3维Anti de Sitter空间中子流形的局部微分几何
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,Anti de Sitter空间(或,AdS-空间)是具有负的常截面曲率的Lorentzian空间型,是理论物理学中一个很重要的研究对象,在相对论中,AdS-空间是Einstein方程的真空解之一,且具有正的能量表示.在物理学中有一个猜想:AdS-空间上的经典重力理论与这个空间理想边界上的共形场理论是等价的.E.Witten称这个猜想为AdS/CFT对应(Anti de Sitter space/conformal field the-ory correspondence)或AdS-全息术原理(AdS-holography principle).这个对应为研究量子重力和量子色动力提供了很好的研究思路,是理论物理中一个很重要的概念性突破之一.如果用数学的语言来解释AdS/CFT对应则为:AdS-空间中子流形的微分几何性质与AdS-空间中理想边界上的规范场论的几何性质是相对应的.因此对AdS-空间中子流形的微分几何性质进行研究是很有意义的.然而,目前对AdS-空间中浸入子流形的几何性质的研究还不多,尤其是从奇点理论的角度.近年来,应用奇点理论对各类空间型中子流形几何性质的研究得到了飞速发展,特别是S.Izumiya教授和裴东河教授等做出了很多理想的结果.实践证明,无论从局部还是从整体的角度来看,奇点理论都是研究不同空间中浸入子流形几何性质的一个强有力工具.奇点与几何之间的自然联系反应了子流形与某些模型(即合适变换群作用下的不变量)之间的切触关系.本文则以奇点理论为工具对3维AdS-空间中的子流形与某些模型曲面之间的切触关系进行了深入细致的研究.
     第一章是引言部分.我们介绍了奇点理论的发展史以及奇点理论在应用方面的最新成果,同时还介绍了本文的基本框架.
     第二章介绍了指标为2的半欧氏空间和切触几何的相关知识.特别地,我们证明了指标为2的半欧氏空间中伪球间的Legendrian对偶定理(定理2.2.1和定理2.2.2),这些定理是Izumiya结果的推广.利用这些定理我们可以对3维Anti de Sitter空间中非退化曲面上的高斯映射的性态进行刻画.
     第三章构建了3维AdS-空间中类空曲面的基本框架.在类空曲面上定义类时Anti de Sitter高斯像(简记为,TAdS-高斯像)和类时Anti de Sitter高度函数(简记为,AdS-高度函数),并且研究这些映射奇点的几何意义.作为Legendrian奇点理论的应用,考虑类空曲面与模型曲面(即,平坦AdS-双曲面)的切触问题.
     第四章从切触的观点考虑3维AdS-空间中的类时曲面.定义两个与类时曲面相关的映射,分别称为Anti de Sitter nullcone高斯像(简记为,AdS-nullcone高斯像)和Anti de Sitter环面高斯映射(简记为,AdS-环面高斯映射).在类时曲面上定义一个函数族,称之为Anti de Sitter null高度函数.把这个函数族作为基本工具来研究AdS-nullcone高斯像和AdS-环面高斯映射的奇点的几何意义.我们也考虑类时曲面与模型曲面(即,AdS-极限球)的切触关系.尽管研究方法是类似的,但是在类时曲面情形可以得到很多新的几何信息.
     第五章研究3维AdS-空间中退化曲面Anti de Sitter null曲面(简记为,AdS-null曲面)的几何性质.这个曲面与3维AdS-空间中的类空曲线相关联.我们在类空曲线上定义一个映射并称之为环面高斯像;又定义两个函数族,分别称为类空曲线上的环面高度函数和AdS-距离平方函数.作为函数奇点理论的应用,利用这两个函数族来研究AdS-null曲面和环面高斯像的奇点.
     第六章主要研究3维AdS-空间中的类时曲线.但是,正如我们所期待的,此时的情形与类空曲线的情形相比较是很特别的.我们可以构造一个与3维AdS-空间中的类时曲线相关联的3维nullcone空间中的类空曲面.我们利用函数通用开折理论研究这个类空曲面的奇点的几何意义.
As been well known, the Lorentzian space form with the constant negative curvatureis called Anti de Sitter space(or, AdS-space). This space is a very importantsubject in physics, it is also one of the vacuum solutions of the Einstein equation in thetheory of relativity. There is a conjecture in physics that the classical gravitation theoryon AdS-space is equivalent to the conformal field theory on the ideal boundary ofAdS-space. It is called the AdS/CFT-correspondence or the holographic principle byE. Witten. In mathematics this conjecture is that the extrinsic geometric properties onsubmanifolds in AdS-space have corresponding Gauge theoretic geometric propertiesin its ideal boundary. Therefore, it is very important to investigate the geometric propertiesof submanifolds immersed in AdS-space. However, there are not many resultson submanifolds in AdS-space, in particular from the view point of singularity theory.Singularity theory tools have proven to be useful in the description of geometric propertiesof submanifolds immersed in different ambient spaces, from both the local andglobal viewpoint. Recently, the geometric properties of submanifolds immersed in differentspace forms had been well developed. Especially, professors S. Izumiya and D.Pei et al. have got many excellent results. The natural connection between Geometryand Singularities is the contacts of the submanifolds with the models (invariant underthe action of a suitable transformation group) of the ambient space. In this paper, weinvestigate the local differential geometry of submanifolds in Anti de Sitter 3-space asapplications of singularity theory.
     The introduction is located in Chapter one. We introduce the history of singularitytheory and the new results of the applications of it. Also we introduce the basic frameof this paper.
     In Chapter two, we show the basic notions on semi-Euclidean space with index2 and contact geometry. Especially we have proved the Legendrian duality theorem(Theorem 2.2.1 and Theorem 2.2.2) between pseudo-spheres in semi-Euclidean spacewith index 2, which are generalizations of the previous results of Izumiya.
     In Chapter three, we construct a basic framework for the study of spacelike surfacesin Anti de Sitter 3-space. We define a timelike Anti de Sitter Gauss image (briefly,TAdS-Gauss image) and a timelike Anti de Sitter height function (briefly, AdS-heightfunction) on the spacelike surface and investigate the geometric meanings of singular- ities of these mappings. We consider the contact of the spacelike surfaces with models(so-called AdS-flat-hyperboloids) as an application of Legendrian singularity theory.
     In Chapter four, we investigate timelike surfaces in Anti de Sitter 3-space fromthe viewpoint of contact. We define two mappings associated to a timelike surfacewhich are called an Anti de Sitter nullcone Gauss image (briefly, AdS-nullcone Gaussimage) and an Anti de Sitter torus Gauss map (briefly, AdS-torus Gauss map). Wealso define a family of functions named an Anti de Sitter null height function on thetimelike surface. We use this family of functions as a basic tool to investigate thegeometric meanings of singularities of the AdS-nullcone Gauss image and the AdS-torusGauss map. Also we consider the contact of the timelike surfaces with models(so-called AdS-horospheres).
     In Chapter five, we study the geometric properties of degenerate surfaces, whichare called the AdS-null surfaces in Anti de Sitter 3-space. These surfaces are associatedto spacelike curves in Anti de Sitter 3-space. We define a map which is called a torusGauss image. We also define two families of functions, named a torus height functionand an AdS-distance-squared function respectively, and use them to investigate thesingularities of the AdS-null surfaces and the torus Gauss images as applications ofsingularity theory of functions.
     In Chapter six, we consider timelike curves in Anti de Sitter 3-space by exactlythe same arguments as those of Chapter five. However, as it was to be expected, thesituation presents certain peculiarities when compared with the spacelike curve case.In this case, we can construct a spacelike surface in nullcone 3-space associated to atimelike curve in Anti de Sitter 3-space. We study the geometric meanings of singularitiesof this spacelike surface as an application of versal unfolding theory of functions.
引文
[1]Izumiya S.Time-like hypersurfaces in de Sitter space and Legendrian singularities[J].J Math Sci,2007,144(1):3789-3803.
    [2]Izumiya S,Legendrian dualities and spacelike hypersurfaces in the lightcone[J].To appear in Moscow Mathematical Journal.
    [3]Whitney H.On singularities of mappings of Euclidean spaces I:Mappings of the plane into the plane[J].Ann of Math,1955,62(2):374-410.
    [4]李养成.光滑映射的奇点理论[M].北京:科学出版社,2002.1-20,125.127,201-205.
    [5]Sun W Z.Shadows of moving surfaces[J].Hokkaido Mathematical Journal,1996,25(2):407-431.
    [6]裴东河,孙伟志.近晶液晶相变的突变模型[J].液晶通讯,1992:23-26.
    [7]裴东河,李向彤,孙伟志.近晶型液晶相变的尖点突破模型[J].液晶与显示,1998,13(2):86-91.
    [8]Izumiya S,Sun W Z.Singularities of Solution Surfaces for Quasilinear First-Order Partial Equations[J].Geometriae Dedicata,1997,64(3):331-341.
    [9]Davydov A A,Ishikawa G,Izumiya S,et al.Generic singularities of implicit systems of first order differential equations on the plane[J].Jpn J Math 2008,3(1):93-119.
    [10]Li B,Izumiya S.On singular solutions of systems of first-order partial differential equations[J].Kobe J Math,1994,11(2):137-143.
    [11]Li B,Li Y C.Local classification of stable geometric solutions of systems of quasilinear first-order PDE[J].Sci China Ser A,2002,45(9):1163-1170.
    [12]Li B,Li Y C.Realization theorems for geometric solutions for systems of quasilinear first-order partial differential equations[J].(Chinese) Chinese Ann Math Ser A,2003,24(6),751-756.
    [13]Yang Z,Tang Y,Li B.Singularity analysis of quasi-linear DAEs[J].J Math Anal Appl,2005,303(1):135-149.
    [14]Kong L L,Pei D H.Singularities of de Sitter Gauss map of timelike hypersurface in Minkowski 4-space[J].Sci China Ser A,2008,51(2):241-249.
    [15] Che M G, Jiang Y, Pei D H. The hyperbolic Darboux image and rectifying Gaussian surface of nonlightlike curve in Minkowski 3-space[J]. J Math Res Exposition, 2008, 28(3): 651-658.
    
    [16] Izumiya S, Pei D H, Sano T. The lightcone Gauss map and the lightcone developable of a spacelike curve in Minkowski 3-space[J]. Glasgow Math J, 2000, 42(1): 75-89.
    
    [17] Izumiya S, Pei D H, Sano T. Singularities of hyperbolic Gauss maps[J]. Proc London Math Soc, 2003, 86(2): 485-512.
    
    [18] Izumiya S, Pei D H, Sano T. Horospherical surfaces of curves in Hyperbolic space[J]. Publ Math Debrecen, 2004, 64(1-2): 1-13.
    
    [19] Li Y C. The recognition of equivariant bifurcation problems[J]. Sci China Ser A, 1996,39(6): 604-612.
    
    [20] Li Y C, Zou J C. Universal unfolding of equivariant bifurcation problems with multipa-rameters[J]. Acta Math Sinica(Chinese), 1999,42(6): 1071-1076.
    
    [21] Gao S P, Li Y C. Unfolding of multiparameter equivariant bifurcation problems with respect to left-right equivalence[J]. Chinese Ann Math Ser A(Chinese), 2003, 24(3):341-348.
    
    [22] Gao S P, Li Y C. The unfolding of equivariant bifurcation problems with parameters symmetry[J]. Acta Math Sci Ser B, 2004, 24(4): 623-632.
    
    [23] Li Y C, He W. Versal unfolding of equivariant bifurcation problems in more general case under two equivalent groups[J]. Acta Math Sci Ser B, 2008, 28(4): 915-923.
    
    [24] Jiang G F, Yu J M. Supersolvability of complementary signed-graphic hyperplane arrangements [J]. Australas J Combin, 2004, 30: 261-276.
    
    [25] Yu J M, Jiang G F. A Zariski pair in affine complex plane[J]. Asian J Math, 2004, 8(3):473-474.
    
    [26] Yu J M, Jiang G F. An affine Zariski pair consisting of six real lines[J]. Adv Math (Chinese), 2005, 34(6): 738-740.
    
    [27] Jiang G F, Yu J M. Reducibility of hyperplane arrangements [J]. Sci China Ser A, 2007,50(5): 689-697.
    
    [28] Mather J N. Stability of C~∞ mappings, I: The division theorem[J]. Ann of Math, 1968,87(2):89-104.
    [29] Mather J N. Stability of C~∞ mappings, Ⅱ: Infinitesimal stability implies stability[J]. Ann of Math, 1969, 89(2): 254-291.
    
    [30] Mather J N. Stability of C~∞ mappings, Ⅲ: Finitely determined map germs[J]. Publ Math IHES, 1968: 279-308.
    
    [31] Mather J N. Stability of C~∞ mappings, Ⅳ: Classification of stable germs by R- algebras[J]. Publ Math IHES, 1969: 223-248.
    
    [32] Mather J N. Stability of C~∞ mappings, Ⅴ: Transversality[J]. Advances In Mathematics,1970: 301-336.
    
    [33] Mather J N. Stability of C~∞ mappings, VI: The nice dimensions [J]. Proc of Liverpool Symposium 1,1970: 207-253.
    
    [34] Arnold V I. Gusein-Zade S M, Varchenko A N, Singularities of Differentiable Maps vol. I[M]. Birkhauser Boston, Inc, 1986. 1-381.
    
    [35] Brodersen H, Ishikawa G, Wilson L C. A criterion for finite topological determinacy of map-germs[J]. Proc London Math Soc, 1997, 74(3): 662-700.
    
    [36] Pellikaan R. Finite determinacy of functions with non isolated singularities [J]. Proc London Math Soc, 1988, 57(2): 357-382.
    
    [37] Siersma D. Isolated line singularities [J]. Singularities, Part 2 1981: 485-496.
    
    [38] Wilson L C, Sun B. Determinacy of smooth germs with real isolated line singularities [J]. Proc Amer Math Soc, 2001, 129(9): 2789-2797.
    
    [39] Arnold V I. Catastrophe Theorey[M]. New York: Springer-Verlag, 1984. 1-79.
    
    [40] Banchoff T, Gaffney T, Mccrory C. Cusps of Gauss mappings[M]. Research Notes in Mathematics 55, London: Pitman, 1982.
    
    [41] Landis E E, Tangential singularties[J]. Funktsional Anal i Prilozhen, 1981, 15(2): 36-49.
    
    [42] Bruce J W. The duals of generic hypersurfaces[J]. Math Scand, 1981, 49(1): 36-60.
    
    [43] Bruce J W. Wavefronts and parallels in Euclidean space[J]. Math Proc Cambridge PhilosSoc, 1983, 93(2): 323-333.
    
    [44] Bruce J W. Generic geometry and duality[J]. London Math Soc Lecture Note Ser, 1994,201: 29-59.
    
    [45] Bruce J W. Generic geometry, transversality and projections[J]. J London Math Soc,1994,49(1): 183-194.
    [46] Giblin P J, Sapiro G. Affine-invariant distances, envelopes and symmetry sets[J]. Geom Dedicata, 1998,71(3): 237-261.
    
    [47] Mochida D K H, Romero-Fuster M C, Ruas M A S. The geometry of surfaces in 4-space from a contact viewpoint[J]. Geom Dedicata, 1995, 54(3): 323-332.
    
    [48] Mochida D K H, Romero-Fuster M C, Ruas M A S. Osculating hyperplanes and asymptotic directions of codimension two submanifolds of Euclidean spaces [J]. Geom Dedicata, 1999, 77(3): 305-315.
    
    [49] Mochida D K H, Romero-Fuster M C, Ruas M A S. Singularities and duality in the flat geometry of submanifolds of Euclidean spaces[J]. Beitrage Algebra Geom, 2001,42(1): 137-148.
    
    [50] Mochida D K H, Romero-Fuster M C, Ruas M A S. Inflection points and nonsingular embeddings of surfaces in R~5[J]. Rocky Mountain J Math, 2003, 33(3): 995-1009.
    
    [51] Montaldi J A. Surfaces in 3-space and their contact with circles[J]. J Diff Geom, 1986,23(2): 109-126.
    
    [52] Porteous I R. The normal singularities of a submanifold[J]. J Diff Geom, 1971: 543-564.
    
    [53] Porteous I R. Geometric differentiation. For the intelligence of curves and surfaces[M]. Second edition. Cambridge University Press, Cambridge, 2001.
    
    [54] Romero-Fuster M C. Sphere stratifications and the Gauss map[J]. Proc Roy Soc Edinburgh Sect A, 1983, 95 (1-2): 115-136.
    
    [55] Gauss K F. General investigations of curves surfaces[M]. Hewlett, New York: RavenPress, 1965.
    
    [56] Hilbert D and Cohn-Vossen S. Geometry and the Imagination[M]. New York: Chelsea,1952.
    
    [57] Bleeker D, Wilson L. Stability of Gauss maps[J], Illinois J Math, 1978, 22: 279-289.
    
    [58] Platonova O A. Singularties in the problem of the quickest way round an obstruct[J]. Funct Anal Appl, 1981: 147-148.
    
    [59] McCrory C, Shifrin T. Cusps of the projective Gauss map[J]. J Differential Geom, 1984, 15: 257-276.
    
    [60] McCrory C, Shifrin T, Varley R. The Gauss map of a generic hypersurface in P~4[J]. J Differential Geom, 1989, 30: 689-759.
    [61] Izumiya S, Pei D H, Romero-Fuster M C. Umbilicity of space-like submanifolds of Minkowski space[J]. Proc Roy Soc Edinburgh Sect A, 2004, 134(2): 375-387.
    
    [62] Izumiya S, Pei D H, Takahashi M. Singularities of evolutes of hypersurfaces in hyperbolic space[J]. Proc Edinb Math Soc, 2004, 47(1): 131-153.
    
    [63] Izumiya S, Pei D H, Sano T, et al. Evolutes of Hyperbolic Plane Curves[J]. Acta Math-ematica Sinica, English Series, 2004, 20(3): 543-550.
    
    [64] Izumiya S, Pei D H, Romero-Fuster M C. The lightcone Gauss map of a spacelike surface in Minkowski 4-space[J]. Asian J Math, 2004, 8(3): 511-530.
    
    [65] Izumiya S, Kossowski M, Pei D H, et al. Singularities of lightlike hypersurfaces in Minkowski four-space [J]. Tohoku Math J, 2006, 58(1): 71-88.
    
    [66] Izumiya S, Kikuchi M, Takahashi M. Global properties of spacelike curves in Minkowski 3-space[J]. J Knot Theory Ramifications, 2006, 15(7): 869-881.
    
    [67] Izumiya S, Takahashi M. Spacelike parallels and evolutes in Minkowski pseudo- spheres[J]. J Geom Phys, 2007, 57(8): 1569-1600.
    
    [68] Izumiya S, Romero-Fuster M C. The lightlike flat geometry on spacelike submanifolds of codimension two in Minkowski space[J]. Selecta Math, 2007, 13(1): 23-55.
    
    [69] Izumiya S, Saji K, Takeuchi N. Circular surfaces[J]. Adv Geom, 2007, 7(2): 295-313.
    
    [70] Fusho T, Izumiya S. Lightlike surfaces of spacelike curves in de Sitter 3-space[J]. J Geom, 2008, 88(1-2), 19-29.
    
    [71] Izumiya S, Pei D H, Romero-Fuster M C. Takahashi M. On the horospherical ridges of submanifolds of codimension 2 in hyperbolic n-space[J]. Bull Braz Math Soc, 2004, 35(2): 177-198.
    
    [72] Izumiya S, Pei D H, Romero-Fuster M C, et al. The horospherical geometry of submanifolds in hyperbolic space[J]. J London Math Soc, 2005, 71(3): 779-800.
    
    [73] Izumiya S, Pei D H, Romero-Fuster M C. The horospherical geometry of surfaces in hyperbolic 4-space[J]. Israel J Math, 2006, 154: 361-379.
    
    [74] Izumiya S, Romero-Fuster M C. The horospherical Gauss-Bonnet type theorem in hy- perbolic space[J]. J Math Soc Japan, 2006, 58(4): 965-984.
    
    [75] Deng Y J; Liu H L. Rotation surfaces with constant mean curvature in 3-dimensional anti-de Sitter space[J]. (Chinese) Acta Math. Sinica (Chin. Ser.), 2002, 45(6): 1177-1184.
    [76] Aiyama R, Akutagawa K. Kenmotsu-Bryant type representation formula for constant mean curvature spacelike surfaces in H_1~3(-c~2)[J]. Differential Geom Appl, 1998, 9(3):251-272.
    
    [77] Hong J Q. Timelike surfaces with mean curvature one in Anti-de Sitter 3-space[J]. Kodai Math J, 1994, 17(2): 341-350.
    
    [78] Lee S. Timelike surfaces of constant mean curvature ±1 in anti-de Sitter 3-space H_1~3(-l). Ann Global Anal Geom, 2006, 29(4): 361-407.
    
    [79] Izumiya S, Pei D H, Romero-Fuster M C. Spacelike surfaces in Anti de Sitter 4-space from a contact viewpoint[J]. Preprint.
    
    [80] O'Neil B. Semi-Riemannian Geometry[M]. New York: Academic Press, 1983.
    
    [81] Maldacena M. The Large N Limit of Superconformal Field Theories and Supergravity[J]. Adv Theor Math Phys, 1998, 2(2): 231-252.
    
    [82] Witten E. Anti de Sitter space and holography[J]. Adv Theor Math Phys, 1998, 2(2):253-291.
    
    [83] Izumiya S, Takahashi M, Tari F. Folding maps on spacelike and timelike surfaces and duality [J]. Preprint.
    
    [84] Chen L, Izumiya S. A mandala of Legendrian dualities for pseudo-spheres in semi- Euclidean space[J]. Proc Japan Acad Ser A Math Sci, 2009, 85(4): 49-54.
    
    [85] Chen L. On spacelike surfaces in Anti de Sitter 3-space from the contact viewpoint[J].Hokkaido Mathematical Journal, (accepted)
    
    [86] Chen L, Izumiya S. Singularities of Anti de Sitter Torus Gauss maps[J]. Bull Braz Math Soc.(accepted)
    
    [87] Chen L, Sun W Z. Spacelike curves and null surfaces in Anti de Sitter 3-space[J].Preprint.
    
    [88] Chen L, Izumiya S, Sun W Z. Spacelike surfaces in nullcone 3-space with timelike curves in Anti de Sitter 3-space[J]. Preprint.
    
    [89] Asperti A C, Dajczer M. Conformally flat Riemannian manifolds as hypersurfaces of the light cone[J]. Canad Math Bull, 1989, 32(3): 281-285.
    
    [90] Zakalyukin V M. Lagrangian and Legendrian singularities [J]. Funct Anal Appl, 1976,10(1): 23-31.
    [91]Montaldi J A.On contact between submanifolds[J].Michigan Math J,1986,33(2):195-199.
    [92]Martinet J.Singularities of Smooth Functions and Maps[J].London Math Soc Lecture Note Series 58,London:Cambridge Univ Press,1982.199-249.
    [93]Zakalyukin V M.Reconstructions of fronts and caustics depending one parameter and versality of mappings[J].J Sov Math,1984,27:2713-2735.
    [94]Izumiya S.On Legendrian singularities[J].Proc Amer Math Soc,1987,101(4):748-752.
    [95]Bruce J W,Giblin P J.Curves and singularities (second edition)[M].Cambridge:Cambridge Univ Press,1992.19-59,133-160.
    [96]Wassermann G.Stability of Caustics[J].Math Ann,1975,216:43-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700