温度—水—应力下开挖扰动区裂隙花岗岩体流变过程研究及细胞自动机模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水工隧洞、公路隧道、核废料地下处置、能源储备和资源开发等越来越向深部发展,而深部岩体所处的特殊环境,即高地应力、高地温和高岩溶水压,使得岩体的性质发生了巨大的变化,工程灾害也日趋增多,对深部围岩的长期稳定性造成了巨大的威胁。因此研究温度-水-应力(THM)等赋存环境下岩体的流变力学行为势在必行。这将不仅丰富和拓宽工程力学学科的研究内容,而且可以为实际岩石工程提供有意义的成果。本文围绕THM作用下裂隙岩体流变力学行为这一基本问题,以正在进行的国际合作项目DECOVALEX-THMC (Task B)为背景,采用不连续模型的细胞自动机方法对开挖扰动区裂隙花岗岩体流变行为开展了较为深入的基础和应用研究,主要工作如下:
     (1)三维流变模型参数方面
     基于一维应力状态,从三维蠕变方程出发,提出了三维粘弹组合模型参数的两种确定方法。并从理论上建立了广义Kelvin模型在两种常用假设下三维模型参数与一维模型相应量之间的变换表达式。提出了三维广义Maxwell模型参数的确定思路及方法,且证明了它的有效性。给出了鲍埃丁-汤姆森模型在两种常用假设下三维模型参数与一维模型参数之间的变换表达式。
     (2)广义流变模型的等效性及其基本性质方面
     利用拉氏变换以及蠕变柔量的定义,提出了求解广义Maxwell模型和Wiechert体蠕变柔量的方法及其具体表达式,在此基础上证明了4组常见广义流变模型的等效性,建立了广义Maxwell模型与Kelvin链相互转换的表达式。同时还得到了广义Maxwell模型和Kelvin链等广义流变模型的一个基本性质。该性质可作为这类广义流变模型描述现实材料粘弹性行为的一个实用判据。并用实例验证了本文蠕变柔量的求解方法和基本性质。
     (3) THM作用下完整花岗岩及结构面流变模型方面
     基于THM耦合作用下流变孔隙介质模型,根据花岗岩流变试验资料和DECOVALEX-THMC(Task B)项目特点,提出了简化的THM作用下花岗岩流变模型及其控制场方程。基于极限概念,导出了平面应变条件下THM作用的结构面流变模型,给出了考虑温度和水对结构面影响的方程。当采用节理单元模拟结构面的力学特性时,一般会存在五种独特的变形模式,初步实现了用带厚度Goodman节理单元来处理自身的这五种变形模式,推导了相应的本构关系,给出了其数值模拟的实现方法。由于节理单元的几何形态比较特殊,其物理量在整体和局部坐标系下的转换存在着自身特点,系统地推导了节理单元常见物理量的坐标转换关系。并证明了当从局部坐标系转换到整体坐标系时,无论Goodman节理单元是否带厚度,其刚度矩阵的坐标转换公式与Sharma and Desai薄层单元的刚度坐标转换公式在形式上并无差异。
     (4)细胞自动机方面
     根据细胞自动机的基本原理,结合粘性理论建立了二维细胞自动机蠕变模型,引入带厚度Goodman节理单元,开发了THM作用下裂隙岩体流变过程的细胞自动机数值分析系统VEPCA。并通过实例进行了验证,结果表明该程序是准确的、合理的。
     (5) THM作用下开挖扰动区裂隙花岗岩体流变过程的数值模拟方面将自主开发的细胞自动机VEPCA应用于DECOVALEX项目的开挖扰动区BMT模拟研究,详细分析了从开挖回填直至100万年WB模型内应力和位移分布及其演化过程。将WB的VEPCA模拟分为弹性分析和流变分析两部分。在弹性分析部分,给出了使用GJE1型和GJE2型节理单元来模拟WB模型中裂隙的计算结果,对由模型所导出的嵌入问题(违背相容条件的)和具有张开位移的但同时在张开处还存在拉应力问题(与物理实际相悖的)进行了探讨,指出它们产生的原因,并给出其解决的办法。在流变分析部分,基于GJE2型弹性节理单元,考虑岩体的流变特性,建立了GJE3型流变节理单元,并将该流变节理单元用于WB模型中的裂隙模拟。获得的流变分析结果可为开挖扰动区的稳定性评价提供有益的参考。
With the construction of hydraulic tunnels, highway tunnels, nuclear waste repositories and the development of energy reserves and resource exploitation in deep underground, the long-term stability of deep engineerings is a challenge due to the special circumstances of surrounding rockmass, such as high geostress, high geotemperature, high hydraulic pressure and so on, which result in great changes of mechanic properties of the surrounding rockmass and increasing engineering disasters. Therefore, it is necessary to research the rheological behavior of rockmass in complicated circumstances, which can enrich the content of engineering mechanics and contribute to real rock engineering. On the background of the international DECOVALEX- THMC(Task B) project, Herein the basic problem concerning the rheological behavior of fractured rock mass under thermo-hydro-mechanical(THM) conditions is concerned. Concretely, THM rheological behavior of fractured granite in excavation disturbed zone(EDZ) is simulated by cellular automata with separating into THM rheological analysis of the intact rock and structural plane. The studying mainly covers the following aspects:
     1. Based on the relation of the creep equations in 1-Dimension and 3-Dimension, two methods to determinate 3-Dimensional(3-D) viscoelastic model parameters are presented. Then the expressions describing the relation between the 3-D parameters and 1-D parameters of generalized Kelvin model are established on the basis of the methods. In addition, for the creep compliance of the generalized Maxwell model is expressed implicitly by the model parameters, in terms of the above methods, a new way to determinate the 3-D parameters of generalized Maxwell model is suggested and verified by the establishment of the expressions describing the relation between the 3-D parameters and 1-D parameters of Poynting-Thmson model.
     2. It’s difficult to obtain the creep compliance of the generalized Maxwell model and Wiechert model due to their parallel connecting structure, but their detailed expressions are presented by Laplace transform and the definition of creep compliance, and the equivalence of the generalized Maxwell model and the Kelvin chain is achieved and the conversion relations of both model’s parameters are also derived. Moreover, a inherent property of generalized viscoelastic model obtained is the practical criterion when the rheological behavior of certain material is described by the kind of generalized viscoelastic model. The method to solve the creep compliance of the generalized Maxwell model and the inherent property of generalized viscoelastic model are proved by a couple of examples.
     3. By using governing equations that describe the fully coupled THM behavior of the rheological porous media, a simplified model of intact granite is brought out according to the features of DECOVALEX-THMC(Task B) project and the creep tests of granite under THM conditions on literature. A plane strain creep joint model is derived under THM conditions on the basis of limit concept, and the equations to consider the effect of temperature and water pressure are also presented. When the creep joint model is applied to the structural plane in numerical simulation, five basic modes of deformation occur. A Goodman joint element with thickness considering the five deformation modes is presented. Due to the special shape of the Goodman joint element, almost all of the relations of mechanical parameters are derived in the global and local coordinates in light of the invariability of tensor, and it can be proved that the coordinate transform expression of the stiffness matrix of Goodman joint element with or without thickness is the similar with that of the thin-layer element introduced by Sharma and Desai.
     4. According to the cellular automata(CA) theory and rheological theory, CA creep models such as elastic-viscoplastic model, elastic-viscoelastic-viscoplastic model and so forth, are built to solve the rheological problem. Then the VEPCA program developed in Visial C++ environment is to simulate the rheological behavior of fractured rock mass under THM conditions using rheological models of the intact granite and structural plane. Several examples have shown the reliability and rightness of the VEPCA program.
     Finally, the VEPCA program is used to perform BMT (Benchmark test) simulation of THM processes in DECOVALEX-THMC(Task B) project. Detailed analyses of distribution and evolution of stresses and displacements in WB(Wall-Block) model are discussed during the whole history including the excavation, the pre-emplacement and post closure until the 1 million years. The analysis of WB model is divided into two parts: one is elastic analysis, the other is rheological analysis. Using the GJE1 joint element and GJE2 joint element, respectively, the elastic results are presented and compared in the problem of interpenetration and the problem of open with tensile stress. The clauses and the methods to solve these problems are also discussed. Using the GJE3 joint element which is based on the GJE2 joint element, the rheological results of WB are presented to evaluate the long-term stability of EDZ in underground disposal system.
引文
[1] 高红梅 ,梁 冰,兰永伟. 核废料地下处置过程中相关动力学问题及控制措施[J]. 地质灾害与环境保护,2004,15(2):52-56.
    [2] 崔玉军,陈 宝. 高放核废物地质处置中工程屏障研究新进展[J]. 岩石力学与工程学报,2006,25(4):842-847.
    [3] 丁颂东,夏传琴,陈文浚. 从高放废液中分离锕系元素流程评述[J]. 化学研究与应用,2000,12(1):1-4.
    [4] 赵生才. 深部地下空间开发利用-香山科学会议第230次学术讨论会侧记[J]. 地球科学进展,2005,20(1):115-118.
    [5] 邓广哲,杨梅忠. 核岩土环境工程问题及研究现状[J]. 西安科技学院学报,2000,20(4):293-298.
    [6] 范志文,王志明. 放射性废物深地质处置国际会议介绍[J]. 辐射防护,1997,17(2):157-160.
    [7] 郭永海,王 驹. 高放废料深地质处置及国内研究进展[J]. 工程地质学报,2000,8(1):63-67.
    [8] 王 驹,陈伟明,苏 锐,等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报,2006,25(4):801-812.
    [9] Kazuhiko Miura,Yoshiaki Okui,Hideyuki Horii. Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system[J]. Mechanics of Materials,2003,35:587-601.
    [10] 蒋中明,Dashnor HOXHA. 核废料贮存库围岩体热响应耦合场研究[J]. 岩土工程学报,2006,28(8):953-956.
    [11] 黄炳香,邓广哲,王广地. 温度影响下北山花岗岩蠕变断裂特性研究[J]. 岩土力学,2003,24(Supp):203-206.
    [12] 贺玉龙. 三场耦合作用相关试验及耦合强度量化研究[博士学位论文][D]. 成都:西南交通大学,2003.
    [13] 井兰如. 放射性废料地下处置中的主要岩石力学问题[A]. 21世纪的岩土力学与岩土工程[C]. 武汉:中国科学院岩土力学与工程学术研讨会,2003.
    [14] 刘亚晨,吴玉山,刘泉声. 核废料贮存裂隙岩体耦合分析研究综述[J]. 地质灾害与环境保护,1999,10(3):72-78.
    [15] 孙培德. 地质系统热-水-力耦合作用的随机建模初步研究[J]. 岩土力学,2003,24 (Supp):39-42.
    [16] Jing L,Stephansson O,Tsang CF,Kautsky F. DECOVALEX mathematical models of coupled T-H-M processes for nuclear waste repositories. Executive summary for phaseI,II and III SKI report 96:58. Swedish nuclear power inspectorate,Stockholm,Sweden,1996.
    [17] Jing L,Stephansson O,Tsang CF,Knight LJ,et al. DECOVALEX II project,Executive summary. SKI report 99:24. Swedish nuclear power inspectorate,Stockholm,Sweden,1999.
    [18] 何满潮,谢和平,彭苏萍,等. 深部开采岩体力学研究[J]. 岩石力学与工程学报,2005,24(16):2803-2813.
    [19] 孙 钧. 岩土力学与地下工程结构分析计算的若干进展[J]. 力学季刊,2005,26(3):329- 338.
    [20] 杨吉新. 元胞单元法理论研究及程序设计[博士学位论文][D]. 武汉:武汉理工大学博士学位论文,2002.
    [21] 国际标准汉字大词典. 金山词霸 2002[CD]. 金山软件股份有限公司,2006.
    [22] 刘建军,薛 强. 岩土热-流-固耦合理论及在采矿工程中的应用[J]. 武汉工业学院学报,2004,23(3):55-60.
    [23] 沈珍瑶,李国鼎,李书绅. 缓冲层热-湿-力耦合作用研究简介[J]. 地质科技情报,1997,16(2):79-83.
    [24] 孙培德,鲜学福. 核废料深埋处理安全性分析的热-水-力耦合模型新进展[J]. 环境科学进展,1997,5(4):68-81.
    [25] 孙培德,钱耀敏,海 泉. 岩体中热-水-力耦合模型的新进展[J]. 浙江地质,1998,14(2):45-58.
    [26] 周 辉,冯夏庭. 岩石应力-水力-化学耦合过程研究进展[J]. 岩石力学与工程学报,2006,25(4):855-864.
    [27] Jing Lanru,Feng Xiating. Numerical modeling for coupled thermo-hydro-mechanical and chemical processes (THMC) of geological media--international and chinese experiences[J].岩石力学与工程学报,2003,22(10):1704-1715.
    [28] Jing L,Tsang C F,Stephanson O. Decovalex – An International Cooperative Research Project on Mathematical Models of Coupled THM Processes for Safety Analysis of Radioactive Waste Repositories[J]. Int. J. Rock. Mech. Min. Sic. & Geomech. Abstr.,1995,32(5):389-398.
    [29] Guvanasen V,Chan Tin. A three-dimensional numerical model for thermo-hydro- mechanical deformation with hysteresis in a fractured rock mass[J]. Int. J. Rock. Mech. Min. Sic.,2000,37 (1/2):89-106.
    [30] Millard A,Durin M,Stietel A,et al. Discrete and Continuum Approaches to Simulate the Thermo-Hydro-Mechanical Couplings in a Large, Fractured Rock Mass[J]. Int. J. Rock. Mech. Min. Sic. &Geomech. Abstr.,1995,32( 5):409-434.
    [31] Abdallah G,Thoraval A,Sfeir A,et al. Thermal Convection of Fluid in Fractured Media [J]. Int. J. Rock. Mech. Min. Sic.& Geomech. Abstr. 1995,32(5):409-434.
    [32] 杨立中,黄 涛. 初论环境地质中裂隙岩体渗流-应力-温度耦合作用研究[J].水文地质工程地质,2000,27(2):33-35.
    [33] Hart RD,John CMST. Formulation of a Fully-coupled Thermal-Mechanical-Fluid Model for Non-linear Geologic Systems [J]. Int. J. Rock. Mech .Min. Sic. & Geomech. Abstr.,1986,23 (3):213-224.
    [34] Noorishad J,Tsang CF and Witherspoon PA. Coupled Thermal-Hydraulic-Mechanical Phenomena in Saturated Fractured Porous Rocks:Numerical Approach[J]. J. Geophysical Res.,1984,89(B12):10365-1037.
    [35] Nguyen TS,Selvadurai APS. Coupled Thermal-Mechanical-Hydrological Behaviour ofSparsely Fractured Rock:Implications for Nuclear, Fuel Waste Disposal[J]. Int. J. Rock. Mech. Min. Sic.& Geomech. Abstr.,1995,32(5):465-479.
    [36] Gatmiri B,Delage P. A formulation of fully coupled thermal-hydro-mechanical Behavior of saturated porous media-numerical approach[J]. Int. J. Num. & Anal. Methods in Geomech.,1997,21(3):199-225.
    [37] Bower KM,Zyvoloski G.. A Numerical Model for Thermo-hydro-mechanical Coupling in Fractured Rock[J]. In t. J. Rock. Mech. Min. Sic.,1997,94(8):1201-1211.
    [38] 黄 涛,杨立中. 工程岩体地下水渗流-应力-温度祸合作用数学模型研究[J]. 西南交通大学学报,1999,34(1):11-15.
    [39] 刘亚晨,刘泉声,吴玉山,等. 核废料贮存围岩介质不可逆过程热力学和热弹性[J]. 岩石力学与工程学报,2000,19(3):361-365.
    [40] 刘亚晨. 裂隙岩体介质 THM 耦合问题中的渗透特性研究[J]. 地质灾害与环境保护,2004,15(1):80-84.
    [41] 沈珍瑶,杨志峰,李国鼎,等. 高放废物深地质处置场近场剂量场-温度场-水势场-应力场的耦合计算[J]. 地球科学-中国地质大学学报,2000,25(5):514-517.
    [42] 梁 冰,孙可明,薛 强. 地下工程中的流-固藕合问题的探讨[J]. 辽宁工程技术大学学报,2001,20(2):129-134.
    [43] 王瑞凤,赵阳升,胡耀青. 高温岩体地热开发的固流热拐合三维数值模拟[J]. 太原理工大学学报,2002,33(3):275-278.
    [44] 赵阳升,王瑞凤, 胡耀青,等. 高温岩体地热开发的块裂介质固流热耦合三维数值模拟[J]. 岩石力学与工程学报,2002,21(12):1751-1755.
    [45] Thomas HR,He Y,Sanson MR,et al. On the development of a model of the thermo -mechanical-hydraulic behaviour of unsaturated soils[J]. Engineering Geology,1996,41(1):197-218.
    [46] Neaupane KM,Yamabe T,Yoshinaka R. Simulation of a fully coupled thermo-hydro- mechanical system in freezing and thawing rock[J]. Int. J. Rock. Mech. Min Sic.,1999,36(5):563-580.
    [47] Rutqvist J,B Orgesson L,Chijimatsu M,et al. Thermohydromechanics of partially Saturated geological media:governing equations and formulation of four finite element models[J]. Int. J. Rock. Mech. Min. Sic.,2001,38(1):105-127.
    [48] 周 江,福井正则. 岩体中渗流-热-应力耦合作用的理论研究[J]. 山西矿业学院学报,1995,13(1):76-81.
    [49] 贺玉龙, 杨立中, 杨吉义. 非饱和岩体三场耦合控制方程[J]. 西南交通大学学报,2006,41(4):419-423.
    [50] 刘泽佳,李锡夔. 非饱和多孔介质中热-渗流-力学耦合的混合元法[J]. 力学学报,2006,38(2):170-175.
    [51] Gens A Antonio,Olivella Sebasti. 高放废物工程屏障的热-水-力耦合作用分析[J]. 岩石力学与工程学报,2006,25(4):670-680.
    [52] 刘泉声,张程远,刘小燕. DECOVALEX_IV TASK_D项目的热-水-力耦合过程的数值模拟[J]. 岩石力学与工程学报,2006,25(4):709-720.
    [53] Kolditz O. Modelling flow and heat transfer in fracture rocks:conceptual model of a 3-Ddeterministic fracture network[J]. Geothermics,1995,24(3):451-470.
    [54] Kohl T,Evans KF,Hopkirk RJ,et al. Coupled hydraulic,thermal and mechanical considerations for the simulation of hot dry rock reservoirs[J]. Geothermics,1995,24(3):345-359.
    [55] Kohl T,Evans KF,Hopkirk RJ,et al. Modelling of coupled hydraulic, thermal and mechanical behaviour in the simulation of hot dry rock reserviour[A]. In:Proc. Symp. Fractured and Joint RockMasses[C]. USA:Lake Tahoe,1992.
    [56] Lewis RW,Majorana CE, Schrefler BA. Coupled finite element model for the consolidation of non-isothermal elasto-plastic porous media[J]. Transport in Porous Media,1986,1:155-178.
    [57] 刘亚晨. 核废料贮存裂隙岩体水热耦合迁移及其与应力的耦合分析[博士学位论文][D]. 武汉: 中国科学院武汉岩土力学研究所,2000.
    [58] 刘亚晨,蔡永庆. 核废料贮库围岩介质 THM 耦合的定解问题及其加权积分方程[J]. 地质灾害与环境保护,2001,12(4):59-66.
    [59] 刘亚晨,席道瑛. 核废料贮存裂隙岩体中 THM 耦合过程的有限元分析[J]. 水文地质工程地质,2003,3:81-87.
    [60] 刘亚晨. 核废料贮存围岩介质 THM 耦合过程的力学分析[J]. 地质灾害与环境保护,2006,17(1):54-57.
    [61] 刘亚晨. 核废料贮存围岩介质 THM 耦合过程的数值模拟[J]. 地质灾害与环境保护,2006,17(2):78-82.
    [62] 张玉军. 饱和-非饱和介质热-水-应力耦合二维有限元分析[J]. 安全与环境学报,2005,5(5):50-55.
    [63] 张玉军. 热-水-应力耦合弹塑性二维有限元程序研制[J]. 地下空间与工程学报,2005,1(1):108-116.
    [64] 张玉军. 热-水-应力耦合弹塑性二维有限元程序的开发与应用尝试[J]. 岩土力学,2005,26(2):169-174.
    [65] 张玉军. 三个因素对缓冲层饱和过程影响的二维有限元分析[J]. 岩土力学,2006,27(6):853-856.
    [66] 张玉军. 考虑膨胀力的非饱和介质热-水-应力耦合二维有限元分析[J]. 固体力学学报,2006,27(1):31-37.
    [67] 张玉军. 核废料处置概念库近场热-水-应力耦合二维有限元模拟[J]. 岩土工程学报,2006,28(9):1053-1058.
    [68] 张玉军. 一种模拟热-水-应力耦合作用的节理单元及数值分析[J]. 岩土工程学报,2005,27(3):270-274.
    [69] Noorishad J,Tsang CF. Coupled thermohydroelasticity phenomena in variably saturated fractured porous rocks-Formulation and numerical solution [A]. Stephansson O,Jing L,Tsang CF. Coupled thermo-hydro-mechanical progresses of fractured media. Development in Geotechnical Engineering vol.79 [C]. Elsevier Science B V,1996:93-134.
    [70] Nguyen TS. Description of the computer code FRACON[A].Stephansson O,Jing L, Tsang CF. Coupledthermo-hydro-mechanical progresses of fractured media. Development in Geotechnical Engineering vol.79 [C]. Elsevier Science B V,1996:539-544.
    [71] Tijani SM,Vouille G. FEM analysis of coupled THM processes in fractured media with explicit representation of joints[A]. Stephansson O , Jing L , Tsang CF. Coupled thermo-hydro-mechanical progresses of fractured media. Development in Geotechnical Engineering vol.79 [C].Elsevier Science B V,1996:165-180.
    [72] 张良辉,熊厚金,张 清.隧道围岩位移的弹塑粘性解析解[J]. 岩土工程学报,1997,19(4):66-73.
    [73] 夏熙伦,徐 平,丁秀丽. 岩石流变特性及高边坡稳定性流变分析[J]. Chinese Journal of Rock Mechanics and Engineering,1996,15:312-322.
    [74] 丁秀丽,徐 平,夏熙伦. 三峡船闸高边坡岩体开挖卸荷变形及流变分析[J]. 长江科学院院报,1995,12(4):37-43.
    [75] 朱维申,邱祥波,李术才,等. 损伤流变模型在三峡船闸高边坡稳定分析的初步应用[J]. 岩石力学与工程学报,1997,16(5):431-436.
    [76] 朱维申,李术才,陈卫忠. 节理岩体破坏机理和锚固效应及工程应用[M]. 北京:科学出版社,2002.
    [77] 陈卫忠,朱维申,李术才. 节理岩体断裂损伤耦合的流变模型及其应用[J]. 水利学报,1999,12:33-37.
    [78] 肖洪天,强天弛,周维垣. 三峡船闸高边坡损伤流变研究及实测分析[J]. 岩石力学与工程学报,1999,18(5):497-502.
    [79] 刘建华. 岩体力学行为拉格朗日分析方法研究与工程应用[博士学位论文][D]. 山东:山东大学,2006.
    [80] 刘建华,朱维申,李术才,等. 小浪底水利枢纽地下厂房岩体流变与稳定性 FLAC3D数分析[J]. 岩石力学与工程学报,2005,24(14):2484-2489.
    [81] 胡 斌. 高边坡岩体流变参数的智能识别和长期稳定性研究[博士学位论文][D]. 武汉:中国科学院武汉岩土力学研究所,2005.
    [82] Tiziana Apuani,Marco Masetti,Marcello Rossi. Stress-strain-time numerical modelling of a deep-seated gravitational slope deformation : Preliminary results[J]. Quaternary International,2007(in press).
    [83] 张玉军,孙 钧. 锚固岩体的流变模型及计算方法[J]. 岩土工程学报,1994,16(3):33-45.
    [84] Chen SH,Pande GN. Rheological model and finite element analysis of jointed rock masses reinforced by passive fully-grouted bolts[J]. Int. J. Rock Mech. Min. Sci.& Geomech.Abstr. 1994,31(3):273-277.
    [85] 陈胜宏,Peter EGGER,熊文林. 加锚节理岩体流变模型及三维弹粘塑性有限元分析[J]. 水利学报,1998,9:41-47.
    [86] 李云鹏. 层状岩体边坡粘弹性变形分析[J]. 西安矿业学院学报,1996,16(3):271-274.
    [87] 张玉军,刘谊平. 正交各向异性岩体中地下洞室稳定的粘弹-粘塑性三维有限元分析[J].岩土力学,2002,23(3):278-283.
    [88] 张玉军,刘谊平. 锚固正交各向异性岩体的三维粘弹-粘塑性有限元分析[J]. 岩石力学与工程学报,2002,21(12):1770-1775.
    [89] Ng KLA,Small JC. Behavior of joints and interaces subjected to water pressure[J]. Computers and Geotechnics,1997,20(1):71-93.
    [90] Coutinho ALGA,Martins MAD,Sydenstricker RM,et al. Simple zero thicknesskinematically consistent interface elements[J]. Computers and Geotechnics,2003,30:247-274.
    [91] Karabatakis DA,Hatzigogos TN. Analysis of creep behaviour using interface elements[J]. Computers and Geotechnics,2002,29:257-277.
    [92] Sharma KG,Desai CS. Analysis and implementation of thin-layer element for interfaces and joints[J]. ASCE Journal of Engineering Mechanics,1992,118(12):2442-2462.
    [93] Varadarajan A,Sharma KG,Soni KM. Constitutive modeling of a reinforced soil using hierarchical model[J]. Int. J. Numer. Analyt. Meth. Geomech.,1999,23:217-241.
    [94] Fakharian K,Evgin E. Elasto-plastic modeling of stress-path-dependent behaviour of interfaces[J]. Int. J. Numer. Analyt. Meth. Geomech,2000,24:183-199.
    [95] 孙 钧. 岩土材料流变及其工程应用[M]. 北京:中国建筑工业出版社,1999.
    [96] 杨松林,张建民,黄启平. 节理岩体蠕变特性研究[J]. 岩土力学,2004,25(8):1225-1227.
    [97] 任青文,余天堂. 块体单元法的理论和计算模型[J]. 工程力学,1999,16(1):67-77.
    [98] 陆晓敏. 基于块体单元法的裂隙岩体数值模拟及其应用[博士学位论文][D]. 南京:河海大学,2006.
    [99] 陆晓敏,任青文,盛 芳. 裂隙岩质边坡的弹粘塑性变形及稳定性分析[J]. 岩石力学与工程学报,2002,21(4):493-497.
    [100] 王 刚,金 峰,徐艳杰. 离散元构造面流变模型[J]. 岩土力学,2001,22(3):343-346
    [101] Fakhimi. The influence of time-dependent deformation of rock on the stability of underground excavations[Ph.D. thesis][D]. USA:University of Minnesota,1992.
    [102] 徐 平,甘 军,丁秀丽. 三峡工程船闸高边坡岩体长期变形及稳定性有限元分析[J]. 长江科学院院报,1999,16(2):31-34.
    [103] 张玉军,唐仪兴. 输水隧洞流变-膨胀性围岩稳定性的有限元分析[J]. 岩土力学,2000,21(2):159-162.
    [104] 梁 冰,李 平. 孔隙压力作用下圆形巷道围岩的蠕变分析[J]. 力学与实践,2006,28(5):69-72.
    [105] 许锡昌,刘泉声. 高温下花岗岩基本力学性质初步研究[J]. 岩土工程学报,2005,22(3):332-335.
    [106] 刘泉声,许锡昌,山口勉,等. 山峡花岗岩与温度及时间相关的力学性质试验研究[J]. 岩石力学与工程学报,2001,20(5):715-719.
    [107] 王崇革,刘泉声. 单轴应力下岩石的热-粘弹塑性模型研究[J]. 岩石力学与工程学报,2002,21(Supp 2):2341-2344.
    [108] 山田嘉昭. 非线性有限元基础[M]. 北京:清华大学出版社,1988.
    [109] 刘泉声. 花岗岩时温等效原理及其在核废料地下贮存的应用研究[博士学位论文][D]. 武汉:中国科学院武汉岩土力学研究所,2000.
    [110] 夏才初,孙 钧. 蠕变试验中流变模型辨识及参数确定[J]. 同济大学学报,1996,24(5):448-503.
    [111] 张学忠,王 龙,张代钧,等. 攀钢朱矿东山头边坡辉长岩流变特性试验研究[J]. 重庆大学学报,1999,22(5):99-103.
    [112] 米占宽,沈珠江,李国英. 高面板堆石坝坝体流变性状[J]. 水利水运工程学报,2002,2:35-74.
    [113] 马莉英,齐 伟.黄土状土的蠕变方程及其蠕变特性[J].试验技术与试验机,1997,37(2):41-43.
    [114] 朱元林,何 平,张家懿,等. 冻土在振动荷载作用下的三轴蠕变模型[J]. 自然科学进展,1998,8(1):60-62.
    [115] 余 斌,赵惠林.粘性泥石流运动模型的实验研究[J]. 自然灾害学报,1999,8(2):81-87.
    [116] 李青麒. 软岩蠕变参数的曲线拟合计算方法[J]. 岩石力学与工程学报,1998,17(5):559-564.
    [117] 王红伟,王希良. 软岩巷道围岩流变特性试验研究[J]. 地下空间,2001,21(5):361-365.
    [118] 曹树刚,边 金. 软岩蠕变试验与理论模型分析的对比[J]. 重庆大学学报,2002,25(7):96-98.
    [119] Boukharov GN,Chand MW,Boukharov NG.. The three processes of brittle crystalline rock creep [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1995,32(4):325-335.
    [120] 王芝银、杨志法、王思敬. 岩石力学位移反演分析回顾及进展[J]. 力学进展,1998,28(4):488-498.
    [121] Sakurai S,Takeuchi K. Back analysis of measured displacement of tunnel [J]. Rock Mech. Rock. Engng.,1983,16(3):173-180.
    [122] Yang L,Zhang C,Wang Y. Back analysis of initial rock stresses and time-dependent parameters[J]. Int. J. Rock Mech. Min. Sci.,1996,33(6):641-645.
    [123] Sakrrai S,deeswasmongkol N,Shinji M. Back analysis for determining material characteristics in cut slopes[J]. Proc. of the Int. Sym. On Eng. In Complex Rock Formations,Beijing:Science Press,1986:770-776.
    [124] Wang Zhiyin,Liu Huaiheng. Back analysis of measured rheologic displacement of under- ground openings [J]. In:Proc. 6th Conf. on Num. Meth. in Geo.,Austria,1988:2291-2297.
    [125] Wang Zhiyin,Li Yunpeng. Back analysis of viscoparameters and strata stress in under- ground openings [J]. In:Proc. Int. Symp. on Underground Eng. New Delhi,1988:181-186.
    [126] Wang Sijing,Yang Zhifa. The back analysis method form displacements for viscoelastic rock mass [J]. In:Proc. 2nd Int. Symp. on FMGM,1987:1059-1068.
    [127] Li Yunpeng,Wang Zhiyin. Three dimensional back analysis of viscoelastic creep displacements [J]. In:Proc.3rd Int. Conf. On Underground Space and Earth Sheltered Buildings,Shanghai:Tongji Press,1988:383-387.
    [128] 徐 平. 三峡枢纽试验洞围岩变形粘弹性反分析[J]. 人民长江,1992,23(6):48-52.
    [129] 肖洪天,杨若琼,杜广林. 三峡船闸高边坡反分析及变形趋势预测[J]. 岩石力学与工程学报,1998,17:863-867.
    [130] 薛 琳. 圆形隧道围岩蠕变柔量的确定及粘弹性力学模型的识别[J]. 岩石力学工程学报,1993,12(4):338-344.
    [131] 朱浮声,薛 琳,李 宏,等. 粘弹性围岩力学参数反分析的一种数值法[J]. 岩石力学工程学报,1997,16(5):478-482.
    [132] 刘怀恒. 地下工程位移反分析原理与应用[J]. 西安矿业学院学报,1988,8(3):1-10.
    [133] 胡 斌,冯夏庭,王国峰,等. 龙滩水电站左岸高边坡泥板岩体蠕变参数的智能反演[J]. 岩石力学与工程学报,2005,24(17):3064-3070.
    [134] 陈炳瑞,冯夏庭,丁秀丽,等. 基于模式-遗传-神经网络的流变参数反演[J]. 岩石力学与工程学报,2005,24(4):553-558.
    [135] 颜 伟. 岩石蠕变的 FEM 和 PCA 模拟算法研究[硕士学位论文][D]. 山东:山东科技大学,2005.
    [136] 李元香,康立山,陈毓屏. 格子气自动机[M]. 清化大学出版社,广西科学技术出版社1994.
    [137] 周成虎,孙战利,谢一春. 地理元胞自动机研究[M]. 北京:科学出版社,2001.
    [138] Hiizu Nakanishi. Cellular-automata of earthquakes with deterministic dynamics[J]. Physical Review A,1990,41(12):7086-7089.
    [139] Bak P,Chao T. Earthquakes as a self-organized critical phenomenon[J]. J. Geophys. Res.,1989,94(1311):15635-15637.
    [140] Chen K,Bak P. Self-organized criticality in a crack-propagation model of earthquakes[J]. Phy. Rev. A,1991,43(2):625-630.
    [141] 郑 捷. 研究地震和岩石破裂现象的非线性科学方法[A]. 非线性科学在地震中的应用[C]. 北京:地震出版社,1992,45-538.
    [142] 陆远忠,吕悦军. 带断层的细胞自动机及其算法复杂性[J]. 地震学报,1994,16(2):183-189.
    [143] 刘长海,陈 军,凌学书. 三维大型 CA 的“地震”能量-频度、时空分布[J]. 地震学报,1997,19(3):299-302.
    [144] 刘 杰,刘桂萍,李 丽,等. 基于大陆地震活动特点建立的简化动力学模型-细胞自动机模型[J]. 地震,1999,19(3):230-238.
    [145] Montheillet F,Gilormini P. Predicting the mechanical behavior of two-phase materials with cellular automata[J]. International Journal of Plasticity,1996,12(4):561-574.
    [146] Kuntz M,Lavallee P,Mareschal JC. Determination of elastic properties of very heterogeneous media with cellular automata[J]. Journal of Geophysical Research,1997,102(B4):7647-7658.
    [147] Gurdal Z,Tatting T. Cellular automata for design of truss structures with linear and non-linear response,Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structure, Structural Dynamics and Materials Conference,Atlanta,GA,April 3-6,2000.
    [148] Tatting T, Gurdal Z. Cellular automata for design of two-dimensional continuum structure[A]. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization[C]. September 6-8,2000.
    [149] Glenn S. Daehn. Modeling thermally activated deformation with a variety of obstacles and its application to creep transients[J]. Acta Mater.,2001,49:2017-2026.
    [150] Canyurt Olcay Ersel. Cellular models of computation in structural analysis and design[Ph.D.thesis][D]. New York:Rensselaer Polytechnic Institute,2002.
    [151] Kim Byong Sun. Decentralized computing and machine learning applications in multidisciplinary analysis[Ph.D.thesis][D]. New York:Rensselaer Polytechnic Institute,2002.
    [152] 沈成武,唐小兵,杨吉新. 平面桁架力学分析的细胞自动机方法初探[J]. 武汉交通科技大学学报,2000,24(2):105-108.
    [153] 沈成武,戴诗亮,杨吉新,等. 平面弹性力学中的细胞自动机方法[J]. 清华大学学报(自然科学版),2001,41(11):35-38.
    [154] 唐小兵,沈成武,杨吉新. 细胞自动机方法加速技术初探[J]. 2000,24(6):602-605.
    [155] 杨吉新,沈成武,陈定方. 细胞自动机方法解小扰度薄板弯曲问题[J]. 力学季刊,2002,23(2):260-264.
    [156] 杨吉新,王 乘,沈成武. 元胞单元法[J]. 固体力学学报,2004,25(2):203-207.
    [157] 杨吉新,王 乘,沈成武. 三维实体问题分析中的元胞单元法[J]. 武汉理工大学学报(交通科学与工程版),2004,28(1):22-25.
    [158] 周 辉. 矿震孕育过程的混沌性及非线性预测理论研究[博士学位论文][D]. 沈阳:东北大学,2000.
    [159] 周 辉,冯夏庭,谭云亮,等.物理细胞自动机与岩石弹-脆-塑性性质的细观机制研究[J].岩土力学,2002,23(6):678-682.
    [160] 周 辉,王泳嘉,谭云亮,等. 岩石破坏过程的物理细胞自动机模型(I)-基本模型[J]. 岩石力学与工程学报,2002,21(4):475-478.
    [161] 周 辉,谭云亮,冯夏庭,等. 岩石破坏过程的物理细胞自动机模型(II)-模拟例证[J]. 岩石力学与工程学报,2002,21(6):782-786.
    [162] 谭云亮,周 辉,王泳嘉,等. 模拟细观非均质材料破坏演化的物理元胞自动机 PCA理论[J]. 物理学报,2001,50(4):704-710.
    [163] 李明田,冯夏庭,周 辉. 模拟岩石破坏过程的物理细胞演化力学模型[J]. 岩石力学与工程学报,2003,22(10):1656-1660.
    [164] 尹光志,张东明,王 浩. 岩石损伤断裂的沙堆元胞自动机模拟[J]. 岩土力学,2005,26(6):986-989.
    [165] 谭云亮,颜 伟,马洪岭. 细观非均质岩石蠕变特征的物理元胞自动机[J]. 岩土力学,2006,27(Supp):9-12.
    [166] 冯夏庭,周辉,李明田. 岩石破裂过程的细胞自动机方法[A]. 武汉:全球华人中青年学者岩土力学与工程学术论坛-中国科学院岩土力学与工程学术研讨会[C]. 2003,10.
    [167] Ming-Tian Li,Xia-Ting Feng,Hui Zhou. Cellular automata simulation of the interaction mechanism of two cracks in rock under uniaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences,2004,41(3):452-455.
    [168] 李明田. 岩石破裂过程数值模拟的格构细胞自动机方法研究[博士学位论文][D]. 武汉:中国科学院武汉岩土力学研究所,2003.
    [169] 尹 潘. 格构细胞机模型在岩石劈裂过程中的数值模拟研究[J]. 固体力学学报,2005,26(2):245-247.
    [170] 杨 强,程勇刚,张 浩. 基于格构模型的岩石类材料开裂数值模拟[J]. 工程力学,2003,20(1):117-126.
    [171] 杨 强,张 浩,周维垣. 基于格构模型的岩石类材料破坏过程的数值模拟[J]. 水利学报,2002,4:45-49.
    [172] 王士民,冯夏庭,王永嘉,等. 脆性岩石破坏演化细胞自动机(ECA)研究[J]. 岩石力学与工程学报,2005,24(5):2634-2639.
    [173] 潘鹏志. 岩石破裂过程及其渗流-应力耦合特性研究的弹塑性细胞自动机模型[博士学位论文][D]. 武汉:中国科学院武汉岩土力学研究所,2006.
    [174] 祝玉学译. 物理系统的元胞自动机模拟[M]. 北京:清华大学出版社,2003.
    [175] Wolfram S. Statistical mechanics of cellular automata[J]. Rev. Mod. Phys.,1983:601-644.
    [176] Wolfram S. Celluar automaton fluids: Basic theory[J]. J. Stat. Phys.,1986,45:471-526.
    [177] Wolfram S. Theory and applications of Cellular automata[M]. World Publishing CO. PTE. LTD.,1986.
    [178] Wolfram S. Cellular automata and complexity[M]. Addison-Wesley,Reading MA,1994.
    [179] Durand B,Róka Z. The Game of Life: Universality Revisited,Vol. 460 of Mathematics and Its Applications [M],1999,51-74.
    [180] Hardy J,Pomeau Y,de Pazzis O. Time evolution of a two-dimensional model system[J]. J. Math. Phys.,1973,14:1746-1759.
    [181] Frisch U,Hasslacher B,Pomeau Y. Lattice-gas automata for the Navier-Strokes equation[J]. Phys. Rev. Lett.,1986,56:1505-1508.
    [182] 朱照宣. 点格自动机[J]. 力学与实践,1987,9:1-6.
    [183] Langton CG. Artificial life[A]. In: Volume V of SFI Studies of Complexity[C]. New Mexico: Addition Wesley,1992.
    [184] 徐秉业. 塑性力学[M]. 北京:高等教育出版社,1988.
    [185] 郑颖人,龚晓南. 岩土塑性力学基础[M]. 北京:中国建筑工业出版社,1989.
    [186] Owen DRJ,Hinton E. Finite element in plasticity: Theory and practice[M]. Pinerige Press Limited,U.K.,1980.
    [187] 李永盛. 单轴压缩条件下四种岩石的蠕变和松弛试验研究[J]. 岩石力学与工程学报,1995,14 (1):39-47.
    [188] 郑雨天. 岩石力学的弹塑粘性理论基础[M]. 北京:煤炭工业出版社,1988.
    [189] 范广勤. 岩土工程流变力学[M]. 北京:煤炭工业出版社,1993.
    [190] 王宏贵,魏丽敏,赫晓光. 根据长期单向压缩实验结果确定三维流变模型参数[J]. 岩土工程学报,2006,28(5):669-673.
    [191] 姜永东,鲜学福,熊德国,等. 砂岩蠕变特性及蠕变力学模型研究[J]. 岩土工程学报,2005,27(12):1478-1481.
    [192] 何 峰,王来贵,于永江,等. 岩石试件非线性蠕变模型及其参数确定[J]. 辽宁工程技术大学学报,2005,24(2):181-183.
    [193] 赵永辉,何之民,沈明荣. 润扬大桥北锚碇岩石流变特性的试验研究[J]. 岩土力学,2003,24(4):583-586.
    [194] 丁秀丽,付 敬,刘 建. 软硬互层边坡岩体的蠕变特性研究及稳定性分析[J]. 岩石力学与工程学报,2005,24(19):3410-3418.
    [195] 陈晓平,杨春和,白世伟. 软基上吹填边坡蠕变特性有限元分析[J]. 岩石力学与工程学报,2001,20(4):514-518.
    [196] 董志宏,丁秀丽,邬爱清,等. 地下洞室软岩流变参数反分析[J]. 矿山压力与顶板管理,2005,60-62.
    [197] 张淳源. 黏弹性断裂力学[M]. 武汉:华中理工大学出版社,1994.
    [198] 黄小华,冯夏庭. 常泊松比下黏弹性体的算子代换法与黏弹对应原理的关系[J]. 岩石力学与工程学报,2006,25(12):2509-2514.
    [199] 周维垣. 高等岩石力学[M]. 北京:水利电力出版社,1990.
    [200] 沈振中,徐志英. 三峡大坝地基花岗岩蠕变试验研究[J]. 河海大学学报,1997,25(2):1-7.
    [201] Zienkiewicz OC,Watson M,King IP. A numerical method of visco-elastic stress analysis[J]. Int. J. Mechanical Sci.,1968,10(10):807-827.
    [202] 徐 平,李云鹏,丁秀丽,等. FLAC3D 黏弹性模型的二次开发及其应用[J]. 长江科学院院报,2004,21(2):10-13.
    [203] 尤明庆. 对“岩石非线性黏弹塑性流变模型(河海模型)及其应用”的讨论[J]. 岩石力学与工程学报,2007,26(3):637-640.
    [204] 陈炳瑞,冯夏庭,丁秀丽,等. 基于模式搜索的流变模型参数识别[J]. 岩石力学与工程学报,2005,24(2):207-211.
    [205] 周光泉,刘孝敏. 粘弹性理论[M]. 合肥:中国科学技术大学出版社,1996.
    [206] Machirajua C,Phana AV,Pearsall AW,et al. Viscoelastic studies of human subscapularis tendon: Relaxation test and a Wiechert model[J]. computer methods and programs in biomedicine,2006,83:29-33.
    [207] 范厚彬. 基于层叠模型的盾构隧道施工对周围环境的影响分析[博士学位论文][D]. 上海:同济大学,2003.
    [208] 蒋斌松,周国庆. 岩土类材料松弛模量的确定[J]. 岩土力学,2006,27(Supp.):5-8.
    [209] 杨挺青. 粘弹性力学[M]. 武汉:华中理工大学出版社,1990.
    [210] 赵伯华. 松弛与蠕变力学特性转换关系的研究[J]. 实验力学,1995,10(2):140-144.
    [211] 阳建红,刘朝丰,徐景龙,等. 复合固体推进剂松弛模量与蠕变柔量转换关系[J]. 推进技术,2004,25(2):159-161.
    [212] 刘军虎,王 铮. 由应力松弛试验数据确定松弛模量和蠕变柔量[J]. 固体火箭技术,1995,18(3):73-77.
    [213] 冯志刚,周建平. 固体火箭发动机要柱的长期老化效应分析[J]. 1994,15(12):1507-1511
    [214] Perzyna P. Fundamental problem in visco-plasticity, In: Advances in applied mechanics[M]. Academic Press,New York,1966,9:234-277.
    [215] Chandre S. Desai,Naresh C. Samtani,Laurent Vulliet. Constitutive Modeling and Analysis of Creeping Slopes[J]. Journal of Geotechnical Engineer,1995,121(1):43-56.
    [216] Rutqvist J,Sonnenthal E,Jing Lanru,Hudson J. TASK DEFINTION FOR DECOVALEX- THMC Task B,Phase 3:A Benchmark Test on Drift-Wall Coupled THMC Processes[R]. Lawrence Berkeley National Laboratory,Berkeley,California,January 10,2006.
    [217] Lewis RW,Schrefler BA. The finite element method in the deformation and consolidation of porous media[M]. New York:Wiley,1987.
    [218] 卓家寿,章青. 不连续介质力学问题的界面元法[M]. 北京:科学出版社,2000.
    [219] Dary L. Logan 著.伍义生,吴永礼,等译. 有限元方法基础教程[M]. 北京:电子工业出版社,2003.
    [220] Lajtai EZ,Schmidtke RH and Bielus LP. The Effect of Water on the Time-Dependent Deformation and Fracture of a Granite[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1987,24(4):247-255.
    [221] Feng Xiating,Huang Xiaohua and Pan Pengzhi. DECOVALEX THMC Task B,Phase 3 Stage 3:Time dependent failure modelling,Extend model for analysis of creep and mechanical degradation,Initial modeling results by the CAS research team[R]. ChineseAcademy of Sciences,May 20,2006.
    [222] 朱伯芳. 有限单元法原理与应用[M]. 北京:中国水利水电出版社,1998.
    [223] 朱伯芳. 在混合边界条件下非均质粘弹性体应力与位移[J]. 力学学报,1964,7(2):162-167.
    [224] 殷有泉. 固体力学非线性有限元引论[M]. 北京:北京大学出版社,清华大学出版社,1987.
    [225] 殷有泉,张 宏. 岩体工程有限元分析中的节理单元[J]. 力学与实践,1981(2):52-54.
    [226] Goodman R E,Taylor R L,Brekke T L. A model for the mechanics of jointed rock[J]. J. Soil Mech.and Found,Engrg.Div.,ASCE,1968,99(5):637-660.
    [227] Wang JG,Ichikawa Y,Leung CF. A constitutive model for interfaces and joints[J]. International Journal of Rock Mechanics & Mining Sciences,2003(40):41-53.
    [228] 姚纬明,李同春,任旭华,等. 带软弱结构面岩体的弹塑性有限元分析[J]. 河海大学学报,1999,27(3):34-38
    [229] 丁秀丽,刘 建,刘雄贞. 三峡船闸区硬性结构面蠕变特性试验研究[J]. 长江科学院院报,2000,17(4):30-33.
    [230] 丁秀丽. 岩体流变特性的实验研究及模型参数辨识[博士学位论文][D]. 武汉:中国科学院武汉岩土力学研究所,2005.
    [231] CS Desai,MM Zaman,JG Lightner,et al. Thin-layer element for interfaces and joints[J]. Int.J. Numer & Analys Methods in Geomechanics,1984,8(1):19-43.
    [232] 刘钧. 块体结构力学-工程地质力学的数值方法[M]. 成都:西南交通大学出版社[M],1996.
    [233] 金 峰,邵 伟,张立翔,等. 模拟软弱夹层动力特性的薄层单元及其工程应用[J]. 工程力学,2002,19(2):36-40.
    [234] 古德曼. 不连续岩体中的地质工程方法[M]. 北方交通大学译,中国铁道出版社,1980
    [235] Bandis SC,Lumsden AC,Barton NR. Fundamentals of Rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1983,20(6):249-268.
    [236] Koji Sekiguchi,Kerry Rowe R and Kwan Yee Lo et al. Time step selection for 6-node non-linear joint element in elasto-viscoplasticity analysis[J]. Computers and Geotechnics,1990,10(1):33-68
    [237] 徐芝纶. 弹性力学[M]. 北京:高等教育出版社,2002.
    [238] Sharma KG,Desai CS. Analysis and implementation of thin-layer element for interfaces and joints[J]. Journal of Engineering Mechanics,1992,118(12):2442-2462
    [239] Rutqvist J,Feng X-T,Hudson J,Jing L,Kobayashi A,Koyama T,Pan P-Z,Lee H-S,Rinne M,Sonnenthal E & Yamamoto Y. Multiple-code bench mark simulation study of coupled THMC process in the excavation disturbed zone associated with geological nuclear waste repositories. GeoProc 2006 Conference.
    [240] Feng Xiating,Pan Pengzhi. DECOVALEX THMC Task B,Phase 3,Step 1:Model Inception with linear elastic properties,Initial modeling results by the CAS research team[R]. Institutive of Rock and Soil Mechanics,Chinese Academy of Sciences,March 3,2006.
    [241] Cristescu.N. Elastic/Viscoplastic Constitutive Equation for Rock[J]. Int. J. Rock Mech. Min.Sci. & Geomech. Abstr. 1987,24(5):271-282.
    [242] Enrico Maranini,Tsutomu Yamaguchi. A non-associated viscoplastic model for the behaviour of granite in triaxial compression[J]. Mechanics of Materials,2001,33:283-293.
    [243] Koji Masuda. Effects of water on rock strength in a brittle regime[J]. Journal of Structural Geology,2001,23:1653-1657.
    [244] Fujiia Y,Kiyama T,Ishijima Y,et al. Circumferential strain behavior during creep tests of brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:323-337.
    [245] Rutqvist J,Birkholzer JT,Chijimatsu M,Kolditz O,Liu Q S,Oda Y,Wang W,& Zhang C Y Comparative simulation study of coupled THM processes near back-filled and open-drift nuclear waste repositories in Task D of the International DECOVALEX Project. GeoProc 2006 Conference.
    [246] Rutqvist J. DECOVALEX THMC Task B,Phase 3 Step 1:Model Inception with linear elastic properties,Initial modeling results by the DOE/LBNL research team[R]. Lawrence Berkeley National Laboratory Berkeley,USA,Jan 10,2006.
    [247] Feng Xiating,Huang Xiaohua and Pan Pengzhi. DECOVALEX THMC Task B,Phase 3 Stage 1 and Stage 3,Update modeling results by the CAS research team[R]. Chinese Academy of Sciences,October 30,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700