量化计算结合固体NMR研究高分子微观结构、氢键与链运动
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要应用量子化学理论计算结合固体核磁共振(NMR)实验技术,研究了系列结晶和非晶高分子体系的微观结构、氢键相互作用以及高分子共混物中的链段动力学行为。主要包括以下四方面研究内容:
     (一)研究两种结晶性高分子——等规和间规立构聚丙烯(iPP/sPP)中13C各向同性和各向异性化学位移。通过分析不同的初始构型构象、不同的优化方式对量化计算结果的影响,获得了正确计算结晶性高分子NMR化学位移的有效方法;同时讨论了采用γ-旁式效应解释不同立构聚丙烯的13C化学位移起源的成功和不足之处;研究了近年来发展的检测13C化学位移各向异性的两个重要NMR实验技术(SUPER和RAI)的优缺点和实验参数优化问题,测定了iPP样品的CSA粉末谱线形并与量化计算的理论预测结果相比较,显示理论与实验的很好符合。
     (二)采用量化计算结合固体NMR实验详细研究了三种不同立构聚乙烯醇(PVA)中复杂的氢键相互作用及其对13C化学位移的影响,阐明了长期存在争论的PVA中次甲基碳三重劈裂峰的微观起源,探索了与水形成分子间氢键对PVA化学位移的影响。量化计算结果可以很好地预言iPVA的NMR实验谱图;sPVA因为量化计算模型为高度间规,而实验样品是轻度间规而使理论和NMR实验结果间略有差别;对于aPVA建立了大量不同构型构象的局域链段模型展开系统研究,部分地阐明了其三重劈裂峰的起源。结果表明,研究PVA次甲基碳的三重劈裂峰的起源不应只考虑分子内氢键还应考虑分子间氢键的影响,只有一些特定构型构象下才能形成分子内氢键。从系列量化计算结果中我们总结出PVA中次甲基碳化学位移分布的规律如下:(1)包含单一氢键情形下,PVA中与次甲基相连的羟基充当质子受体时,次甲基碳的谱峰向低场偏移;充当质子给体时,次甲基碳的谱峰向高场偏移;(2)PVA同时参与一个分子内氢键与一个分子间氢键,次甲基碳的谱峰向低场偏移;(3)PVA间形成多重分子间氢键时次甲基碳的谱峰向高场偏移,与水形成多重分子间氢键时次甲基碳的谱峰向低场偏移。变温13C CP/MAS和SUPER等固体NMR实验进一步验证了量化计算结果的合理性。
     (三)基于国际上最近发展的用于质子间同核去耦的连续相调制多脉冲技术,我们发展了DF-CRAMPS和DQ-CRAMPS两种质子高分辨固态NMR新技术,分别用于获取有机固体中柔性和刚性质子信号进行选择性检测。这些技术应用于研究聚丙烯酸(PAA)体系中各种复杂的氢键结构,获得了高分辨的实验谱图并结合量化计算对不同氢键结构的化学位移进行了正确归属,首次在PAA中发现了几种新颖的氢键结构。
     (四)聚对乙烯基苯酚/聚氧乙烯(PVPh/PEO)共混物体系中氢键相互作用与链段动力学行为研究。通过高分辨二维1H-1H自旋交换和13C-1H分离局域场的固体NMR技术揭示了PVPh/PEO共混物中PVPh的酚羟基与PEO间的氢键相互作用以及不同组分的分子运动特性,发现了相容性共混物中链间弱相互作用导致的链间协同运动。
In this thesis, combined quantum chemical calculation and solid-state NMR techniques were used to study the microstructure and hydrogen bond interaction in a series of crystalline and amorphous polymers, as well as segmental dynamics in polymer blends. This thesis basically consists of the following four parts:
     1. Studies on the chemical shifts of two types of crystalline polymers, isotactic and syndiotactic polypropylene (iPP/sPP). By analyzing the influence of different initial configurations, conformations and optimizing methods to quantum chemical calculation results, we obtained an effective method to accurately calculate NMR chemical shift in crystalline polymer. We also discussed the successes and shortcomings in elucidating the 13C chemical shifts of PP with different tacticities usingγ-gauche effect. We studied the merits and drawbacks, as well as the optimization of experimental parameters of two newly developed NMR techniques (SUPER and RAI) for recoupling the chemical shift anisotropy. The CSA powder lineshapes of iPP were successfully obtained, which were also compared with quantum chemical calculation results. It was found that the results of quantum chemical calculation are in good accordance with NMR experimental results.
     2. Combined quantum chemical calculations and solid-state NMR experiments were used to investigate the complex hydrogen bonds and their influence to 13C chemical shifts in three types of polyvinyl alcohol (PVA) with different tacticities. We have succecesfully elucidated the nature of methine triplets of 13C NMR spectrum in PVA and explored the influence of the intermolecular hydrogen bonds between PVA and water on the chemical shifts. Quantum chemical calculation is able to predict the 13C NMR spectrum of iPVA well. For sPVA, because the used structural model was highly syndiotactic while the experimental sample is slightly syndiotactic, thus the theoretical prediction was a little different with the NMR result. Plenty of structural models with different configurations and conformations were built for aPVA, and quantum chemical calculation partly clarified the origin of the methine triplets. Our results show that we should not only take into account intramolecular but also intermolecular hydrogen bonds when studing the origin of the triplets, and intramolecular hydrogen bond can be only formed at certain particular configurations and conformations. Through a series of quantum chemical calculation results, some basic rules of chemical shift distribution of methine carbons in PVA were summarized: (1) In case of only one hydrogen bond, when the hydroxyl group in PVA is proton acceptor, the peak of methine carbons moves toward low field, and when the hydroxyl group in PVA is proton acceptor, the peak of methine carbons moves towards high field; 2) when the hydroxyl group in PVA is involved in an intramolecular hydrogen bond and an intermolecular hydrogen bond, the peak of methine carbons moves towards low field; (3) when multiple intermolecular hydrogen bonds is formed between different PVA chains, the peak of methine carbons moves towards high field, and when multiple intermolecular hydrogen bonds is formed between PVA and water, the peak of methine carbons moves towards low field. Variable-temperature 13C CP/MAS and SUPER solid-state NMR experimental results further confirmed the conclusion obtained from quantum chemical calculation.
     3. On the basis of recently developed continuous phase modulation techniques for homonuclear decoupling among protons, we proposed two new high resolution solid-state 1H NMR techniques:DF-CRAMPS and DQ-CRAMPS, which are used to obtain mobile and rigid proton signals in organic solids. These techniques were then used to study various types of complex hydrogen bond structures in polyacrylic acid (PAA). We have obtained high resolution'H NMR spectra and correctly assigned the NMR peaks associated with hydrogen bonds according to experimental and quantum chemical calculation results. Several new hydrogen bond structures were found for the first time in PAA.
     4. Studies on the hydrogen bonds and segmental motion in poly-4-vinylphenol/polyethylene oxide (PVPh/PEO) blends. Through high resolution 2D solid-stae NMR techniques including 2D 1H-1H spin exchange experiment and 13C-1H separated-local-field NMR experiment, we revealed the hydrogen bond interaction between the phenolic hydroxyl in PVPh and PEO as well as molecular mobility of different components in PVPh/PEO blends; we also found an interchain cooperation motion in compatible blends resulting from interchain weak interaction.
引文
[1]Pimentel G C, McClellan A L. The Hydrogen Bond. San Francisco:Freeman,1960.
    [2]Pauling L. The Nature of the Chemical Bond(3rd ed.). Ithaca:Cornell University Press,1963.
    [3]Hamilton W C, Ibers J A. Hydrogen Bonding in Solids:methods of molecular structure determination. New York:Benjamin,1968.
    [4]Jeffrey G A, Saenger W. Hydrogen Bonding in Biological Structures. Berlin:Springer-Verlag, 1991.
    [5]Jeffrey G A. An Introduction to Hydrogen Bonding(Topics in Physical Chemistry). Oxford: Oxford University Press,1997.
    [6]Scheiner S. Hydrogen Bonding:A Theoretical Perspective(Topics in Physical Chemistry). Oxford:Oxford University Press,1997.
    [7]Desiraju G R, Steiner T. The Weak Hydrogen Bond:In Structural Chemistry and Biology. Oxford:Oxford University Press,1999.
    [8]D. Hadzi(eds). The Hydrogen Bond. New York:Pergamon,1957.
    [9]Schuster P, Zundel G, Sandorfy C(eds). The Hydrogen Bond. Recent Developments in Theory and Experiments. Amsterdam:North-Holland,1976. Vols.1-3
    [10]Hadzi D (eds). Theoretical Treatments of Hydrogen Bonding. Chichester:Wiley,1997.
    [11]Steiner T. The Hydrogen Bond in the Solid State. Angew Chem Int Ed Engl,2002,41 (1): 48-76
    [12]He Y, Zhu B, Inoue Y. Hydrogen bonds in polymer blends. Prog Polym Sci,2004,29 (10): 1021-1051
    [13]Prins L J, Reinhoudt D N, Timmerman P. Noncovalent Synthesis Using Hydrogen Bonding. Angew Chem Int Ed,2001,40 (13):2382-2426
    [14]Budesinsky M, Fiedler P, Arnold Z. Triformylmethane:an efficient preparation, some derivatives, and spectra. Synthesis,1989,1989(11):858-860
    [15]张广宏,马文霞,万会军.氢键的类型和本质.化学教学,2007,(7):72-75
    [16]谢吉麟.氢键的本质特征、存在类型及其影响.化学教学,2006,(8):60-62
    [17]Brodsky M H, Cardona M, Cuomo J J. Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering. Phys Rev B,1977,16 (8):3556-3571.
    [18]Bratos S. Profiles of hydrogen stretching ir bands of molecules with hydrogen bonds:A stochastic theory. Ⅰ. Weak and medium strength hydrogen bonds. J Chem Phys,1975,63 (8): 3499-3509
    [19]Skrovanek D J, Painter P C, Coleman M M. Hydrogen bonding in polymers.2. Infrared temperature studies of nylon 11. Macromolecules,1986,19(3):699-705
    [20]Libowitzky E. Correlation of O-H Stretching Frequencies and O-H…O Hydrogen Bond Lengths in Minerals. Monatshefte fur Chemie,1999,130 (8):1047-1059
    [21]Lawrence C P. Skinner J L.Ultrafast infrared spectroscopy probes hydrogen-bonding dynamics in liquid water. Chemical Physics Letters,2003,369 (3-4):472-477
    [22]Novak A. Hydrogen bonding in solids:correlation of spectroscopic and crystallographic data. Large Molecules,1974,18:177-216
    [23]Dai L, Ying L. Infrared Spectroscopic Investigation of Hydrogen Bonding in EVOH Containing PVA Fibers. Macromol Mater Eng,2002,287 (8):509-514
    [24]袁波,窦晓鸣.近红外光谱研究水与甲醇混合溶液的氢键作用.光谱学与光谱分析,2004,24(11):1319-1322
    [25]陈大俊,李瑶君.热塑性聚氨酯弹性体中的氢键作用-Ⅱ.红外热分析.化学世界,2001,(10):525-528
    [26]Live D H, Davis D G, Agosta W C, et al. Long range hydrogen bond mediated effects in peptides:nitrogen-15 NMR study of gramicidin S in water and organic solvents. J Am Chem Soc, 1984,106 (7):1939-1941
    [27]Cellman S H, Dado G P, Liang Cui-Bai, et al. Conformation-Directing Effects of a Single Intramolecular Amide-Amide Hydrogen Bond:Variable-Temperature NMR and IR Studies on a Homologous Diamide Series.J Am Chem Soc,1991,113(4):1164-1173
    [28]Asakawa N, Kuroki S, Kurosu H, et al. Hydrogen-bonding effect on 13C NMR chemical shifts of L-alanine residue carbonyl carbons of peptides in the solid state.J Am Chem Soc,1992, 114 (9):3261-3265
    [29]Terao T, Maeda S, Saika A. High-resolution solid-state 13C NMR of poly(vinyl alcohol): enhancement of tacticity splitting by intramolecular hydrogen bonds. Macromolecules,1983,16 (9):1535-1538
    [30]Leeflang B R, Vliegenthart J F G., Kroon-Batenburg L M J, et al. A'H-NMR and MD study of intramolecular hydrogen bonds in methyl β-cellobioside. Carbohydrate Research,1992,230 (1):41-61
    [31]Isaacs E D, Shukla A, Platzman P M, et al. Covalency of the Hydrogen Bond in Ice:A Direct X-Ray Measurement. Phys Rev Lett,1999,82 (3):600-603
    [32]Gilli P, Bertolasi V, Ferretti V, et al. Covalent nature of the strong homonuclear hydrogen bond. Study of the O-H…O system by crystal structure correlation methods. J Am Chem Soc, 1994,116 (3):909-915
    [33]Phillips S E V, Schoenborn B P. Neutron diffraction reveals oxygen-histidine hydrogen bond in oxymyoglobin. Nature,1982,292 (5818):81-82
    [34]Allen F H, Howard J A K, Hoy V J, et al. First Neutron Diffraction Analysis of an O-H…π Hydrogen Bond:2-Ethynyladamantan-2-ol. J Am Chem Soc,1996,118 (17):4081-4084
    [35]Lantz M A, Jarvis S P, Tokumoto Hiroshi, et al. Stretching the a-helix:a direct measure of the hydrogen-bond energy of a single-peptide molecule. Chemical Physics Letters,1999,315 (1-2):61-68
    [36]柳明珠,程镕时,钱人元.聚乙烯醇水凝胶溶胀特性研究.高分子学报,1996,(2):234-239
    [37]Tsuchida E, Abe K. Macromolecular complexes in aqueous solution. Adv Polym Sci,1982, 45:1-119
    [38]Cohen Addad J P(Editor). Physical properties of polymer gels. Chichester:John Wiley and Sons, Inc.,1996.
    [39]Duffy D M, Rodger P M. Hydrogen Bonding and the Conformations of Poly(alkyl acrylamides). J Am Chem Soc,2002,124 (18):5206-5212
    [40]Sun P C, Li B H, Wang Y N, et al.'H NMR studies of poly(N-isopropylacrylamide) gels near the phase transition. Eur Polym J,2003,39 (5):1045-1050
    [41]Abragam A. The Principles of Nuclear Magnetism. New York:Oxford University Press, 1983.
    [42]Abragam A, Goldman M. Nuclear magnetism:Order and Disorder. Oxford:Clarendon Press.1982.
    [43]Mehring M. Principles of high resolution NMR in solids (second revised and enlarged edition). Berlin:Springer-Verlag,1983.
    [44]Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Volume 14 of International series of monographs on chemistry. Oxford science publications). Oxford:Oxford University Press,1990.
    [45]Schmidt-Rohr K, Spiess H W. Multidimensional solid-state NMR and polymers. London: Academic Press,1994
    [46]Stejskal E O, Memory J D. High resolution NMR in the solid state:fundamentals of CP/MAS. Oxford:Oxford University Press,1994
    [47]Croasmun W R, Carlson R M K. Two-Dimensional NMR Spectroscopy:Applications for Chemists and Biochemists(2nd ed. Volume 15 of Methods in Stereochemical Analysis). New York:VCH Publishers,1994.
    [48]Slichter C P. Principles of Magnetic Resonance (third enlarged and updated edition). New York:Springer-Verlag,1996.
    [49]Berger S, Braun S.200 and more NMR experiments:a practical course(3rd ed.). Weinheim: Wiley-VCH,2004
    [50]Keeler J. Understanding NMR Spectroscopy. Chichester:Wiley,2005.
    [51]R R Ernst一维和二维核磁共振原理,毛希安译.北京:北京科学出版社,1997.
    [52]胡皆汉.核磁共振波谱学.北京:烃加工出版社,1988.
    [53]裘祖文,裴奉奎.核磁共振波谱.北京:科学出版社,1989.
    [54]薛奇.高分子结构研究中的光谱方法.北京:高等教育出版社,1995.
    [55]高汉宾,郑耀华.简明核磁共振手册.武汉:湖北科学技术出版社,1989.
    [56]高汉宾,张振芳.核磁共振原理与实验方法.武汉:武汉大学出版社,2008.
    [57]北丸龟三.核磁共振的基础与原理,朱清仁等译.合肥:中国科学技术大学出版社,1991.
    [58]Berger S, Braun S.核磁共振实验200例:实用教程,陶家洵,李勇,杨海军译.北京: 化学工业出版社,2008.
    [59]杨文火,王宏钧,卢葛覃.核磁共振原理及其在结构化学中的应用(增订版).福州:福建科学技术出版社,1988.
    [60]夏佑林,吴季辉,刘琴等.生物大分子多维核磁共振.合肥:中国科学技术大学出版社,1999.
    [61]田建广,夏照帆,杜泽涵.生物核磁共振.上海:第二军医大学出版社,2001.
    [62]徐元植.实用电子磁共振波谱学——基本原理和实际应用.北京:科学出版社,2008.
    [63]Rabi I I, Zacharias J R, Millman S,et al. A New Method of Measuring Nuclear Magnetic Moment. Phys Rev,1938,53 (4):318-318
    [64]Purcell E M, Torrey H C, Pound R V. Resonance Absorption by Nuclear Magnetic Moments in a Solid. Phys Rev,1946,69 (1-2):37-38
    [65]Bloch F, Hansen W W, Packard M. Nuclear Induction. Phys Rev,1946,69(3-4):127-127
    [66]Bloembergen N, Purcell EM, Pound R V. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Phys Rev,1948,73 (7):679-746
    [67]Knight W D. Nuclear Magnetic Resonance Shift in Metals. Phys Rev,1949,76(8):1259-1260
    [68]Proctor W G, Yu F C. The Dependence of a Nuclear Magnetic Resonance Frequency upon Chemical Compound. Phys Rev,1950,77 (5):717-717
    [69]Dickinson W C. Dependence of the F19 Nuclear Resonance Position on Chemical Compound. Phys Rev,1950,77 (5):736-737
    [70]Lindstrom G. An Experimental Investigation of the Nuclear Magnetic Moments of D2 and H1. Phys Rev,1950,78 (6):817-818
    [71]Gutowsky H S, McCall D W, Slichter C P. Coupling among Nuclear Magnetic Dipoles in Molecules. Phys Rev,1951,84 (3):589-590
    [72]McNeil E B, Slichter C P, Gutowsky H S. "Slow Beats" in F19 Nuclear Spin Echoes. Phys Rev,1951,84 (6):1245-1246
    [73]Hahn E L, Maxwell D E. Chemical Shift and Field Independent Frequency Modulation of the Spin Echo Envelope. Phys Rev,1951,84 (6):1246-1247
    [74]Hahn E L. Spin Echoes. Phys Rev,1950,80(4):580-594
    [75]Ramsey N F, Purcell E M. Interactions between Nuclear Spins in Molecules. Phys Rev, 1952,85 (1):143-144
    [76]Ernst RR,裘祖文.密度矩阵方法和二维核磁共振的一般理论.波谱学杂志,]984,1(2-3):173-220
    [77]黄永仁.核磁共振中的密度算符理论.波谱学杂志,1984,1(4):381-414
    [78]叶朝辉.魔角旋转核磁共振波谱学.波谱学杂志,1983,1(4):415-454
    [79]叶朝辉,Tang J,Pines A.多量子核磁共振波谱学.波谱学杂志,1983,1(1):111-26
    [80]Anderson A G, Hartmann S R. Nuclear Magnetic Resonance in the Demagnetized State. Phys Rev,1962,128 (5):2023-2041
    [81]Hartmann S R, Hahn E L. Nuclear Double Resonance in the Rotating Frame. Phys Rev, 1962,128 (5):2042-2053
    [82]Andrew E R, Bradbury A, Eades R G. Nuclear Magnetic Resonance Spectra from a Crystal Rotated at High Speed. Nature,1958,182 (4650):1659-1659
    [83]Lowe. Free Induction Decays of Rotating Solids:Phys Rev Lett,1959,2 (7):285-287
    [84]Bielecki A, Kolbert A C, Levitt M H. Frequency-switched pulse sequences:Homonuclear decoupling and dilute spin NMR in solids. Chem Phys Lett,1989,155(4-5):341-346
    [85]Sakellariou D, Lesage A, Hodgkinson P, et al. Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation. Chem Phys Lett,2000,319 (3-4):253-260
    [86]Elena B, de Paepe G, Emsley L. Direct spectral optimisation of proton-proton homonuclear dipolar decoupling in solid-state NMR. Chem Phys Lett,2004,398 (4-6):532-538
    [87]Levine I N. Quantum Chemistry(6th ed.). Upper Saddle River, New Jersey:Prentice Hall, 2009.
    [88]Mueller M R. Fundamentals of quantum chemistry:molecular spectroscopy and modern electronic structure computations. New York:Kluwer Academic Publishers,2002.
    [89]Lowe J P, Peterson K A. Quantum chemistry(3rd ed.). Amsterdam:Elsevier Academic Press, 2006.
    [90]Kaupp M, Buhl M, Malkin V G. Calculation of NMR and EPR Parameters (Theory and Applications). WeinHeim:WIELY-VCH Verlag GmbH & Co,2004.
    [91]Foresman J B, Frisch AE. Exploring Chemistry with Electronic Structure Methods(2nd ed.). Pittsburgh:Gaussian Inc,1996.
    [92]Yamaguchi Y, Goddard J D, Osamura Y, Schaefer H F. A New Dimension to Quantum Chemistry:Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory. Oxford:Oxford University Press,1994.
    [93]Young D C. Computational chemistry:a practical guide for applying techniques to real world problems. New York:John Wiley & Sons,2001.
    [94]徐光宪,黎乐民,王德明.量子化学:基本原理和从头计算法(第二版,上中下册).北京:科学出版社,2007.
    [95]Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys Rev,1964,136 (3B):B864-B871
    [96]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev,1965,140 (4A):A1133-A1138
    [97]Kohn W. Nobel Lecture:Electronic structure of matter—wave functions and density functionals. Rev Mod Phys,1999,71 (5):1253-1266
    [98]Parr R G, Yang W. Density-Functional Theory of Atoms and Molecules. Oxford:Oxford University Press,1994.
    [99]Kim K, Jordan K D. Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer. J Phys Chem,1994,98 (40):10089-10094
    [100]Stephens P J, Devlin F J, Chabalowski C F, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J Phys Chem, 1994,98 (45):11623-11627
    [101]Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J Chem Phys,1993,98 (7):5648-5652
    [102]Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A,1988,38 (6):3098-3100
    [103]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B,1988,37 (2):785-789
    [104]Gaussian 03, Revision E.01, Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian Inc., Wallingford CT,2004.
    [105]Kong J, White C A, Krylov A1, et al. Q-Chem 2.0:a high-performance ab initio electronic structure program package. Journal of Computational Chemistry,2000,21 (16):1532-1548
    [106]http://www.msg.ameslab.gov/GAMESS/
    [107]http://www.wavefun.com/
    [108]http://www.castep.org/
    [109]http://www.molpro.net/
    [110]http://openmopac.net/
    [111]http://www.teokem.lu.se/molcas/
    [112]http://accelrys.com/products/materials-studio/
    [113]http://www.hyper.com/
    [114]http://www.cambridgesoft.com/software/chemoffice/default.aspx
    [115]http://tripos.com/sybyl/
    [116]http://www.crystal.unito.it/
    [117]http://cms.mpi.univie.ac.at/vasp/
    [118]http://avogadro.openmolecules.net/
    [119]http://www.webmo.net/
    [120]http://www.cmbi.ru.nl/molden/molden.html
    [121]http://jmol.sourceforge.net/
    [122]http://www.moldraw.unito.it/
    [123]http://www.cse.scitech.ac.uk/cmg/DLV/
    [124]Zhou P, Li G, Shao Z, et al. Structure of Bombyx mori Silk Fibroin Based on the DFT Chemical Shift Calculation. J Phys Chem B,2001,105 (50):12469-12476
    [125]Helgaker T, Jaszunski M, Ruud Kenneth. Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constants. Chem Rev,1999,99 (1):293-352
    [126]London F. Theorie quantique des courants interatomiques dans les combinaisons aromatiques. J Phys Radium,1937,8 (10):397-409
    [127]Hameka H F. On the nuclear magnetic shielding in the hydrogen molecule. Mol Phys, 1958,1 (3):203-215
    [128]Ditchfield R. Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility. J Chem Phys,1972,56 (11):5688-5691
    [129]Wolinski K, Hinton J F, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am ChemSoc,1990,112(23):8251-8260
    [130]Keith T A, Bader R F W. Calculation of magnetic response properties using a continuous set of gauge transformations. Chem Phys Lett,1993,210 (2-3):223-231
    [131]Keith T A, Bade R F W. Calculation of magnetic response properties using atoms in molecules. Chem Phys Lett,1992,194 (1-2):1-8
    [132]朱善农等.高分子链结构.北京:科学出版社,1996.
    [133]Waugh J S, Fessenden R W.Nuclear Resonance Spectra of Hydrocarbons:The Free Electron Model.J Am Chem Soc,1957,79 (4):846-849
    [134]Sergeev N M, Grimberg A N.Effect of the ring current in aromatic systems NMR chemical shifts in the spectrum of polystyrene. Journal of Structural Chemistry,1966, Volume 7(3):341-344
    [135]Wang Liying(王立英),Feng Jiwen(冯继文),Ye Chaohui(叶朝辉).Typical Polymers Studied by Solid-State NMR(典型高分子材料的固体核磁共振研究).Chinese J Magn Reson(波谱学杂志),2006,23 (4):547-549
    [136]Deng Yibin(邓益斌),Ji Dan(季丹),Zhou Ping(周平). Application of Magnetic Resonance Methods in the Structural and Functional Characterization of Silk Fibroin(磁共振技术在丝素蛋白结构与功能研究中的应用).Chinese J Magn Reson(波谱学杂志),2008,25(4):555-571
    [137]Liu S F, Mao J D, Schmidt-Rohr K. A Robust Technique for Two-Dimensional Separation of Undistorted Chemical-Shift Anisotropy Powder Patterns in Magic-Angle-Spinning NMR. J Magn Reson,2002,155 (1):15-28
    [138]Witter R, Sternberg U, Ulrich A S. NMR chemical shift powder pattern recoupling at high spinning speed and theoretical tensor evaluation applied to silk fibroin. J Am Chem Soc,2006, 128 (7):2236-2243
    [139]Mowery D M, Clough R L, Assink R A. Identification of oxidation products in selectively labeled polypropylene with solid-state C-13 NMR techniques. Macromolecules,2007,40 (10): 3615-3623
    [140]Dong R Y, Geppi M, Marini A, et al. Orientational order of a liquid crystal with three chiral centers by a combined C-13 NMR and DFT approach. J Phys Chem B,2007,111 (33):9787-9794
    [141]Brouwer D H, Enright G D. Probing local structure in zeolite frameworks:Ultrahigh-field NMR measurements and accurate first-principles calculations of zeolite Si-29 magnetic shielding tensors. J Am Chem Soc,2008,130 (10):3095-3105
    [142]Sebastiani D. Current densities and nucleus-independent chemical shift maps from reciprocal-space density functional perturbation theory calculations. ChemPhysChem,2006,7 (1):164-175
    [143]Ando 1, Kuroki S, Kurosu H, Yamanobe T. NMR Chemical shift calculations and structural characterizations of polymers. Prog Nucl Magn Reson Spec,2001,39:79-133
    [144]何曼君,张红东,陈维孝等.高分子物理(第三版).上海:复旦大学出版社,2007.
    [145]马德柱,何平笙,徐种德等.高聚物的结构与性能(第二版).北京:科学出版社,2000.
    [146]Natta G, Corradini P. Structure and properties of isotactic polypropylene. Il Nuovo Cimento,1960,15 (1):40-51
    [147]Tonelli A E. NMR Spectroscopy and Polymer Microstructure:The Conformational Connection. New York:Wiley-VCH,1989.50-53
    [148]Koenig J L. Spectroscopy of polymers(2nd ed.). New York:Elsevier,1999.
    [149]Tonelli A E. Failure of the.gamma-gauche effect method to predict the stereosequence-dependent carbon-13 NMR spectrum of the disubstituted vinyl polymer atactic poly (methyl methacrylate). Macromolecules,1991,24 (11):3065-3068
    [150]Nyden M R, Vanderhart D L, Alamo R G. The conformational structures of defect-containing chains in the crystalline regions of isotactic polypropylene. Comp Theo Polym Sci, 2001,11 (3):175-189
    [151]Corradini P, Natta G, Ganis P, et al. Crystal structure of syndiotactic polypropylene. J Polym Sci C,1967,16:2477
    [152]Rosa C D, Corradini P. Crystal structure of syndiotactic polypropylene. Macromolecules, 1993,26 (21):5711-5718
    [153]iPP NMR实验值引自Spiess组的工作NMR Spectra Collection of Polymers 13C CPMAS http://www.mpip-mainz.mpg.de/groups/spiess/Polymer%20Specfra
    [154]Bunn A, Cudby M E A. Solid-state High-resolution 13C N.M.R Spectra of Polypropene. J C S CHEM COMM,1981:15-16
    [155]Tonelli A E. NMR Spectroscopy and Polymer Microstructure:The Conformational Connection. New York:Wiley-VCH,1989.
    [156]Tycko R, Dabbagh G, Mirau P. Determination of Chemical-Shift-Anisotropy Lineshapes in a Two-Dimensional Magic-Angle-Spinning NMR Experiment. J Magn Reson,1989,85 (2): 265-274
    [157]严瑞.水溶性高分子.北京:化学工业出版社,1998.
    [158]严瑞,唐丽娟.水溶性高分子产品手册.北京:化学工业出版社,2003.
    [159]Fuji K, Mochizuki T, Imoto S, et al. Investigation of the stereoregularity of poly(vinyl alcohol). J Polym Sci Part A,1964,2 (5):2327-2347
    [160]Krimm S, Liang C Y, Sutherland G B B M. Infrared spectra of high polymers. V. Polyvinyl alcohol.J Polym Sci,1956,22 (101):227-247
    [161]Tadokoro H. Crystallization-sensitive Band of Polyvinyl Alcohol. Bull Chem Soc Jap, 1959,32 (12):1334-1339
    [162]Bargon V J, Hellwege K H, Johnsen U. Die bestimmung der stereochemischen mikrostruktur des polyvinylalkohols durch H1-H1-spinentkopplung. Makromol Chem,1965,85: 291-296
    [163]Ramey K C, Field N D. Tacticity of poly(vinyl alcohol) and poly(vinyl trifluoroacetate) by NMR. J Polym Sci Part B,1965,3 (1):63-67
    [164]Danno A, Hayakawa N. High Resolution NMR Spectra of Stereo-regulated Poly vinyl Alcohol. Bull Chem Soc Jap,1962,35:1748-1749
    [165]Tincher W C. Configuration of vinyl polymers from high resolution nuclear magnetic resonance spectra. Ⅲ. Poly(vinyl alcohol). Makromol Chem,1965,85 (1):46-57
    [166]DeMember J R.Haas H C,MacDonald R L. NMR of vinyl polymers. Ⅰ. A new and sensitive probe for configuration in poly(vinyl alcohol) polymer chains. J Polym Sci B,1972,10 (5): 385-389
    [167]Moritani T, Kuruma I, Shibatani K, et al. Tacticity of Poly(vinyl alcohol) Studied by Nuclear Magnetic Resonance of Hydroxyl Protons. Macromolecules,1972,5 (5):577-580
    [168]Wu T K, Derick W Ovenall. Proton and Carbon-13 Nuclear Magnetic Resonance Studies of Poly(vinyl alcohol). Macromolecules,1973,6 (4):582-584
    [169]Schaefer J, Natusch D F S. Carbon-13 Overhauser Effect in Polymer Solutions. Macromolecules,1972,5 (4):416-427
    [170]Inoue Y, Chujo R, Nishioka A. Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Poly(vinyl alcohol). J Polym Sci [B],1973,11 (2):393-395
    [171]Inoue Y, Chujo R, Nishioka A, et al. Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Poly(vinyl acetate) and Poly(vinyl alcohol). Polym J,1973,4 (3):244-252
    [172]Wu T K, Sheer M L. Carbon-13 NMR Determination of Pentad Tacticity of Poly(vinyl alcohol). Macromolecules,1977,10 (3):529-531
    [173]Tonelli A E. Carbon-13 nuclear magnetic resonance chemical shifts of poly(vinyl alcohol). Macromolecules,1985,18 (6):1086-1090
    [174]Ovenall D W. Microstructure of poly(vinyl alcohol) by 100-MHz carbon-13 NMR. Macromolecules,1984,17 (8):1458-1464
    [175]Katsuraya K, Hatanaka K, Matsuzaki K, et al. Assignment of finely resolved 13C NMR spectra of poly (vinyl alcohol). Polymer,2001,42 (24):9855-9858
    [176]Ketels H, de Haan J, Aerdts A, et al.13C MAS n.m.r. study of solid poly(vinyl alcohol) and of ethylene-vinyl alcohol copolymers, Polymer,1990,31 (8):1419-1424
    [177]Imashiro F, Obara S. Tacticity-Dependent 13C NMR Chemical Shifts for Poly(vinyl alcohol) Models Studied by ab Initio Gauge-Included Atomic Orbital Calculations. Macromolecules, 1995,28 (8):2840-2844
    [178]Masuda K, Horii F. CP/MAS 13C NMR Analyses of the Chain Conformation and Hydrogen Bonding for Frozen Poly(vinyl alcohol) Solutions. Macromolecules 1998,31 (17):5810-5817
    [179]Kobayashi M, Ando I, lshii T, et al. Structural study of poly(vinyl alcohol) in the gel state by high-resolution solid-state 13C NMR spectroscopy. Macromolecules,1995,28(19):6677-6679
    [180]Kobayashi M, Ando I, Ishii T, et al. Structural and dynamical studies of poly(vinyl alcohol) gels by high-resolution solid-state 13C NMR spectroscopy. J Mol Struct,1998,440(1-3):155-164
    [181]Kanekiyo M, Kobayashi M, Andol, Kurosu H, et al. A structural and dynamic study of poly(vinyl alcohol) in the gel state by solid-state 13C NMR and 1H pulse NMR. J Mol Struct, 1998,447 (1-2):49-59
    [182]Kobayashi M, Kanekiyo M, Ando I. A study of molecular motion of PVA/water system by high-pressure 1H pulse-NMR method. Polym Gels Networks,1998,6 (5):347-354
    [183]Kobayashi M, Kanekiyo M, Ando I, et al. A study of the gelation mechanism of poly(vinyl alcohol) in aqueous solution by high-resolution solid-state 13C NMR spectroscopy. Polym Gels Networks,1998,6 (6):425-428
    [184]Machida Y, Kuroki S, Kanekiyo M, et al. A structural study of water in a poly(vinyl alcohol) gel by 17O NMR spectroscopy. J Mol Struct,2000,554 (1):81-90
    [185]Horii F, Hu S, Ito T, et al. Cross polarization/magic angle spinning 13C n.m.r. study of solid structure and hydrogen bonding of poly(vinyl alcohol) films with different tacticities. Polymer, 1992,33 (11):2299-2306
    [186]Hu S, Tsuji M, Horii F. Phase structure of poly(vinyl alcohol) single crystals as revealed by high-resolution solid-state 13C n.m.r. spectroscopy. Polymer,1994,35(12):2516-2522
    [187]Horii F, Masuda K, Kaji H. CP/MAS 13C NMR Spectra of Frozen Solutions of Poly(vinyl alcohol) with Different Tacticities. Macromolecules,1997,30 (8):2519-2520
    [188]Yang H, Hu S, Horii F, et al. CP/MAS 13C NMR analysis of the structure and hydrogen bonding of melt-crystallized poly(vinyl alcohol) films. Polymer,2006,47 (6):1995-2000
    [189]Ohgi H, Yang H, Sato T, Horii F. Solid-state 13C NMR investigation of the structure and hydrogen bonding for stereoregular poly(vinyl alcohol) films in the hydrated state. Polymer, 2007,48 (13):3850-3857
    [190]顾正秋,肖久梅,张湘虹.人工软骨材料—聚乙烯醇水凝胶的研制.北京科技大学学报,1999,21(1):40-43
    [191]林亚平,周静,朱新宇.聚乙烯醇凝胶及其中药透皮给药系统的初步研究.中国中药杂志,1997,22(2):93-95
    [192]李永,高瑾,刘国权等.人工髓核材料—聚乙烯醇水凝胶的溶胀性能研究.生物医学工程学杂志,2005,22(5):995-998
    [193]Vercauteren F F, Donners W A B. A 13C nuclear magnetic resonance study of the microstructure of poly(vinyl alcohol). Polymer,1986,27 (7):993-998
    [194]Egboh S, Tenhu H, Soljamo K, et al.13C NMR Relaxation studies of poly(vinyl alcohol) and its derivatives. Makromol Chem,1991,192 (5):1099-1106
    [195]McGrath K J, Ngai K L, Roland C M. A comparison of Segmental Dynamics in Polymers by Solid-State 13C NMR Spectroscopy. Macromolecules,1995,28 (8):2825-2830
    [196]Petit J-M, Zhu X X.1H and 13C NMR Study on Local Dynamics of Poly(vinyl alcohol) in Aqueous Solutions. Macromolecules,1996,29 (6):2075-2081
    [197]Nagura M, Takagi N, Katakami H, et al. States of water in poly(vinyl alcohol) hydrogels. Polymer Gels and Networks,1997,5 (5):455-468
    [198]Bastow T J, Hodge R M, Hill A J.1H and 13C NMR studies of water and heavy water absorption in poly(vinyl alcohol) hydrogels. Journal of Membrane Science,1997,131 (1-2): 207-215
    [199]Lai S, Casu M, Saba G, et al. Solid-State 13C NMR Study of Poly(vinyl alcohol) Gels. Solid State Nucl Magn Reson,2002,21 (3-4):187-196
    [200]Satokawa Y, Shikata T. Hydration Structure and Dynamic Behavior of Poly(vinyl alcohol)s in Aqueous Solution, Macromolecules,2008,41 (8):2908-2913
    [201]杨荣杰,韩颂军.辐射交联聚乙烯醇水凝胶研究.北京理工大学学报,1997,17(4):431-434
    [202]韩颂军,杨荣杰.聚乙烯醇(PVA)水凝胶研究进展.材料导报,1997,11(2):43-45
    [203]杨荣杰,乔丽坤,李雪春等.物理交联聚乙烯醇凝胶中氢键作用研究.北京理工大学学报,2004,24(11):1005-1008
    [204]吴里国,章悦庭,胡绍华.聚乙烯醇水凝胶的制备及应用进展.东华大学学报(自然科学版),2001,27(6):114-118
    [205]吴里国,章悦庭,蔡禄生等.冷冻-解冻法制聚乙烯醇水凝胶研究进展.化工新型材料,2001,29(11):18-21
    [206]黄光琳,冯雨丁,贺建业.低温聚乙烯醇(PVA)水凝胶结构的初步研究.高分子学报,1992,3:316-320
    [207]顾正秋,肖久梅,张湘虹.人工软骨材料—聚乙烯醇水凝胶的研制.生物医学工程学杂志,1999,16(1):13-18
    [208]谷媛媛,郑庆余,叶林.聚乙烯醇水凝胶的制备及其溶胀性能.塑料工业,2007,35:127-129
    [209]张秋瑾,林伟信,陈群.乙烯-乙烯醇共聚物的固体核磁共振研究.高分子学报,2000,6:800-804
    [210]Hassan C M, Peppas N A. Structure and Morphology of Freeze/Thawed PVA Hydrogels Macromolecules,2000,33 (7):2472-2479
    [211]Prasad K E, Das B, Maitra U, et al. Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. PNAS,2009,106 (32):13186-13189
    [212]Hassan C M, Peppas N A. Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods Advances in Polymer Science,2000,153:37-65
    [213]Bunn C W. Crystal Structure of Polyvinyl Alcohol. Nature,1948,161 (4102):929-930
    [214]Colvin B G. Crystal Structure of Polyvinyl Alcohol. Nature,1974,248 (5451):756-759
    [215]Rosa A D L, Heux L, Cavaille J Y, et al. Molecular modeling of the mobility of poly(allyl alcohol), PAA, and poly(vinyl alcohol), PVA. Polymer,2002,43 (21):5665-5677
    [216]Muroga Y, Noda I, Nagasawa M. Investigation of local conformations of polyelectrolytes in aqueous solution by small-angle x-ray scattering.1. Local conformations of poly(sodium acrylates). Macromolecules,1985,18 (8):1576-1579
    [217]Quinn J F, Caruso F.Facile Tailoring of Film Morphology and Release Properties Using Layer-by-Layer Assembly of Thermoresponsive Materials.Langmuir,2004,20 (1):20-22
    [218]Lutkenhaus J L, Hrabak K D, McEnnis K, et al. Elastomeric Flexible Free-Standing Hydrogen-Bonded Nanoscale Assemblies. J Am Chem Soc,2005,127 (49):17228-17234
    [219]Khutoryanskiy V V, Dubolazov A V, Nurkeeva Z S, et al. pH Effects in the Complex Formation and Blending of Poly(acrylic acid) with Poly(ethylene oxide). Langmuir,2004,20 (9):3785-3790
    [220]Dong J, Ozaki Y, Nakashima K. Infrared, Raman, and Near-Infrared Spectroscopic Evidence for the Coexistence of Various Hydrogen-Bond Forms in Poly(acrylic acid). Macromolecules,1997,30 (4):1111-1117
    [221]Tsukida N, Muranaka H, Ide M, et al. Effect of Neutralization of Poly(acrylic acid) on the Structure of Water Examined by Raman Spectroscopy. J Phys Chem B,1997,101 (34):6676-6679
    [222]Tanaka N, Kitano H, Ise N. Raman spectroscopic study of hydrogen bonding in aqueous carboxylic acid solutions.3. Polyacrylic acid. Macromolecules,1991,24(10):3017-3019
    [223]Walczak W J, Hoagland D A, Hsu S L. Analysis of polyelectrolyte chain conformation of polarized Raman-spectroscopy. Macromolecules,1992,25 (26):7317-7323
    [224]Lu X, Weiss R A. Phase Behavior of Blends of Poly(ethylene glycol) and Partially Neutralized Poly(acrylic acid). Macromolecules,1995,28 (9):3022-3029
    [225]Brunner E, Sternberg U. Solid-state NMR investigations on the nature of hydrogen bonds. Prog Nucl Magn Reson Spectrosc,1998,32 (1):21-57
    [226]Pawsey S, McCormick M, De Paul S, et al.1H Fast MAS NMR Studies of Hydrogen-Bonding Interactions in Self-Assembled Monolayers. J Am Chem Soc,2003,125(14): 4174-4184
    [227]Brus J, Dybal J. Hydrogen-Bond Interactions in Organically-Modified Polysiloxane Networks Studied by 1D and 2D CRAMPS and Double-Quantum 1H MAS NMR. Macromolecules,2002,35 (27):10038-10047
    [228]Green M M, White J L, Mirau P, et al. C-H to O Hydrogen Bonding:The Attractive Interaction in the Blend between Polystyrene and Poly(vinyl methyl ether). Macromolecules, 2006,39 (18):5971-5973
    [229]Brown S P, Zhu X X, Saalwachter K, et al. An Investigation of the Hydrogen-Bonding Structure in Bilirubin by'H Double-Quantum Magic-Angle Spinning Solid-State NMR Spectroscopy. J Am Chem Soc,2001,123 (18):4275-4285
    [230]Densmore C G, Rasmussen P G, Goward G R. Probing Hydrogen Bonding and Proton Mobility in Dicyanoimidazole Monomers and Polymers. Macromolecules,2005,38 (2):416-421
    [231]Garces F O, Sivadasan K, Somasundaran P, et al. Interpolymer complexation of poly(acrylic acid) and polyacrylamide:structural and dynamic studies by solution- and solid-state NMR. Macromolecules,1994,27 (1):272-278
    [232]Miyoshi T, Takegoshi K, Terao T. Dynamic Alternation between Inter- and Intra-Polymer Hydrogen Bonds in a Polymer Complex As Studied by Solid-State 13C 2D Exchange NMR. Macromolecules,1999,32 (26):8914-8917
    [233]Miyoshi T, Takegoshi K, Hikichi K. High-resolution solid state 13C n.m.r. study of the interpolymer interaction, morphology and chain dynamics of the poly(acrylic acid)/poly(ethylene oxide) complex. Polymer,1997,38 (10):2315-2320
    [234]Feindel K W, Bergens S H, Wasylishen R E. The Use of 1H NMR Microscopy to Study Proton-Exchange Membrane Fuel Cells. ChemPhysChem,2006,7 (1):67-75
    [235]Hietala S, Maunu S L, Sundholm F, et al. Water sorption and diffusion coefficients of protons and water in PVDF-g-PSSA polymer electrolyte membranes. J Polym Sci, Part B:Polym Phys,1999,37 (20):2893-2900
    [236]Takigami S, Kimura T, Nakamura Y. The state of water in nylon-6 membranes grafted with hydrophilic monomers:2. Water in acrylic acid, acrylamide and p-styrenesulphonic acid grafted nylon-6 membranes. Polymer,1993,34 (3):604-609
    [237]Higuchi A, Lijima T. D.s.c. investigation of the states of water in poly(vinyl alcohol) membranes. Polymer,1985,26 (8):1207-1211
    [238]Liu C C, Maciel G E. The Fumed Silica Surface:A Study by NMR. J Am Chem Soc,1996, 118 (21):5103-5119
    [239]Kinney D R, Chuang I S, Maciel G E. Water and the silica surface as studied by variable-temperature high-resolution proton NMR. J Am Chem Soc,1993,115 (15):6786-6794
    [240]Bronnimann C E, Zeigler R C, Maciel G E. Proton NMR study of dehydration of the silica gel surface. J Am Chem Soc,1988,110 (7):2023-2026
    [241]Samoson A, Tuherm T, Gan Z. High-Field High-Speed MAS Resolution Enhancement in 1H NMR Spectroscopy of Solids. Solid State Nucl Magn Reson,2001,20 (3-4):130-136
    [242]erstein B C, Pembleton R G, Wilson R C, et al. High resolution NMR in randomly oriented solids with homonuclear dipolar broadening:Combined multiple pulse NMR and magic angle spinning. J Chem Phys,1977,66 (1):361-362
    [243]Burum D P, Rhim W K. An improved NMR technique for homonuclear dipolar decoupling in solids:Application to polycrystalline ice. J Chem Phys,1979,70(7):3553-3554
    [244]Burum D P, Rhim W K. Analysis of multiple pulse NMR in solids. Ⅲ. J Chem Phys,1979, 71 (2):944-956
    [245]Lesage A, Sakellariou D, Hediger S, et al. Experimental aspects of proton NMR spectroscopy in solids using phase-modulated homonuclear dipolar decoupling. J Magn Reson, 2003,163 (1):105-113
    [246]Elena B, Emsley L. Powder Crystallography by Proton Solid-State NMR Spectroscopy. J Am Chem Soc,2005,127 (25):9140-9146
    [247]Lesage A, Duma L, Sakellariou D, et al. Improved Resolution in Proton NMR Spectroscopy of Powdered Solids. J Am Chem Soc 2001,123 (24):5747-5752
    [248]Hohwy M, Jakobsen H J, Eden M, Levitt M H, et al. Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids:A compensated C7 pulse sequence. J Chem Phys, 1998,108 (7):2686-2694
    [249]Madhu P K, Vinogradov E, Vega S. Multiple-pulse and magic-angle spinning aided double-quantum proton solid-state NMR spectroscopy. Chem Phys Lett,2004,394 (4-6):423-428
    [250]Schnell I. Dipolar recoupling in fast-MAS solid-state NMR spectroscopy. Prog Nucl Magn Reson Spectrosc,2004,45 (1-2):145-207
    [251]Zheng Ling, Fishbein K W, Griffin R G, et al. Two-dimensional solid-state proton NMR and proton exchange. J Am Chem Soc,1993,115 (14):6254-6261
    [252]Landfester K, Spiess H W. Characterization of interphases in core-shell latexes by solid-state NMR. Acta Polym,1998,49 (9):451-464
    [253]Egger N, Schmidt-Rohr K, Blumich B, et al. Solid state NMR investigation of cationic polymerized epoxy resins. J Appl Polym Sci,1992,44 (2):289-295
    [254]Mirau P A, Yang S. Solid-State Proton NMR Characterization of Ethylene Oxide and Propylene Oxide Random and Block Copolymer Composites with Poly(methyl silsesquioxanes). Chem Mater,2002,14 (1):249-255
    [255]Sun P C, Dang Q Q, LiBH, et al. Mobility, Miscibility, and Microdomain Structure in Nanostructured Thermoset Blends of Epoxy Resin and Amphiphilic Poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) Triblock Copolymers Characterized by Solid-State NMR. Macromolecules,2005,38 (13):5654-5667
    [256]Brown S P, Lesage A, Elena B, et al. Probing Proton-Proton Proximities in the Solid State: High-Resolution Two-Dimensional 1H-1H Double-Quantum CRAMPS NMR Spectroscopy. J Am Chem Soc,2004,126 (41):13230-13231
    [257]Cherry B R, Fujimoto C H, Cornelius C J, et al. Investigation of Domain Size in Polymer Membranes Using Double-Quantum-Filtered Spin Diffusion Magic Angle Spinning NMR. Macromolecules,2005,38 (4):1201-1206
    [258]Lesage A, Emsley L, Penin F, et al. Investigation of Dipolar-Mediated Water-Protein Interactions in Microcrystalline Crh by Solid-State NMR Spectroscopy. J Am Chem Soc,2006, 128 (25):8246-8255
    [259]McCormick M, Smith R N, Graf R, et al. NMR Studies of the Effect of Adsorbed Water on Polyelectrolyte Multilayer Films in the Solid State. Macromolecules,2003,36(10):3616-3625
    [260]Akbey Umit, Graf R, Peng Y G, et al. Solid-State NMR investigations of anhydrous proton-conducting acid-base poly(acrylic acid)-poly(4-vinyl pyridine) polymer blend system:A study of hydrogen bonding and proton conduction. Journal of Polymer Science Part B:Polymer Physics,2009,47 (2):138-155
    [261]Li B, Xu L, Wu Q, et al. Various Types of Hydrogen Bonds, Their Temperature Dependence and Water-Polymer Interaction in Hydrated Poly(Acrylic Acid) as Revealed by 1H Solid-State NMR Spectroscopy. Macromolecules,2007,40 (16):5776-5786
    [262]Maura J J, Eustance D J, Ratcliffe C T. Thermal characterization of poly(acrylic acid). Macromolecules,1987,20 (1):196-202
    [263]Ye G, Janzen N, Goward G R. Solid-State NMR Study of Two Classic Proton Conducting Polymers:Nafion and Sulfonated Poly(ether ether ketone)s. Macromolecules,2006,39 (9): 3283-3290
    [264]Lesage A, Bockmann A. Water-Protein Interactions in Microcrystalline Crh Measured by 1H-13C Solid-State NMR Spectroscopy. J Am Chem Soc,2003,125 (44):13336-13337
    [265]Eliav U, Navon G. Multiple Quantum Filtered NMR Studies of the Interaction between Collagen and Water in the Tendon. J Am Chem Soc,2002,124 (12):3125-3132
    [266]Otting G. NMR studies of water bound to biological molecules. Prog Nucl Magn Reson Spectrosc,1997,31 (2-3):259-285
    [267]Moskala E J, Varnell D F, Coleman M M. Concerning the miscibility of poly(vinyl phenol) blends-FTi.r. study. Polymer,1985,26 (2):228-234
    [268]Le Menetrel C, Bhagwagar D E, Painter P C, et al. Hydrogen bonding in ternary polymer blend systems:determination of association parameters. Macromolecules,1992,25 (26):7101-7106
    [269]Gelles R, Frank C W. Effect of molecular weight on polymer blend phase separation kinetics. Macromolecules,1983,16 (9):1448-1456
    [270]Creton C, Kramer E J, Hadziioannou G. Critical molecular weight for block copolymer reinforcement of interfaces in a two-phase polymer blend. Macromolecules,1991,24(8):1846-1853
    [271]Jiang M, LiM, Xiang M, et al. Interpolymer Complexation and Miscibility Enhancement by Hydrogen Bonding. Advaces in Polymer Science,1999,146:121-196
    [272]Kim H I, Pearce E M, Kwei T K. Miscibility control by hydrogen bonding in polymer blends and interpenetrating networks. Macromolecules,1989,22 (8):3374-3380
    [273]Frory P J. Statistical Mechanics of Chain Molecules(2nd ed.). New York:Hanser Gardner Publications:,1989.
    [274]Lodge T P, McLeish T C B. Self-Concentrations and Effective Glass Transition Temperatures in Polymer Blends. Macromolecules,2000,33 (14):5278-5284
    [275]Leroy E, Alegria A, Colmenero J. Quantitative Study of Chain Connectivity Inducing Effective Glass Transition Temperatures in Miscible Polymer Blends. Macromolecules,2002,35 (14):5587-5590
    [276]He Y, Lutz T R, Ediger M D. Segmental and terminal dynamics in miscible polymer mixtures:Tests of the Lodge-McLeish model. J Chem Phys,2003,119 (18):9956-9965
    [277]Kamath S, Colby R H, Kumas S K. Dynamic Heterogeneity in Miscible Polymer Blends with Stiffness Disparity:Computer Simulations Using the Bond Fluctuation Model. Macromolecules,2003,36 (22):8567-8573
    [278]Herrera D, Zamora J-C, Bello A, et al. Miscibility and Crystallization in Polycarbonate/ Poly(ε-caprolactone) Blends:Application of the Self-Concentration Model. Macromolecules, 2005,38 (12):5109-5117
    [279]Liu J, Sakai V G, Maranas J K. Composition Dependence of Segmental Dynamics of Poly(methyl methacrylate) in Miscible Blends with Poly(ethylene oxide). Macromolecules,2006, 39 (8):2866-2874
    [280]Kumar S K, Colby R H. Concentration fluctuation induced dynamic heterogeneities in polymer blends. J Chem Phys,1996,105 (9):3777-3788
    [281]Kamath S, Colby R H, Kumar S K, et al. Segmental dynamics of miscible polymer blends: Comparison of the predictions of a concentration fluctuation model to experiment. J Chem Phys.1999,111 (13):6121-6128
    [282]Jack K S, Whittaker A K. Molecular Motion in Miscible Polymer Blends.1. Motion in Blends of PEO and PVPh Studied by Solid-State 13C Tlp Measurements. Macromolecules,1997, 30 (12):3560-3568
    [283]Zhang X, Takegoshi K, Hikichi K. Composition dependence of the miscibility and phase structure of amorphous/crystalline polymer blends as studied by high-resolution solid-state carbon-13 NMR spectroscopy. Macromolecules,1992,25 (9):2336-2340
    [284]Rinderknecht S, Brisson J. Orientation of a Miscible Polymer Blend with Strong Interchain Hydrogen Bonds:Poly(vinylphenol)-Poly(ethylene oxide). Macromolecules,1999,32,8509-8516
    [285]Pedrosa P, Pomposo J A, Calahorra E, et al. On the glass transition behavior, interaction energies, and hydrogen-bonding strengths of binary poly(p-vinylphenol)/polyether blends. Macromolecules,1994,27 (1):102-109
    [286]Pelton R, Xiao H, Brook M A, et al. Flocculation of Polystyrene Latex with Mixtures of Poly(p-vinylphenol) and Poly(ethylene oxide). Langmuir,1996,12 (24):5756-5762
    [287]Huang Y P, Kuo J-F, Woo E M I. Influence of molecular interactions on spherulite morphology in miscible poly(ethylene oxide)/epoxy network versus poly(ethylene oxide)/poly(4-vinyl phenol) blend. Polym Int,2001,51 (1):55-61
    [288]van Rossum B-J, Forster H, de Groot H J M. High-Field and High-Speed CP-MAS 13C NMR Heteronuclear Dipolar-Correlation Spectroscopy of Solids with Frequency-Switched Lee-Goldburg Homonuclear Decoupling. J Magn Reson,1997,124(2):516-519
    [289]Hong M, Yao X, Jakes K, et al. Investigation of Molecular Motions by Lee-Goldburg Cross-Polarization NMR Spectroscopy. J Phys Chem B.2002,106 (29):7355-7364
    [290]Kaplan D S. Structure-property relationships in copolymers to composites:Molecular interpretation of the glass transition phenomenon. J Appl Polym Sci,1976,20 (10):2615-2629
    [291]Opella S J, Nevzorov A, Mesleh M F, et al. Structure determination of membrane proteins by NMR spectroscopy. Biochem. Cell Biol,2002,80 (5):597-604
    [292]Mesleh M F, Veglia G, DeSilva T M. Dipolar Waves as NMR Maps of Protein Structure. J Am Chem Soc.2002,124 (16):4206-4207
    [293]Ramamoorthy A, Wei Yufeng, Lee Dong-Kuk. PISEMA Solid-State NMR Spectroscopy, Annu Rep NMR Spectrosc,2004,52:2-53及该综述中引用的大量文献
    [294]Lee M, Goldburg W I. Nuclear-Magnetic-Resonance Line Narrowing by a Rotating rf Field. Phys Rev,1965,140 (4A):A1261-A1271
    [295]Mehring M, Waugh J S. Magic-Angle NMR Experiments in Solids. Phys Rev B,1972,5 (9):3459-3471
    [296]Bielecki A, Kolbert AC, de Groot H J M, et al. Frequency-Switched Lee-Goldburg Sequences in Solids. Adv Magn Reson,1990,14:111-124
    [297]Brus J, Urbanova M. Selective Measurement of Heteronuclear 1H-13C Dipolar Couplings in Motionally Heterogeneous Semicrystalline Polymer Systems. J Phys Chem A,2005,109 (23): 5050-5054

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700