基于集合卡尔曼滤波数据同化方法的岩土力学参数时空变异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩土工程问题中,施工扰动引起的岩土体位移变化过程实际上是一个非确定性过程,很难用数学方法准确地描述清楚,它客观地处于一个动态的随机过程。岩土力学参数并非某一确定量,在时间上是处于某种随机过程的状态估计量,需要采用随机系统的方法来解决。同时,岩土力学参数还在空间域上呈现出高度的非均质性、各向异性,需要引入随机场的理论和方法来表征。因而,将随机系统分析方法和岩土工程数值模拟相结合,充分考虑岩土力学参数在时间域和空间域上的变异性,并建立一种适应于岩土工程实际动态的随机反分析理论及相应的计算方法,已成为客观需要和发展趋势。论文引入来源于现代大气和海洋科学的集合卡尔曼滤波(Ensemble Kalman Filter)顺序数据同化(Sequential Data Assimilation)的思想和方法,在考虑观测数据时空分布的基础上,在数值模型的动态运行过程中不断融合新的观测数据,逐步估计力学参数的数值大小和空间分布。论文研究主要内容包括:
     1.视岩土变形体为一个随机动态系统,将位移观测值作为系统的输出,用集合卡尔曼滤波模型来描述系统的状态。基于随机过程理论,利用时间序列的位移观测数据,考虑岩土力学参数的时变性,提出了集合卡尔曼滤波耦合数值模拟的岩土力学参数动态随机估计方法。在估值过程中,岩土力学参数每一步都经过滤波器的滤波计算,并产生新息和滤波值,反映了岩土力学参数变化的历时性和岩土体变形过程的真实性。
     2.针对标准Kalman滤波在岩土力学参数估计中预测误差协方差矩阵计算和存储困难以及扩展Kalman滤波应用于非线性系统的近似问题,采用了Monte Carlo集合预测来估计预测误差协方差,把误差的统计量隐含在一组预测变量中,根据预测值的差异进行统计,得到新的误差协方差,避免了协方差演变方程预测过程中出现的计算不准确和关于协方差矩阵的大量数据的存储问题。在增益矩阵的计算过程中采用了奇异值分解方法,避免了矩阵的不满秩问题,并将集合卡尔曼滤波算法与现有大型数值模拟软件ANSYS、FLAC、FLAC3D等相耦合,通过数值模拟分析将模型预测和现场观测有机结合,利用观测数据来调整模型的运行轨迹,使积累的误差得到“释放”,充分发挥了监测和模拟各自的优势。
     3.基于开挖扰动引起的岩土体位移变化过程是一个随机动态过程,测量位移是含误差的不定值,提出动态观测扰动的概念,采用Monte-Carlo模拟对观测值施加高斯白噪声,并在参数随机动态估计过程中使用了先验知识,保证了计算的稳定性和降低了结果的不确定性。分析结果给出了状态变量的一个集合,同时估计了岩土力学模型的状态值和参数值,不仅可以为集合预测提供初始值,而且在给出岩土力学参数集合平均的最佳估计之外,同时还提供了估计值的不确定性。
     4.基于地质统计学理论,将分布于研究区的岩土力学参数视为区域化变量,通过变异函数描述岩土力学参数整体的空间结构性变化及局部的随机性变化,以变异函数理论模型作为刻画岩土力学参数空间变异规律的数学模型。采用LU协方差分解和高斯顺序模拟(SGS)方法构造岩土力学参数空间分布的随机场并对单元体力学参数进行赋值,真实地再现了岩土力学参数随机场具有的离散性和波动性。提出了岩土力学参数空间变异性研究的集合卡尔曼滤波数据同化方法,通过逐步融合时空分布的动态观测数据,使各个不同的参数集合成员之间的变异性逐渐减小,逐步逼近真实场的空间分布模式,把观测数据与模型模拟结果集成为具有时间一致性、空间一致性和物理一致性的各种状态的数据集。
     5.给出了数据同化结果评价的根均方误差标准和集合散度标准,分析和讨论了采样集合大小、采样集合初始均值、动态噪声比例、相关步距、同化步数、测点数目等影响因素的敏感性,论证了集合卡尔曼滤波耦合岩土力学数值分析方法在参数空间变异性研究中的实用性和有效性。
It is difficult to describe clearly with mathematical method for displacement variation under excavation disturbance in geotechnical engineering, which actual is an uncertainty process and exist objectively in a dynamical stochastic process. Geomechanical parameter is not a certainty value, but a state estimation value in time existing in a stochastic process. So there is a demand for method of stochastic system to solve it. In addition, geomechanical parameter presents great heterogeneity and anisotropy in space, and there is a demand for random field theory to represent it. Therefore, inconsideration of variability of geomechancial parameter in time and space, it is an objective demand and a development trend to incorporate analysis of stochastic system with numerical modeling of geotechnical engineering, and established theory of stochastic back-analysis conforming with practical dynamics in geotechnical engineering, as well as corresponding computational procedure. The ideal and method of sequential data assimilation with ensemble Kalman filter originated from meteorology and oceanography 7is introduced in dissertation, and numerical magnitude and spatial distribution of geomechanical parameter are estimated on basis of observation data distributed in time and space after model incorporated new observation data in process of running. Main research content in dissertation includes the following:
     1. Geomechanical deformation is treated as a dynamic stochastic system, and displacement observation is looked as the output. Furthermore, ensemble Kalman filter is used as model to describe the system state. The dynamical estimation method coupled ensemble Kalman filter with numerical modeling is presented on basis of stochastic process, which considers time variation property of geomechanical parameter and utilizes displacement observation in time series. Geomechanical parameter is filtered every step during estimation process, then innovation and adjusted value are generated, which reflects the diachronism of geomechanical parameter the truth of deformation in geomechanical media.
     2. Aim at computing and storing trouble of forecast error covariance matrix of Kalman filter applied in geomechanical parameter estimation, as well as approximating problem of extended Kalman filter applied in nonlinear system, ensemble forecast with Monte Carlo is adopted to estimate forecast error covariance, which implies the statistical error in a set of forecast variable. Thus, new error covariance can be obtained according to difference statistical of forecast value, so it is avoided for computing inaccuracy in process of covariance evolution equation forecasting, as well as storing difficulty of massive data in covariance matrix. Furthermore, singular value decomposition is adopted to compute the Kalman gain matrix. What’s more, the ensemble Kalman filter algorithm is incorporated with available numerical simulating software, such as ANSYS, FLAC, FLAC3D, which fuses in situ observation into model forecast. By adjust the model running with observation data, the accumulative error is released. Therefore, the advantages of monitoring and modeling are adequately exerted.
     3. It is under a dynamical stochastic process for displacement variation under excavation disturbance in geomechanical media, and the measuring displacement is an uncertainty value with error. The dynamical disturbed observation concept is posed, then Monte Carlo simulation is adopted to add Gaussian white noise in observation. At the same time, a priori knowledge is utilized to ensure computational stability and reduce resultant uncertainty in process of dynamical stochastic estimation. Analysis result gives a ensemble of state variable, and also estimates simultaneously the state and parameter value of geomechanical model, which not only can afford the initial value for ensemble prediction, but also can offer the estimated uncertainty, besides the optimal estimation of geomechanical parameter ensemble mean.
     4. Geomechanical parameter is viewed as zonal variable in terms of geostatistics. Sequentially, variation function is given to describe integral spatial structural variation and local stochastic variation, and theoretical model of variation function is served as mathematical model to depict spatial variation law of geomechanical parameter. Moreover, LU decomposition and Gaussian Sequential Simulation are adopted to construct the random field representing spatial distribution of geomechanical parameter, and then assign to element, which recur veritably the discreteness and fluctuation in random field of geomechanical parameter. The sequential data assimilation method with ensemble Kalman filter is presented to research spatial variation of geomechanical parameter. After gradually fusing dynamical observation data distributed in time and space, the variability in various ensemble realizations decrease step by step, and all approach to the distribution pattern of true field finally. The data assimilation with ensemble Kalman filter integrates observation data and simulation result into various state data sets with consistency of time, space and physics.
     5. The root mean square error and ensemble spread criteria are put forward to evaluate the data assimilation result. Then, sensitivity is discussed for some influencing factors, such as sampling ensemble size, initial mean of sampling ensemble, dynamical noise ratio, correlative distance, assimilation step, observational number. It is demonstrated that the method of ensemble Kalman filter coupled with numerical modeling is practical and valid.
引文
1 蔡美峰,何满潮,刘东燕. 岩石力学与工程[M]. 北京:科学出版社,2002.
    2 Pierpaolo O. Back-analysis techniques for the improvement of the understanding of rock in underground constructions[J]. Tunnelling and Underground Space Technology, 2005, 20(1):7~21
    3 Y J Shang, J G Cai. Intelligent back analysis of displacements using precedent type analysis for tunneling[J]. Tunnelling and Underground Space Technology, 2002, 17(4):381~389
    4 孙钧,蒋树屏. 岩土力学反演问题的随机理论与方法[M]. 汕头:汕头大学出版社,1996.
    5 杨林德,朱合华,冯紫良等. 岩土工程问题的反演理论与工程实践[M]. 北京:科学出版社,1996.
    6 杨志法,王思敬,冯紫良. 岩土工程反分析的原理及方法[M].北京:地震出版社,2002. 199~200.
    7 王芝银,李云鹏. 地下工程位移反分析及程序[M]. 西安:陕西科学技术出版社,1993.
    8 王芝银,杨志法,王思敬. 岩石力学位移反演分析回顾及进展[J].力学进展,1998,28(4):488~493.
    9 冯夏庭. 智能岩石力学导论[M]. 北京:科学出版社,2000.
    10 Xia-Ting Feng, Zhiqiang Zhang, Qian Sheng. Estimating mechanical rock mass parameters relating to the Three Gorges Project permanent shiplock using an intelligent displacement back analysis method[J]. International Journal of Rock Mechanics and Mining Science, 2000, 37(7):1039~1054
    11 刘世君,徐卫亚,王红春. 不确定性岩石力学参数的区间反分析[J]. 岩石力学与工程学报,2004,23(6):885~888
    12 徐卫亚,刘世君. 岩石力学参数反分析的变分伴随方法研究[J]. 岩石力学与工程学报,2005,24(2):203~206.
    13 蒋树屏. 岩体工程反分析研究的新进展[J]. 地下空间,1995,15(1):25~33.
    14 蒋树屏. 用扩张卡尔曼滤波器有限元反分析地下硐室围岩非确定性动态研究[D]. 同济大学博士论文,1995.
    15 G Bolzon, R Fedele,G Maier. Parammter Identification of a Cohesive Crack Model by Kalman Filter[J]. Computer Methods in Applied Mechanics and Engineering,2002,191(25~26):2847~2871
    16 Masataka Tanaka, Toshiro Matsumoto, Hironori Yamamura. Application of BEM with extended Kalman filter to parameter identification of an elastic plate under dynamic loading[J], Engineering Analysis with Boundary Elements, 2004,28(3):213~219
    17 仵彦卿. 地下水系统参数估计方法研究[J]. 堪察科学技术,1994(1):40~44.
    18 仵彦卿. 地下水系统确定-随机性数值模型研究[J]. 水文地质工程地质,1994(1):42~45.
    19 蒋树屏. 扩张卡尔曼滤波器有限元法耦合算法及其隧道工程应用[J].岩土工程学报,1996,18(4):11~19.
    20 段祥宝,朱亮. 地下水污染运移数值模拟及最优估计[J]. 水动力学研究与进展(A 辑), 1996,11(5):519.
    21 王元淳,刘玉敏. 正交各向异性平面弹性问题物性值 v12 和 G12 的反分析[J].力学与实践,2001,23:38~40.
    22 胡小荣. 空间变异性分析方法及其在岩石力学参数估计中的应用研究[D]. 东北大学博士学位论文,2002.
    23 孙洪泉. 地质统计学及其应用[M]. 徐州:中国矿业大学出版社,1990.
    24 张仁铎. 空间变异理论及应用[M].北京:科学出版社,2005.
    25 张征,刘淑春,鞠硕华. 岩土参数空间变异性分析原理与最优估计模型[J].岩土工程学报,1996,18(4):40-47.
    26 张征,刘淑春. 岩土参数的变异性及其评价方法[J].土木工程学报,1995,28(6):43~51.
    27 骆中洲,王家臣. 基于岩体性质空间变异性的边坡可靠性分析[J]. 化工矿山技术,1996,25(3):1~4.
    28 谭文辉,王家臣. 岩体强度参数空间变异性分析[J]. 岩石力学与工程学报,1999,18(5):546~549.
    29 陈彦,吴吉春. 含水层渗透系数空间变异性对地下水数值模拟的影响[J]. 水科学进展,2005,16(4):482~487.
    30 徐超,杨林德. 岩土参数的空间变异性分析[J].上海地质,1996,60(4):16~19.
    31 仇圣华,杨林德,陈岗. 地质统计学理论在岩体参数求解中的应用[J]. 岩石力学与工程学报,2005,24(9):1545~1548.
    32 胡小荣,唐春安. 岩土力学参数随机场的空间变异性分析及单元体力学参数赋值研究[J]. 岩石力学与工程学报,2000,19(1):59~63.
    33 胡小荣,唐春安. 岩土力学参数随机场的离散研究[J]. 岩土工程学报,1999,21(4):450~455
    34 佘跃心. 基于 Kringing 法的土性参数估计[J]. 建筑科学,2003,19(2):42~45.
    35 许迪,丁昆仑. 区域水土特性参数时空变异分布特征及相关分析[J]. 中国水利水电科学研究院学报,2003,1(1):45~51.
    36 孙洪泉,朱惠健. 空间信息统计在岩土参数分析中的应用[J]. 苏州科技学院学报(工程技术版),2005,18(4):49~52.
    37 吴长富,朱向荣. 基于现行规范岩土参数的统计方法分析及应用[J]. 工程勘察,2005(3):5~7.
    38 乔方利. 现代海洋/大气资料同化方法的统一性及其应用进展[J]. 海洋科学进展,2002,20(4):79~93.
    39 高山红,吴增茂,谢红琴. Kalman 滤波在气象数据同化中的发展和应用[J].地球科学进展,2000,15(5):571~575.
    40 Evensen, G. Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model[J]. J. Geophys. Res., 1992, 97(C11):17905~17924.
    41 Evensen, G. Sequential Data Assimilation with Nonlinear Quasi-geostrophic Model using Monte Carlo Methods to forecast Error Statistics[J]. J. Geophys. Res. 1994, Vol. 99 (C5):10143~10162.
    42 Evensen G, Van Leeuwen, P J. Assimilation of Geosat altimeter data for the Agulhas Current using the Ensemble Kalman Filter with a quasigeostrophic model. Monthly Weather Review, 1996(124):85~96.
    43 Evensen G. Advanced data assimilation for strongly nonlinear dynamics[J]. Month Weather Review, 1996(125):1342~1354.
    44 Houtekamer P L , Mitchell H L. Data assimilation using an ensemble Kalman filtertechnique[J]. Month Weather Review, 1998(126):796~811.
    45 Van Loon M, Builtjes P J H. Data assimilation of ozone in the atmospheric transport chemistry model LOTOS[J]. Environmental Modeling & Software, 2000(15):603~609.
    46 Gronnevik R, Evensen G. Application of ensemble-based techniques in fish stock assessment[J]. SARSIA, 2001(86):517~526.
    47 Crow W T, Wood E F. The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using Ensemble Kalman Filtering: A case study based onESTAR measurements during SGP97[J]. Adv. Water Resources, 2003(26):137~149.
    48 Snyder C, Zhang F Q. Assimilation of simulated Doppler radar observations with an ensemble Kalman filter[J], Monthly Weather Review, 2003(131):1663~1677.
    49 Madsen H, Canizares R. Comparison of Extended and Ensemble Kalman Filter for Data Assimilation in Coastal Area Modelling[J], internation Journal for Numerical methods in Fluids, 1999(31):961~981.
    50 Hmaill T M. Ensembled-based Data Assimilaiton[R].Workshop on Predictability ECMWF, 2002.
    51 Houtekamer P L,Mitchell H L. A Sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Review, 2001, 129(1):123~137.
    52 Mitchell H L, Houtekamer P L. An adaptive ensemble Kalman filter[J]. Monthly Weather Review, 2000(128):416~433.
    53 Mitchell, H L, Houtekamer,P L, Pellegrin, G. Ensemble size,balance, and model-error representation in an ensemble Kalman filter[J]. Monthly Weather Review, 2002(130):2791~2808.
    54 Reichle R H, McLaughlin D, Entekhabi D. Hydrologic Data assimilation with the ensemble Kalman filter[J]. Month Weather Review, 2002(130):103~130.
    55 Reichle R H, Walker J P, Koster R D, Houser P R. Extended versus ensemble Kalman filtering for land data assimilation[J]. J Hydromet , 2002(3):728~740.
    56 L J Natvik, G. Evensen. Assimilation of ocean colour data into a biochemical model of the North Atlantic: Part 1. Data assimilation experiments[J]. Journal of Marine Systems, 2003(40~41):127~153
    57 Natvik L J, Evensen G. Assimilation of ocean colour data into a biochemical model of the North Atlantic: Part 2. Statistical Analysis[J]. Journal of Marine Systems, 2003(40~41):155~169.
    58 高拴柱. 集合卡尔曼滤波资料同化技术及研究现状[J].气象,2005,31(6):3~8.
    59 刘成思,薛纪善. 关于集合卡尔曼滤波的理论和方法的发展[J].热带气象学报,2005,21(6):828~633.
    60 刘成思. 集合卡尔曼滤波资料同化方案的设计和研究[D]. 中国气象科学研究院硕士学位论文,2005.
    61 费剑锋,韩月琪,王云峰. 扩展卡尔曼滤波数据同化试验——基于 Lorenz(1960)系统的研究[J], 气象科学,2004,24(4):413~423.
    62 费剑锋,韩月琪. 集合卡尔曼滤波数据同化在一维波动方程中的应用[J].气象科技,2005,3(2):109~114.
    63 秦军,阎广建,刘绍民. 集合卡尔曼滤波在遥感反演地表参数中的应用——以核驱动模型反演 BRDF 为例.[J]. 中国科学 D 辑(地球科学),2005,35(8):790~798.
    64 许小永,刘黎平,郑国光. 集合卡尔曼滤波同化多普勒雷达资料的数值试验[J]. 大气科学,2006,30(4):712~728.
    65 黄春林,李新. 陆面数据同化系统的研究综述[J], 遥感技术与应用,2004,19(5):424~430.
    66 李新,黄春林. 数据同化——一种集成多元地理空间数据的新思路[J]. 科技导报,2004(12):13~16.
    67 蒋树屏,赵阳. 复杂地质条件夏公路隧道围岩监测量测与非确定性反分析研究[J].岩石力学与工程学报,2004,23(20):4360~3464.
    68 邓自立. 卡尔曼滤波与维纳滤波——现代时间序列分析方法[M]. 哈尔滨:哈尔滨工业大学出版社,2001.
    69 Kalman R. New approach to linear filtering and prediction problems[J]. Trans AMSE J Basin Eng, 1960(82):35~45.
    70 Jazwinski A H. Stochastic process and Filtering Theory[M]. New York: Academic Press, 1970.
    71 方兆本. 随机过程[M]. 北京:科学出版社,2004.
    72 张贤达. 现代信号处理[M]. 北京:清华大学出版社,2002.
    73 李小兵. 统计信号处理:非高斯信号处理及其应用[M]. 北京:电子工业出版社,2004.
    74 Evensen G. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynam 2003(53):343~67.
    75 Van Leeuwen, P J, Evensen G. Data assimilation and inverse methods in terms of a probabilistic formulation[J]. Monthly Weather Review, 1996(124):2898~2913.
    76 Verlaan M, Heemink A W. Nonlinearity in Data assimilation applications: a practical method for analysis[J]. Month Weather Review, 2001(129):1578~89.
    77 Pham D T. Stochastic methods for sequential data assimilation in strongly nonlinear systems[J]. Monthly Weather Review, 2001(129):2884~2903.
    78 虎维岳,李竞生. 地下水系统随机模拟与管理[M]. 北京:地质出版社,2003.
    79 Kuczera G, Parent E. Monte Carlo assessment of parameter uncertainly in conceptual catchment models: the Metropolis algorithm[J]. J Hydrol, 1998(211):69~85.
    80 Zhiming Lu, Dongxiao Zhang. On importance sampling Monte Carlo approach to uncertainty analysis for flow and transport in porous media[J]. Advances in Water Resources, 2003,26(11): 1177~1188
    81 何渝. 计算机常用数值算法与程序:C++[M]. 北京:人民邮电出版社,2003.
    82 Dongxiao Zhang. Quantification of uncertainty for fluid flow in heterogeneous petroleum reservoirs[J]. Physica D: Nonlinear Phenomena, 1999, 133(1~4):488~497
    83 E. Ott, B.R. Hunt, I. Szunyogh, A.V. Zimin, E.J. Kostelich, M. Estimating the state of large spatio-temporally chaotic systems[J]. Short Communication, Physics Letters A, 2004, 330(5):365~370
    84 Anderson, J L, Anderson, S L. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts[J]. Monthly Weather Review, 1999, 127(12):2741~2758.
    85 胡小荣,樊晓梅,俞茂宏. 岩体破坏过程数值模拟中网格单元力学参数赋值的研究[J]. 岩石力学与工程学报,2002,21(增 2):2496~2500.
    86 候景儒,郭光裕. 矿床统计预测及地质统计学的理论与应用[M]. 北京:冶金工业出版社,1993.
    87 Clayton V. Deutsch, Andre G. Journel, GSLIB: Geostatistical Software Library, User’s Guide, Version 1.2, New York, Oxford, Oxford University Press, January 1992.
    88 Hamid Moradkhani, Soroosh Sorooshian. Dual state-parameter estimation of hydrological models using ensemble Kalman filter[J]. Advances in Water Resources, 2005, 28(2):135~147.
    89 J. D. Annan, J. C. Hargreaves, N. R. Edwards, R. Marsh[J]. Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter[J]. Ocean Modelling, 2005, 8(1~2):135~154
    90 Hans E. Ngodock, Gregg A. Jacobs, Mingshi Chen. The representer method, the ensemble Kalman filter and the ensemble Kalman smoother: A comparison study using a nonlinear reduced gravity ocean model[J]. Ocean Modelling, 2006, 12(3~4): 378~400
    91 Hamill T M, Mullen S L, Snyder C. Ensemble forecasting in the short to medium range: Report from a workshop[R]. Bull Amer. Meteor Soc, 2000,81(11):2653~2664.
    92 Burges, G, Van Leeuvwen, P J, Evensen, G. Analysis Scheme in the Ensemble Kalman filter[J]. Monthly Weather Review, 1998(126):1719~1724.
    93 Whitaker J S, Hamill T M. Ensemble assimilation without perturbed observation. Month Weather Review, 2002(130):1913~24.
    94 Bishop C H, Toth Z. Ensemble transformation and adaptive observations[J]. J. Atmos. Sci, 1999(56):1748~1765.
    95 Zhang F, Snyder C, Sun J. Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter[J]. Monthly Weather Review, 2004(132):1238~1253.
    96 Hamill T M, Snyder C. Using improved background error covariances from an ensemble Kalman filter for adaptive observation[J]. Monthly Weather Review, 2002(130):1552~1572.
    97 徐树方. 矩阵计算的理论与方法[M]. 北京:北京大学出版社,1995.
    98 蒋长锦. 线性代数计算方法[M]. 合肥:中国科学技术大学出版社,2003.
    99 Gu Y, Oliver, D S. History matching of the PUNQ-S3 reservoir model using ensemble Kalman filter[J]. SPE 89942, 2004.
    100 Liu, N,Oliver, D S. Automatic history matching of geologic facies[J]. SPE 84594, SPE Journal, 2004, 9(4):1~15.
    101 N?vdal, G. Reservoir monitoring and continuous model updating using ensemble Kalman filter[J]. SPE 84372, 2003.
    102 Wen X H, Chen W H. Real-time reservoir model updating using ensemble Kalman filter[J]. SPE 92991, 2005, SPE Reservoir Simulation Symposium.
    103 Saeed M. Finite Element Analysis: Theory and Application with ANSYS[M], 2nd ed, NJ: Prentice-Hall, 2002.
    104 郝文化. ANSYS 土木工程应用实例[M]. 北京:中国水利水电出版社,2005.
    105 陈精一. 电脑辅助工程分析-ANSYS 使用指南[M]. 北京:中国铁道出版社,2001.
    106 ANSYS Inc. ANSYS Release 10.0 Notes, Online Help.
    107 ANSYS Inc. Guide to ANSYS Programmable Features—ANSYS Release 6.1, 2002.
    108 Itasca Consulting Group, Inc. FLAC (Fast Lagrangian Analysis of Continua) User Manual, Version 4.0, Minneapolis, Minnesota, 2002.6
    109 Itasca Consulting Group, Inc. FLAC3D (Fast Lagrangian Analysis of Continua in 3Dimensions) User Manual, Version 2.1, Minneapolis, Minnesota, 2002.6
    110 刘波,韩彦辉.FLAC 原理、实例与应用指南[M].北京:人民交通出版社,2005.
    111 Jing L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(3):283~353.
    112 王如路,陈乃明,刘宝琛. 用随机过程原理确定岩体力学参数[J]. 矿冶工程,1994, 14(4):16~19
    113 Sakurai S, Akutagawa S, Takeuchi D, Shinji M, Shimizu N. Back analysis for tunnel engineering as a modern observational method[J]. Tunnelling and Underground Space Technology, 2003(18): 185~196
    114 McLaughlin D. An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering[J]. Adv Water Res, 2002(25):1275~1286.
    115 Liu N, Oliver D S. Critical evaluation of the ensemble Kalman filter on history matching of geologic faces[J]. SPE92867, 2005, SPE Reservoir Simulation Symposium.
    116 Keppenne, C L. Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter[J]. Monthly Weather Review, 2000(40):1971~1981.
    117 Jean-Philippe Drecourt, Henrik Madsen, Dan Rosbjerg. Bias aware Kalman filters: Comparison and improvements[J]. Advances in Water Resources, 2006, 29(5):707~718
    118 Jean-Philippe Drecourt, Henrik Madsen, Dan Rosbjerg. Calibration framework for a Kalman filter applied to a groundwater model[J]. Advances in Water Resources, 2006, 29( 5):719~734
    119 Alberto Conigliano, Stefano Mariani. Parameter identification in explicit structural dynamics: performances of the Extended Kalman Filter[J], Comput. Method Appl. Mech. Engrg, 2004(193):3807~3835.
    120 Jim Kao, Dawn Flicker, Rudy Henninger. Data assimilation with an extended Kalman filter for impact-produced shock-wave dynamics[J]. Journal of Computational Physics, 2004, 196(2):705~723
    121 Apte A, Hairer M, Stuart A M. A Bayesian Approach to Data Assimilation[R], Department of Mathematics of the North Carolina University,2006.
    122 Annan J D, Hargreaves J C, Edwards N R. Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter[J]. Ocean Modelling,2005(8):135~154.
    123 Lorentzen, R J, N?vdal, G. Tuning of parameters in a two-phase flow model using an ensemble Kalman filter[J]. International Journal of Multiphase Flow,2003, 29(8):1283~1309.
    124 N?vdal G, Mannseth T, Vefring, E H. Near-well reservoir monitoring through ensemble Kalman filter[J]. SPE 75235, 2002, Proceedings of SPE/DOE improved oil recovery symposium.
    125 Dinh Tuan Pham, Jacques Verron, Marie Christine Roubaud. A singular evolutive extended Kalman filter for data assimilation in oceanography[J]. Journal of Marine Systems, 1998(16):323~340.
    126 Brendan M Quine. A derivative-free implementation of the extended Kalman filter[J]. Short Communication, Automatica, 2006, 42(11):1927~1934
    127 Van Leeuwen P J. Comment on data assimilation using an ensemble Kalman filter technique[J]. Monthly Weather Review, 1999(127):1374~1377.
    128 Barrero, M O, Moor, D B. Data assimilation for magnetohydrodynamics systems[J]. Journal of Computational and Applied Mathematics, 2006, 189(1~2):242~259.
    129 Frederick Antrong Eckel. Effective Mesoscale Short-Range Ensemble Forecasting[D], Dissartation of PHD of the Washington University, 2003.
    130 Hangreaves J C, Annan J D, Edwards N R. An efficient climate forecasting method using an intermediate complexity earth system model and the Ensemble Kalman Filter[J], Climate Dynamics, 2004(23):745~760.
    131 Helene Etienne, Eric Dombrowsky. Estimation of the optimal interpolation parameters in a quasi-geostrophic model of the Northeast Atlantic using ensemble methods[J]. Journal of Marine Systems, 2003(40~41):317~339.
    132 Bishop, C H, Etherton B J, Majumdar, S J. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects[J]. Monthly Weather Review, 2001(129):420~436.
    133 王燕. 面向对象的理论与 C++实践[M]. 北京:清华大学出版社,1997.
    134 Jichun Wu, Bill X. Hu, Dongxiao Zhang. Applications of nonstationary stochastic theory to solute transport in multi-scale geological media[J]. Journal of Hydrology, 2003, 275(3~4): 208~228
    135 Chen Y, Zhang D X. Data assimilation for transient flow in geologic formations via ensemble Kalman filter[J]. Advances in Water Resources, 2006, 29(8):1107~1122.
    136 Evensen G. Sampling strategies and square root analysis scheme for the EnKF[J]. Ocean Dyn, 2004(53):343~367.
    137 Sharad Yadav. History Matching Using Probabilistic Approach in a Distributed Computing Enviroment[D], Thesis of MS of the Texas University at Austin, 2005.
    138 S?rensen,J V T H Madsen, H Madsen. Parameter sensitivity of three Kalman filter schemes for assimilation of water levels in shelf sea models[J]. Ocean Modelling, 2006,11(3~4):441~463
    139 Keppenne C L, Rienecker M. Assimilation of temperature into an isopycnal ocean general circulation model using a parallel Ensemble Kalman Filter[J]. J.Mar.Syst, 2003(40):363~380.
    140 Triantafyllou, Hoteit I. A singular evolutive interpolated Kalman filter for efficient data assimilation in a 3-D complex physical-biogeochemical model of the Cretan Sea[J]. Journal of Marine System, 2003(40~41):213~231.
    141 Brasseur P, Ballabrera, J. Verron, J. Assimilation of altimetric data in the mid-latitude oceans using the SEEK filter with an eddy-resolving primitive equation model[J]. J. Mar. Syst, 1999(4):269~294.
    142 Konstantinos M. Andreadis, Dennis P. Lettenmaier. Assimilating remotely sensed snow observations into a macroscale hydrology model[J]. Advances in Water Resources, 2006, 29(6):872~886
    143 R. Torres, J.I. Allen, F.G. Figueiras Sequential data assimilation in an upwelling influenced estuary[J]. Journal of Marine Systems, 2006, 60(3~4):317~329
    144 K. Brusdal, J. M. Brankart, G. Halberstadt, G. Evensen. A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems[J]. Journal of Marine Systems, 2003(40~41): 253~289
    145 陈炳瑞. 岩体流变参数的智能反演[D]. 东北大学硕士学位论文, 2003.
    146 谢康和,周健. 岩土工程有限元分析理论与应用[M]. 北京:科学出版社,2002
    147 张征,程祖锋,王恩祥,刘淑春. 岩土参数随机场空间最优估计精度分析与特异值研究[J]. 岩土工程学报,1999,21(5):586~590.
    148 王仁铎,胡光道. 线性地质统计学[M].北京:地质出版社,1988
    149 仇圣华,杨林德. 岩体不确定性参数求解方法研究[J]. 地下空间,2001,21(3):192~197.
    150 张征,张人权. 岩溶含水介质渗透系数空间结构分析的模型及其应用[J]. 中国岩溶,1995,14(2):113~121.
    151 杨金忠,叶自桐. 野外非饱和土壤水流运动速度的空间变异性及其对溶质运移的影响[J]. 水科学进展,1994,5(1):9~17.
    152 Famiglietti J F, Wood E F. Multiscale modeling of spatially variable water and energy balance processes[J]. Water Resour Res, 1994(30):3061~3078.
    153 Dale Barker. A General Formulation for 3DVAR Control Variables[R].NCAR Technical Note,1999.
    154 James A, Hansen Leonard, Smith A. The role of operational constrains in selecting supplementary observations[J], Journal of the Atmospheric Sciences, 2000(57):2859~2871.
    155 Svetlana N. Losa, Gennady A. Kivman, Jens Schr?ter. Sequential weak constraint parameter estimation in an ecosystem model[J]. Journal of Marine Systems, 2003, 43(1~2):31~49
    156 Bouttier F, Courtier P. Data Assimilation Concepts and Methods[M]. Traning course notes of ECMWF 1999.
    157 Rabier F, Courtier P. A comparison between four-dimensional variational assimilation and simplified sequential assimilation relying on the three-dimensional variational analysis[J]. Q.J.R.Meterol.Soc, 1993(119):845~880.
    158 Martyn P Clark, Andrew G Slater, Andrew P Barrett. Assimilation of snow covered area information into hydrologic and land-surface models[J]. Advances in Water Resources,2006(29):1209~1221.
    159 Zupanski M. Maximum likelihood ensemble ensemble Kalman filter: Theoretical aspects[J]. Monthly Weather Review, 2002, 130(7):1913~1924.
    160 Lorenc A. Relative merits of 4DVar and Ensemble methods[R].ECMWF Seminar on Recent developments in data assimilation for atmosphere and ocean, 2003.
    161 Lyster P M, Cohn S E. Parallel implementation of a Kalman filter for constituent data assimilation[J]. Monthly Weather Review, 1997(25):1674~1686.
    162 Ning Liu. Atomatic History Matching of Geologic Facies[D], Dissartation of PHD of the Oklahoma University, 2005.
    163 Yannong Dong, Yaqing Gu, Oliver, D S. Sequential assimilation of 4D seismic data for reservoir description using the ensemble Kalman filter[J]. Journal of Petroleum Science and Engineering, In Press, Corrected Proof, Available online 19 May 2006
    164 Yannong Dong, Yaqing Gu, Dean S. Oliver. Sequential assimilation of 4D seismic data forreservoir description using the ensemble Kalman filter[J]. Journal of Petroleum Science and Engineering, 2006, 53(1~2):83~99
    165 Dennis McLaughlin. An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering[J]. Advances in Water Resources, 2002, 25(8~12):1275~1286
    166 Eigbe U, Beck M B, Wheater H S. Kalman filtering in groundwater flow modeling: problem and prospects[J]. Stochast Hydrol Hydraul, 1998(12):15~32.
    167 Jude Nwaozo. Dynamic Optimization of a Water Flood Reservior[D], Thesis of t MS of the Oklahoma University, 2006.
    168 Yaqing Gu. History Matching Production Data Using the Ensemble Kalman Filter[D]. Dissartation of PHD of the Oklahoma University, 2006.
    169 Yannong Dong. Integration of Time-Lapse Semismic Data into Automatic History Matching[D], Dissartation of PHD of the Oklahoma University, 2005.
    170 R J Lorentzen, G. N?vdal, A C Lage V M. Tuning of parameters in a two-phase flow model using an ensemble Kalman filter[J]. International Journal of Multiphase Flow, 2003, 29(8):1283~1309
    171 Toth Z, Kalnay E. Ensemble forecasting at NMC: the generation of perturbations[J]. Bulletin of the American Meteorological Society, 1993, 74(12):2317~2330.
    172 M van Loon, Builtjes P J H, A J Segers. Data assimilation of ozone in the atmospheric transport chemistry model LOTOS[J]. Environmental Modelling & Software, 2000, 15(6~7):603~609
    173 Brusdal K, J Brankart M, G Halberstadt, G Evensen, Brasseur P, Van Leeuwen P J. A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems[J]. Journal of Marine Systems, 2003(40~41):253~289
    174 Hélène Etienne, Eric Dombrowsky. Estimation of the optimal interpolation parameters in a quasi-geostrophic model of the Northeast Atlantic using ensemble methods[J]. Journal of Marine Systems, 2003(40~41):317~339
    175 Christian L. Keppenne and Michele M. Rienecker. Assimilation of temperature into an isopycnal ocean general circulation model using a parallel ensemble Kalman filter[J]. Journal of Marine Systems, 2003(40~41):363~380
    176 Mette Eknes and Geir Evensen. An Ensemble Kalman filter with a 1-D marine ecosystem model[J]. Journal of Marine Systems, 2002, 36(1~2): 75~100
    177 Hamill T M, Whitaker J S, Snyder C. Distance-dependent filtering of background error covariance estimations in an ensemble Kalman filter[J]. Monthly Weather Review, 2001(129):2776~2790.
    178 Hargreaves J C, Annan J D. Using ensemble prediction methods to examine regional climate variation under global warming scenarios[J]. Ocean Modelling, 2006, 11(1~2):174~192
    179 G. Triantafyllou, I. Hoteit, G. Petihakis. A singular evolutive interpolated Kalman filter for efficient data assimilation in a 3-D complex physical–biogeochemical model of the Cretan Sea[J]. Journal of Marine Systems, 2003(40~41):213~231
    180 Heemink A W, Verlaan M. Variance Reduced Ensemble Kalman Filtering[R], Delft University of Technology, 2000.
    181 Heemink, A W, Verlaan, M, Seegers, A J. Variance reduced Ensemble Kalman Filtering[J]. Monthly Weather Review, 2001(129):1718~1728.
    182 Deutsch, C V, Journal, A G. GSLIB: Geostatistical Software Library and User’s Guide. 2th edition, Oxford University Press, New York,1998.
    183 Tipper, M K, Anderson, J L, Bishop C H, Hamill T M. Ensemble square root filters[J]. Monthly Weather Review, 2003(131):1485~1490.
    184 Anderson J L. An ensemble adjustment filter for data assimilation[J]. Monthly Weather Review, 2001(129):2884~2903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700