: G. Decher Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science, 1997, 277, 1232-1237.
    [39] For a review, see: F. Caruso Nanoengineering of Particle Surfaces, Adv. Mater., 2001, 13(1), 11-22.
    [40] G. B. Sukhorukov, E. Donath, and H. Lichtenfeld, Layer-by-layer self assembly of polyelectrolytes on collo.idal particles, Colloids Surf. A, 1998, 137, 253-266.
    [41] F. Caruso, H. Fiedler, and K. Haage, Assembly of β-glucosidase multilayers on spherical colloidal particles and their use as active catalysts, Colloids Surf. A, 2000, 169, 287-293.
    [42] D. B. Shenoy, A. A. Antipov, G. B. Sukhorukov, et al, Layer-by-Layer Engineering of Biocompatible, Decomposable Core-Shell Structures, Biomacro., 2003, 4(2), 265-272.
    [43] F. Caruso, A. S. Susha, M. Giersig, et al, Magnetic Core-Shell Particles: Preparation of Magnetite Multilayers on Polymer Latex Microspheres, Adv. Mater., 1999, 11, 950-953.
    [44] F. Caruso, H. Lichtenfeld, E. Donath, et al, Investigation of Electrostatic Interactions in Polyelectrolyte Multilayer Films: Binding of Anionic Fluorescent Probes to Layers Assembled onto Colloids, Macromolecules, 1999, 32(7), 2317-2328.
    [45] F. Caruso, Hollow Capsule Processing through Colloidal Templating and Self-Assembly, Chem. Eur. J., 2000, 6, 413-419.
    [46] F. Caruso, C. Schüler, and D. G. Kurth, Core-Shell Particles and Hollow Shells Containing Metallo-Supramolecular Components, Chem. Mater., 1999, 11, 3394-3399.
    [47] F. Caruso, D. Trau, H. M?hwald, et al, Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsules, Langmuir, 2000, 16(4), 1485-1488.
    [48] F. Caruso, H. Lichtenfeld, M. Giersig, et al, Electrostatic Self-Assembly ofSilica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles, J. Am. Chem. Soc., 1998, 120(33), 8523-8524.
    [49] F. Caruso, and H. M?hwald, Preparation and Characterization of Ordered Nanoparticle and Polymer Composite Multilayers on Colloids, Langmuir, 1999, 15(23), 8276-8281.
    [50] R. A. Caruso, A. Susha, and F. Caruso, Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres, Chem. Mater., 2001, 13(2), 400-409.
    [51] T. Ji, V. G. Lirtsman, Y. Avny, et al, Preparation, Characterization, and Application of Au-Shell/Polystyrene Beads and Au-Shell/Magnetic Beads, Adv. Mater., 2001, 13(16), 1253-1256.
    [52] A. G. Dong, Y. J. Wang, Y. Tang, N. Ren, W. L. Yang, and Z. Gao, Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction, Chem. Commun., 2002, (4), 350-351.
    [53] C. F. Blanford, R. C. Schroden, M. Al-Daous, and A. Stein, Tuning Solvent-Dependent Color Changes of Three-Dimensionally Ordered Macroporous (3DOM) Materials Through Compositional and Geometric Modifications, Adv. Mater., 2001, 13(1), 26-29.
    [54] P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Single-Crystal Colloidal Multilayers of Controlled Thickness, Chem. Mater., 1999, 11(8), 2132-2140.
    [55] Z. Z. Gu, A. Fujishima, and O. Sato, Fabrication of High-Quality Opal Films with Controllable Thickness, Chem. Mater., 2002, 14(2), 760-765.
    [56] M. Trau, N. Yao, E. Kim, Y. Xia, G. M. Whitesides, and I. A. Aksay, Microscopic patterning of orientated mesoscopic silica through guided growth,Nature, 1997, 390, 674-676.
    [57] S. M. Yang, and G. A. Ozin, Opal chips: vectorial growth of colloidal crystal patterns inside silicon wafers, Chem. Comm., 2000, (24), 2507-2508.
    [58] S. H. Park, and Y. Xia, Assembly of Mesoscale Particles over Large Areas and Its Application in Fabricating Tunable Optical Filters, Langmuir, 1999, 15(1), 266-273.
    [59] E. Kim, Y. N. Xia, and G. M. Whitesides, Two- and three-dimensional crystallization of polymeric microspheres by micromolding in capillaries, Adv. Mater., 1996, 8(3), 245-247.
    [60] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates, Langmuir, 1992, 8(12), 3183-3190.
    [61] F. García-Santamaría, C. López, F. Meseguer, F. López-Tejeira, J. Sánchez-Dehesa, and H. T. Miyazaki, Opal-like photonic crystal with diamond lattice, Appl. Phys. Lett., 2001, 79, 2039-2041.
    [62] Z. D. Cheng, W. B. Russel, and P. M. Chaikin, Controlled growth of hard-sphere colloidal crystals, Nature, 1999, 401, 893-895.
    [63] H. Z. Wang, X. Y. Li, H. Nakamura, M. Miyazaki, and H. Maeda, Continuous Particle Self-Arrangement in a Long Microcapillary, Adv. Mater., 2002, 14(22), 1662-1666.
    [64] G. R. Yi, J. H. Moon, and S. M. Yang, Macrocrystalline Colloidal Assemblies in an Electric Field, Adv. Mater., 2001, 13(15), 1185-1188.
    [65] G. Lu, X. Chen, et al, Fabricating Ordered Voids in a Colloidal Crystal Film-Substrate System by Using Organic Liquid Patterns as Templates, J. Adv. Mater., 2002, 14(24), 1799-1802.
    [66] A. Khanal, Y. Inoue, M. Yada, and K. Nakashima, Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core-Shell-Corona Structure, J. Am. Chem. Soc., 2007, 129, 1534-1535.
    [67] F. Caruso, et al, Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Ternplating, Science, 1998, 282, 1111-1114.
    [68] K. Zhang, X. H. Zhang, H. T. Chen, X. Chen, L. L. Zheng, J. H. Zhang, and B. Yang, Hollow Titania Spheres with Movable Silica Spheres Inside, Langmuir, 2004, 20, 11312-11314.
    [69] J. S. Hu, Y. G. Guo, et al, Synthesis and Catalytic Properties of Nickel-Silica Composite Hollow Nanospheres, J. Phys. Chem. B, 2004, 108, 9734-9738.
    [70] H. G. Yang and H. C. Zeng, Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening, J. Phys. Chem. B, 2004, 108, 3292-3495.
    [71] J. J. Zhu, S. Xu, et al, Sonochemical Synthesis of CdSe Hollow Spherical Assemblies Via an In-Situ Template Route, Adv. Mater., 2003, 15(2), 156-159.
    [72] P. Jin, Q. W. Chen, and L. Q. Hao, Synthesis and Catalytic Properties of Nickel-Silica Composite Hollow Nanospheres, J. Phys. Chem. B, 2004, 108, 6311-6314.
    [73] J. K. Cochran, Ceramic hollow spheres and their applications, Curr. Opin. Solid State Mat. Sci., 1998, 3, 474-479.
    [74] K. Takatori, T. Tani, N. Watanabe, and N. Kamiya, Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method, J. Nanoparticle Res., 1999, 1, 197–204.
    [75] M. K. Naskar, M. Chatterjee, and N. S. Lakshmi, Sol-emulsion-gel synthesis of hollow mullite microspheres, J. Mater. Sci., 2002, 37, 343–348.
    [76] 吴梅梅, 蔡红, 和王贞尧. 硬硅钙石中空二次粒子球形成机理的探讨,耐火材料, 2000, 34, 151-153.
    [77] P. Jiang, J. F. Bertone, and V. L. Colvin, A Lost-Wax Approach to Monodisperse Colloids and Their Crystals, Science, 2001, 291, 453-457.
    [78] P. Jiang, A thesis for PhD of RICE University, 2001.
    [79] J. E. G. J. Wijnhoven and W. L. Vos, Preparation of Photonic Crystals Made of Air Spheres in Titania, Science, 1998, 281, 802-804.
    [80] J. E. G. J. Wijnhoven, W. L. Vos and L. Becher, Fabrication and Characterization of Large Macroporous Photonic Crystals in Titania, Chem. Mater., 2001, 13, 4486-4499.
    [81] M. M. Wu, G. G. Wang, H. F. Xu, et al, Hollow Spheres Based on Mesostructured Lead Titanate with Amorphous Framework, Langmuir, 2003, 19, 1362-1367.
    [82] M. S. Wong, J. N. Cha, K. S. Choi, T. J. Deming, and G. D. Stucky, Assembly of Nanoparticles into Hollow Spheres Using Block Copolypeptides, Nano Lett., 2002, 2, 583-587.
    [83] Z. Y. Zhong, Y. D. Yin, B. Gates, and Y. N. Xia, Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads, Adv. Mater., 2000, 12(3), 206-209.
    [84] Z. Z. Yang, Z. W. Niu, Y. F. Lu, Z. B. Hu, and C. C. Han, Templated Synthesis of Inorganic Hollow Spheres with a Tunable Cavity Size onto Core–Shell Gel Particles, Angew. Chem. Int. Ed., 2003, 42, 1943-1945.
    [85] 潘祖仁, 高分子化学, 北京: 化学工业出版社, 2002.
    [86] 曹同玉, 刘庆普, 胡金生, 聚合物乳液合成原理性能及应用, 北京: 化学工业出版社, 1997.
    [87] D. R. Weyenberg, D. E. Findlay, JR. J. Cekada, and A. E. Bey, Anionicemulsion polymerization of siloxanes, J. Poly. Sci., Part C, 1969, 27(1), 27-34.
    [88] E. L. Garr and P. H. Johnson, Non aqueous Emulsion Polymerization Systems, Ind. Eng. Chem., 1949, 41(8), 1588-1592.
    [89] F. K. Hansen, et al, Theory and Practice of Emulsion Technology, Academic Press, London, 1976, pp13-21.
    [90] J. Ugelstad, F. K. Hansen and S. Lange, Emulsion polymerization of styrene with sodium hexadecyl sulphate/hexadecanol mixtures as emulsifiers. Initiation in monomer droplets, Die Makromolekulare Chemie, 1974, 175(2), 507-521.
    [91] C. P. Roe, Surface Chemistry Aspects Of Emulsion Polymerization, Ind. Eng. Chem., 1968, 60(11), 20-33.
    [92] W. D. Harkins, A General Theory of the Mechanism of Emulsion Polymerization, J. Am. Chem. Soc., 1947, 69(6), 1428-1444.
    [93] 傅和青, 张心亚, 黄洪, 陈焕钦, 乳液聚合的影响因素, 涂料工业, 2003, 33(12), 53-55.
    [94] 徐祖顺, 易昌凤, 聚合物纳米粒子, 北京: 化学工业出版社, 2006.
    [95] 沈一丁, 高分子表面活性剂, 北京: 化学工业出版社, 2002.
    [96] 北原文雄等编, 孙绍曾等译, 表面活性剂, 北京: 化学工业出版社, 1984.
    [97] 杨亚江, 聚皂的性质和研究进展, 化学通报, 1999, 7, 1-7.
    [98] 严瑞瑄等, 水溶性高分子, 北京: 化学工业出版社, 1988.
    [99] H. Q. Xie, G. C. Xu, et al, Synthesis and Properties of Poly(acrylic Acid) with Uniform Poly(methyl Methacrylate) Side Chains, J. Macromol. Sci. Part A: Pure and Applied Chemistry, 1992, 29(3), 263-276.
    [100] 孙芳等, 增稠性丙烯酸类多元共聚物的研究, 化学与粘合, 2000, 2, 66-68.
    [101] A. Hill, F. Candau, and J. Selb, Properties of hydrophobically associating polyacrylamides: influence of the method of synthesis, Macromolecules, 1993, 26(17), 4521-4532.
    [102] 杨向荣, 影响聚丙烯酸盐增稠性的因素, 印染助剂, 2000, 17(4), 11-13.
    [103] 陈顺清, 杨亚江, 疏水改性聚电解质的荧光探针光谱, 物理化学学报, 1998, 14, 380-384.
    [104] V. K.-H. Kahrs, and J. W. Zimmermann, Die pfropfcopolymerisation von vinylestern auf polyalkylenoxyde, Die Makromolekulare Chemie, 1962, 58, 75-103.
    [105] P. Masson, G. Beinert, E. Franta, and P. Rempp, Synthesis of polyethylene oxide macromers, Polym. Bull, 1982, 7(1), 17-22.
    [106] P. F. Rempp, and E. Franta, Macromonomers-synthesis,characterization and applications, Adv. Polym. Sci., 1984, 58, 1-53.
    [107] P. Rempp, P. Lutz, P. Masson, and E. Franta, Macromonomers - a new class of polymeric intermediates in macromolecular synthesis. I - synthesis and characterization, Die Makromolekulare Chemie, 1984, 8, 3-15.
    [108] P. Rempp, P. Lutz, P. Masson, and P. Chaumont, Macromonomers: A new class of polymeric intermediates in macromolecular synthesis- II - homo- and copolymerization, Die Makromolekulare Chemie,1985, 13, 47-66.
    [109] Y. Gnanou, and P. Rempp, Macromonomer synthesis. New functionalization methods, Die Makromolekulare Chemie, 1987, 188, 2111-2119.
    [110] M. Twaik, M. Tahan, and A. Zilkha, Grafting of poly(ethylene oxide) on poly(methyl methacrylate) by transesterification, J. Polym. Sci. Part A-1, 1969, 7(9), 2469-2480.
    [111] M. Tomoi, Y. Shibayama, and H. Kakinchi, Polymerization of Methyl and Ethyl Methacrylates Initiated with Alkali-Metal Alkoxide Derivatives of Poly(ethylene oxide), Polymer J., 1976, 8, 190-195.
    [112] F. Candau, F. Afchar-Taromi, and P. Rempp, Synthesis and characterization of polystyrene-poly(ethylene oxide) graft copolymers, Polymer, 1977, 18(12), 1253-1257.
    [113] I. Piirma, and J. R. Lenzotti, Synthesis of Poly(P-Methylstyrene-Graft-Polyoxyethylene) and Application as a Polymeric Surfactant in Emulsion Polymerization, Br. Polymer J., 1989, 21(1), 45-51.
    [114] N. Miyauchi, I. Kirikihira, X. Li, and M. Akashi, Graft copolymers having hydrophobic backbone and hydrophilic branches. III. Synthesis of graft copolymers having oligovinylpyrrolidone as hydrophilic branch, J. Polym. Sci. Part A, 1988, 26(6), 1561-1571.
    [115] Y. Gnanou, P. Lutz, and P. Rempp, Synthesis of star-shaped poly(ethylene oxide), Die Makromolekulare Chemie, 1988, 189, 2885-2892.
    [116] P. Lutz, and P. Rempp, New developments in star polymer synthesis. Star-shaped polystyrenes and star-block copolymers, Die Makromolekulare Chemie, 1988, 189, 1051-1060.
    [117] K. Yoshioka, E. S. M. Daimon, and A. Kitahara, Role of Steric Hindrance in the Performance of Superplasticizers for Concrete, J. Am. Cerma. Soc., 1997, 80(10), 2667-2671.
    [118] 徐坚(XU Jian), 高分子表面活性剂的分子设计, 高分子通报(Polymer Bulletin), 1997, (2), 121, 90-94.
    [119] 廖白霞(Liao Baixia), 李玉泉(Li Yuquan), 李银奎(Li Yingkui), 乙二醇及聚乙二醇的酯化反应研究, 高分子学报, 1992, 1, 34-41.
    [120] T. Koichi, T. Kazuo, et al, Poly(ethy1ene oxide) Macromonomers. 7. Micellar Polymerization in Water, Macromolecules, 1991, 24(9), 2348-2354.
    [121] 程巳雪, 潘才元, 双甲基丙烯酸聚乙二醇酯的合成及光聚合反应, 高分子材料科学与工程, 1998, 14(6), 22-24.
    [122] J. Ruokolainen, M. Torkkeli, et al, Swiching Supramolecular Polymeric Materials with Multiple Length Scales, Science, 1998, 280(5363), 557-560.
    [123] C. Biver, G. de Crevoisier, S. Girault, et al, Microphase Separation and Wetting Properties of Palmitate-graft-poly(vinyl alcohol) Films, Macromolecules,2002, 35(7), 2552-2559.
    [124] 邱永兴, 俞小洁, 杨士林等, 接枝共聚物聚苯乙烯-g-聚氧乙烯的微相分离形态研究, 高分子学报, 1994, 6, 694-701.
    [125] A. Shinozaki, D. Jasnow, and A. C. Balazs, Microphase Separation in Comb Copolymers, Macromolecules, 1994, 27(9), 2496-2502.
    [126] R. Stepanyan, A. Subbotin, and G. ten Brinke, Comb Copolymer Brush with Chemically Different Side Chains, Macromolecules, 2002, 35(14), 5640-5648.
    [127] M. G. Joseph, G. Baskar, and M. A. Baran, Solution structure of a modified comb-like polymer from octadecyl methacrylate and acrylic acid, Chem. Phys. Lett., 2001, 348, 395-402.
    [128] C. P. Whitby, P. J. Scales, F. Grieser, et al, PAA/PEO comb polymer effects on rheological properties and interparticle forces in aqueous silica suspensions, J Colloid Interface Sci., 2003, 262, 274-281.
    [129] C. H. Cheng, and H. C. Hsia, Preparation and Characterization of Amphiphilic Poly(ethylene glycol) Graft Copolymers, Polym. J., 1999, 31(6), 535-541.
    [130] C. H. Cheng, C. S. Chern, C. K. Lee, et al, Synthesis and characterization of amphiphilic poly(ethylene glycol) graft copolymers and their potential application as drug carriers, Polymer, 1998, 39(8-9), 1609-1616.
    [131] B. Gao, B. Wesslén, and K. B. Wesslén, Amphiphilic comb-shaped polymers from poly(ethylene glycol) macromonomers, J. Polym. Sci., Part A: Polym Chem, 1992, 30, 1799-1808.
    [132] J. H. Lee, P. Kopeckova, J. Kopecek and J. D. Andrade, Surface properties of copolymers of alkyl methacrylates with methoxy (polyethylene oxide) metiiacrylates and their application as protein-resistant coatings, Biomaterials,1990, 11, 455-464.
    [133] B. Wesslén and K. B. Wesslén, Preparation and properties of some water-soluble, comb-shaped, amphiphilic polymers, J.Polym.Sci.(A) Polym.Chem., 1989, 27(12), 3915-3926.
    [134] 刘崭, 王蔚茹, 高彦芳, 谢续明, 侧链为聚乙二醇单甲醚的高接枝率水溶性梳状接枝共聚物的合成与表征, 石油化工, 2005, 34(10), 980-985.
    [135] H. N. Xiao, R. Pelton, and A. Hamielec, Preparation and kinetic characterization of copolymers of acrylamide and poly(ethylene glycol) (meth)acrylate macromonomers, Polymer, 1996, 37(7), 1201-1209.
    [136] D. Hourdet, and R. Audebert, Synthesis of thermoassociative copolymers, Polymer, 1997, 38(10), 2535-2547.
    [137] 刘崭, 王蔚茹, 高彦芳, 谢续明, 含mPEG侧链的水溶性梳状聚合物的合成及其侧链受限结晶行为研究, 高分子学报, 2006, (1), 26-31.
    [138] 韩涛, 李富荣, 张渊明, 唐渝, 周汉新, PLA-mPEG 嵌段共聚物胶团的制备及表面张力, 应用化学, 2005, 22(4), 403-406.
    [139] 张国林, 马建标, 王亦农, 两亲聚 L-丙氨酸-聚乙二醇单甲醚嵌段共聚物的合成及表征, 高分子材料科学与工程, 2006, 22(3), 50-53.
    [140] 王东山, 黄勇, 沈家瑞, 二醋酸纤维素与聚乙二醇单甲醚接枝共聚物的合成与表征, 纤维素科学与技术, 2001, 9(3), 19-26.
    [141] 冯梦凰, 邓联东, 张晓丽, 董岸杰, 聚乙二醇单甲醚接枝壳聚糖的合成与表征, 化学工业与工程, 2005, 22(2), 79-82.
    [142] J. Fangkangwanwong, M. Akashi, T. Kida, and S. Chirachanchai, One-pot synthesis in aqueous system for water-soluble chitosan-graft-poly(ethylene glycol) methyl ether, Biopolymers, 2006, 82, 580–586.
    [143] C. S. Chern, H. C. Chiu, and Y. C. Chuang, Synthesis and characterizationof amphiphilic graft copolymers with poly(ethylene glycol) and cholesterol side chains, Polym Int., 2004, 53, 420-429.
    [144] C. S. Chern, and C. Lee, Emulsion Polymerization of Styrene Stabilized with an Amphiphilic PEG-Containing Graft Copolymer, Macromol. Chem. Phys., 2001, 202, 2750-2759.
    [145] H. C. Chiu, C. S. Chern, C. K. Lee, and H. F. Chang, Synthesis and Characterization of Amphiphilic Poly(ethylene glycol) Graft Copolymers and Their Potential Application as Drug carries, Polymer, 1998, 39(8-9), 1609-1616.
    [146] X. C. Yin and D. H. Harald St?ver, Thermosensitive and pH-Sensitive Polymers Based on Maleic Anhydride Copolymers, Macromolecules, 2002, 35, 10178-10181.
    [147] 高濂, 郑珊, 张青红, 纳米氧化钛光催化材料, 北京: 化学工业出版社, 2002.
    [148] S. N. Frank, and A. J. Bard, Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders, J. Phys. Chem., 1977, 81(15), 1484-1488.
    [149] S. N. Frank, and A. J. Bard, Photochemlstry of Colloidal Semiconducting Iron Oxlde Polymorphs, J. Phys. Chem., 1987, 91(19), 5076-5083.
    [150] A. Fujishima, and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 1972, 238, 37-38.
    [151] O. M. Alfano, D. Bahnemann, A. R. Cassaro, R. Dillert, and R. Goslich, Photocatalysis in water environments using artificial and solar light, Catalysis Today, 2000, 58, 199-230.
    [152] G. B. Raupp, A. Alexiadis, Md. M. Hossain, and R. Changrani, First-principles modeling, scaling laws and design of structured photocatalyticoxidation reactors for air purification, Catalysis Today, 2001, 69, 41-49.
    [153] 吕孟凯, 固态化学, 山东大学出版社, 1996.
    [154] Y. D. Kin, K. Sonezaki, H. Maeda, and A. Kato, Sintering Behaviour of Monodispersed ZnS Powders, J. Mater. Sci., 1997, 32, 5101-5106.
    [155] N. Q. Liema, and V. X. Quang, Temperature dependence of biexciton luminescence in cubic ZnS single crystals, Solidstate Communications, 2001, 117, 255-259.
    [156] 王文保, 岳永德, 花日茂, ZnS 对可溶性染料的光催化降解研究, 安徽农业大学学报, 1997, 24(4), 401-403.
    [157] 憨勇, 刘正堂, 郑修麟, 化学气相沉积制备 ZnS 块材料均匀性的研究, 硅酸盐通报, 1998, 4, 15-22.
    [158] 牛新书, 刘艳丽, 徐甲强, 纳米硫化锌的合成研究, 无机材料学报, 2002, 17(4), 817-821.
    [159] 李大成, 周大利, 刘恒, 张萍, 陈朝珍, 全学军, 略论二氧化钛的高性能化和高功能化(上), 四川有色金属, 2001, 3, 17-23.
    [160] 李大成, 周大利, 刘恒, 张萍, 陈朝珍, 全学军, 略论二氧化钛的高性能化和高功能化(下), 四川有色金属, 2001, 4, 36-41.
    [161] W. P. Hsu, R. Yu, and E. Matijevic, Paper Whiteners: I. Titania Coated Silica, J. Colloid Interface Sci., 1993,156, 56-65.
    [162] M. Ocana, W. P. Hsu, and E. Matijevic, Preparation and properties of uniform-coated colloidal particles. 6. Titania on zinc oxide, Langmuir, 1991, 7, 2911-2916.
    [163] Z. Q. Ai, G. L. Sun, et al, Polyacrylate-Core/TiO2-Shell Nanocomposite Particles Prepared by In Situ Emulsion Polymerization, Journal of Applied Polymer Science, 2006, 102, 1466-1470.
    [164] I. Haq, and E. Matijevi?, Preparation and properties of uniform coated inorganic colloidal particles 9. Titania on copper compounds, Colloid Surf. A, 1993, 81, 153-159.
    [165] A. Hanprasopwattana, S. Srinivasan, A. G. Sault, and A. K. Datye, Titania Coatings on Monodisperse Silica Spheres (Characterization Using 2-Propanol Dehydration and TEM), Langmuir, 1996, 12, 3173-3179.
    [166] X. C. Guo, and P. Dong, Multistep Coating of Thick Titania Layers on Monodisperse Silica Nanospheres, Langmuir, 1999, 15, 5535-5540.
    [167] I. Pastoriza-Santos, D. S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, and L. M. Liz-Marzan, One-Pot Synthesis of Ag@TiO2 Core-Shell Nanoparticles and Their Layer-by-Layer Assembly, Langmuir, 2000, 16, 2731-2735.
    [168] W. W. So, S. B. Park, K. J. Kim, C. H. Shin, and S. J. Moon, The crystalline phase stability of titania particles prepared at room temperature by the sol-gel method, J. Mater. Sci., 2001, 36, 4299–4305.
    [169] Y. G. Shul, K. S. Oh, J. C. Yang and K. T. Jung, Effect of organic additive on the preparation of rutile TiO2 by steam treatment, J. Sol-Gel Sci. Tech., 1997, 8, 255–259.
    [170] T. F. Xie, D. J. Wang, S. M. Chen, and T. J. Li, Photovoltaic Properties of Novel Conjugated Oligomer/n-Si (111) Heterostructures, Thin Solid Films, 1998, 415, 327-329.
    [171] H. Du, Y. Cao, Y. Bai, P. Zhang, X. Qian, D. Wang, T. Li, and X. Tang, Photovoltaic Properties of Polymer/Fe2O3/Polymer Heterostructured Microspheres, J. Phys. Chem. B, 1998, 102, 2329-2332.
    [172] Q. Xue, Special analysis in study of Polymeric Structure, Beijing: HigherEducation Press, 1995, 238p [薛奇, 高分子结构研究中的光谱方法. 北京: 高等教育出版社, 1995, 238p.
    [173] 沈德言, 红外光谱法在高分子研究中的应用, 科学出版社, 1982, 第一版, 第二章.
    [174] L. Q. Jing, X. J. Sun, W. M. Cai, Z. L. Xu, Y. G. Du, and H. G. Fu, The Preparation and Characterization of Nanoparticle TiO2/Ti films and Their Photocatalytic Activity, J. Phys. Chem. Solids, 2003, 64, 615-623.
    [175] Z. Qinghong, G. Lian, G. Jingkun, B. McKinney, and M. Rouse, Effects of Calcination on the Photocatalytic Properties of Nanosized TiO2 Powders Prepared by TiCl4 Hydrolysis, Appl. Catal. B, 2000, 26, 207-215.
    [176] N. Yoshio, K. Mitsuo, and N. Junichi, Factors Governing the Initial Process of TiO2 Photocatalysis Studied by Means of in-Situ Electron Spin Resonance Measurements, J. Phys. Chem. B, 1998, 102, 10279-10283.
    [177] Y. Lu, Y. N. Xia and J. Mclellan, Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells, Langmuir, 2004, 20, 3464-3470.
    [178] 尚静, 徐自立, 杜尧国等, TiO2 纳米粒子的结构、表面特性及其光催化活性研究, 无机材料学报, 2001, 16(6), 1211-1216.
    [179] K. Yanagisawa, and J. Ovenstone, Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique: Effects of Starting Material and Temperature, J. Phys. Chem. B, 1999, 103, 7781-7787.
    [180] 朱连杰, 王德军等, TiO2纳米粒子的光催化活性与光伏响应特性研究, 高等学校化学学报, 2001, 22(5), 827-829.
    [181] K. Germanova, and C. H. Hardalov, EL2 Deep Level in Sub-bandgap Surface Photovoltage Spectra in GaAs Bulk Crystals, Appl. Phys., 1987, A43,117-121.
    [182] S. Y. Rosenwak, and L. Burstein, Effects of Reactive Versus Unreactive Metals on the Surface Recombination Velocity at CdS and CdSe(11 0) Interfaces, Appl. Phys. Lett., 1990, 57, 458-460.
    [183] A. Hagfeldt, and M. Gratzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chem. Rev.[J], 1995, 95(1), 49-68.
    [184] L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory, J. Phys. Chem., 1986, 90, 2555-2560.
    [185] M. L. Steigerwald, and L. E. Brus, Semiconductor crystallites: a class of large molecules, Acc. Chem. Res., 1990, 23, 183-188.
    [186] L. Jing, X. Sun, J. Shang, W. Cai, Z. Xu, Y. Du, and H. Fu, Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis, Sol. Energy Mater. Sol. Cells, 2003, 79, 133-151.
    [187] 刘凤岐, 刘正平, 李志英, 汤心颐, 含丙烯酸的苯丙共聚乳液乳胶粒形态的电镜研究, 高等学校化学学报, 1993, 14(3), 417-420.
    [188] 刘利萍, 李苹, 吴泽志等, 水基药用磁纳米粒子的制备条件对性质的影响[J], 重庆大学学报, 2002 , 25(10), 17-19.
    [189] 陈捷, 薛博, 白姝, 新型磁性亲和载体的制备及其对溶菌酶的吸附[J], 天津大学学报, 2001, 34(1), 103-106.
    [190] L. R. Moore, M. Zbowski, et al, The use of magnetite-doped polymeric microspheres in calibrating cell tracking velocimetry[J], Biochem. Biophys. Methods, 2000, 44, 115-130.
    [191] A. K. Furusaw, A. K. Nagahim, and C. Anzai, Synthetic process to control the total size and component distribution of multiplayer magnetic composite supports[J], Colloid Polymer Science, 1994, 272, 1104-1110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700