岩体开挖损伤区的热—流—力耦合模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下岩体工程的开挖必然在巷道周边形成开挖损伤区。开挖损伤区的形成及后续的时空演化过程是一个温度场、渗流场、应力场和损伤场相互耦合作用的过程。认清开挖损伤区的物理力学性质及其时空演化规律,对于工程稳定性和安全性评价及支护参数优化是至关重要的。针对能源深部战略储备和核废料深部地下处置等工程问题,近年来岩体开挖损伤区表征及其热(Thermal)—流(Hydraulic)—力(Mechanical)(简称为THM)耦合模型方面取得了较大的进展。
     考虑岩体的损伤,在THM耦合模型中引入损伤变量,提出岩体损伤过程中的THM耦合模型。借助有限元软件COMSOL Multiphysics (CM),通过有限元编程实现该模型的数值求解。通过把均匀弹性介质THM耦合响应的模拟结果与理论分析结果进行对比,证实了CM求解THM耦合方程的有效性;通过含圆形孔洞的方形岩石试样在单轴压缩条件下损伤过程的数值模拟,验证了文中提出的考虑损伤过程的THM耦合模型的正确性。
     开展了流固耦合环境下岩体开挖损伤区的预测研究,数值模拟表明,圆形巷道在HM耦合条件下的损伤区一方面受控于地应力条件(侧压力系数),渗流场的作用亦会对损伤区的萌生和发展产生重要的影响。最后针对核废料处置巷道所处地质环境条件,进行含裂隙岩体在温度作用下开挖损伤区的演化规律研究,数值模拟表明,裂隙的存在以及温度的作用都会对损伤区的萌生和发展产生重要的影响。
The creation of an excavation damaged zone (EDZ) is expected around all man-made openings in geologic formations. The formation and its subsequent spatial and temporal evolution of EDZ, being considered as a coupled process among thermal, hydraulic mechanical, and damage fields, which is a significant issue for evaluating the engineering stability and safety, and for optimizing the supporting parameters. Recently, aiming to the study of the strategic energy storage and the radioactive waste disposal, a signficant development in EDZ characterization and coupled thermal-hydraulic-mechanical (THM) modelling has been achievend.
     A coupled THM model during the rock failure is proposed when the damage is considered as a key factor that controls the THM coupling. The model is solved using numerical method by programming on the base of COMSOL Multiphysics, a powerful PDE-based multiphysics modelling environment using finite element method. The proposed THM model is firstly utilized to simulate the THM response of the elastic medium and it is validated by comparing the numerical results with the analytical solutions. Secondly the proposed THM model with damage evoluation incorporated is validated by comparing the numerical results with the experimental obseravation of the failure process around circular openings under uniaxial compression.
     At last, the model is employed to predict EDZ under HM conditions and the numerical results indicate that, the damage zone is dominantly controlled by in-situ stess conditions, and the hydraulic pressure also has an important influence on the initiation and evolution of EDZ. At last the EDZ development of fracuted rockmass under TM conditions has been numerically simulated and the numerical results denote that both the existing fractures and the thermal effects play a important role on the initiation and evolution of EDZ.
引文
1. 董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.08.
    2. 钮强.岩石爆破机理[M].沈阳:东北工学院出版社.1990.53-70
    3. 戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002.80-85.
    4. 杨小林,员小有,吴忠,苏承东.爆破损伤岩石力学特性的试验研究[J].岩石力学与工程学报,2001,20(4):436-439.
    5. 吉小明.隧道开挖的围岩损伤扰动带分析[J].岩石力学与工程学报,2005 24(10):1697-1702.
    6. 盛谦.深挖岩质边坡开挖扰动区与工程岩体力学性状研究[D].中国科学院武汉岩土力学研究所博士学位论文,2002.
    7. 董学晟,周火明.三峡永久船闸高边坡开挖扰动区工程岩体力学性状研究[M].湖北科学技术出版社,2003
    8. Tsang, C.F., Bernier, F., Davies, C. (2005). Geohydromechanical processes in the Excavation Damaged Zone in crystalline rock, rock salt, and indurated and plastic clays-in the context of radioactive waste disposal [J]. International Journal of Rock Mechanics and Mining Sciences,42: 109-125.
    9. Bossart, P., Meier, P. M., Moeri, A. Trick, T., Mayor, J. (2002). Geological and hydraulic characterization of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory [J]. Engineering Geology,66 19-38.
    10. Hou, Z. (2003). Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities [J]. International Journal of Rock Mechanics and Mining Sciences,40: 725-738.
    11. Souley, M., Homand, F., Pepa, S., Hoxha, D. Damage-induced permeability changes in granite:a case example at the URL in Canada [J]. International Journal of Rock Mechanics and Mining Sciences,2001,38:297-310.
    12. Pusch, R. Stanfors, R. The zone of disturbance around blasted tunnels at depth [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanical Abstracts,1992,29(5): 447-456.
    13. 黄涛,杨立中.渗流-应力-温度耦合下裂隙围岩隧道涌水量的预测[J].西南交通大学学报,1999,34(5):554-559.
    14. 周宏伟,谢和平,左建军.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1): 91-99.
    15. 王明洋,周泽平,钱七虎.深部岩体的构造和变形与破坏问题[J].岩石力学与工程学报,2006,25(3):448-455.
    16. 何满潮,谢和平,彭苏萍,姜耀东.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    17. 周辉,冯夏庭.岩石应力-水力-化学耦合过程研究进展[J].岩石力学与工程学报,2006,25(4):855-864.
    18. 贾颖绚,宋宏伟.巷道围岩松动圈测试技术与探讨[J].西部探矿工程,2004,101(10):148-150.
    19. Autio, J., Siitari-Kauppi, M., Timonen, J., hartikainen, K., Hartikainen, J. Determination of the porosity, permeability and diffusivity of rock in the excavation-disturbed zone around full-scale deposition holes using the C-PMMA and He-gas methods [J]. Journal of Contaminant Hydrology, 1998,35:19-29.
    20. Kelsall, P.C., Case, J.B., Chabannes, C.R. Evaluation of excavation-induced changes in rock permeability [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanical Abstracts,1984,21 (3):123-135.
    21. 孙蓉琳,梁杏,靳孟贵.基于野外水力试验的玄武岩渗透性及尺度效应[J].岩土力学,2006,27(9):1490-1494.
    22. Jing, L., Tsang, C.F., Stephansson, O. DECOVALEX-An international cooperative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanical Abstracts,1995,32 (5):389-398.
    23. Tsang, C.F., Jing, L., Setphansson, O., Kautsky, F. The DECOVALEX Ⅲ project:A summary of activities and lessons learned [J]. International Journal of Rock Mechanics and Mining Sciences, 2005,42:593-610.
    24. Rutqvist, J., Borgesson, L., Chijimatsu, M., Nguyen, T.S., Jing, L., Noorishad, J., Tsang, C.-F. Coupled thermo-hydro-mechanical analysis of a heater test in fractured rock and bentonite at Kamaishi Mine-comparison of field results to predictions of four finite element codes [J]. International Journal of Rock Mechanics & Mining Sciences,2001,38:129-142.
    25. Rutqvist, J., Borgesson, L., Chijimatsu, M., A. Kobayashi, A., Jing, L., Nguyene, T.S., Noorishad, J., Tsang, C.-F. Thermohydromechanics of partially saturated geological media:governing equations and formulation of four finite element models [J]. International Journal of Rock Mechanics & Mining Sciences,2001,38:105-127.
    26. Rutqvist, J., Tsang, C.-F. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain [J]. Journal of Contaminant Hydrology,2003,62-63:637-652.
    27. Chan, T., Khair, K., Jing, L., Ahola, M. international comparison coupled of thermo-hydro-mechanical models of multiple-fracture bench mark problem:DECOVALEX phase 1, bench mark test 2 [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanical Abstracts,1995,32(5):435-452.
    28. Young, R. P., Martin, C.D. Potential role of acoustic emission/microseismicity investigations in the site characterization and performance monitoring of nuclear waste repositories [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts,1993,30 (7): 797-803.
    29. Falls, S. D., Young, R. P. Acoustic emission and ultrasonic-velocity methods used to characterize the excavation disturbance associated with deep tunnels in hard rock [J]. Tectonophysics,1998,289: 1-15.
    30. Thompson, P.M., Martino, J.B., Spinney, M.H. Detailed measurements of deformation in the excavation disturbed zone [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts,1993,30 (7):1511-1514.
    31. Read, R.S.20 years of excavation response studies at AECL's Underground Research Laboratory [J]. International Journal of Rock Mechanics & Mining Sciences,2004,41:1251-1275.
    32. Martino, J.B., Chandler, N.A. Excavation-induced damage studies at the Underground Research Laboratory[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:1413-1426.
    33. Pettitt, W.S., Baker, C., Young, R.P., Dahlstrom, L.O., Ramqvist, G. The assessment of damage around critical engineering structures using induced seismicity and ultrasonic techniques [J]. Pure and Applied Geophysics,2002,159(1-3):179-195.
    34. Hinds, J. J., Bodvarsson, G. S., Nieder-Westermann, G. H. Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain[J]. Journal of Contaminant Hydrology, 2003,62-63:111-132.
    35. Rutqvist, J., Tsang, C.-F. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain[J].Journal of Contaminant Hydrology,2003,62-63:637-652.
    36. Li, G.M., Tsang, C.-F. Seepage into drifts with mechanical degradation[J]. Journal of Contaminant Hydrology,2003,62-63:157-172.
    37. Bossart, P., Meier, P.M., Moeri, A., Trick, T., Mayor, J.C. Geological and hydraulic characterization of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory[J]. Engineering Geology,2002,66:19-38.
    38. Chijimatsu, M., Fujita, T., Sugita, Y., Amemiya, K.,Kobayashi, A. Field experiment, results and THM behavior in the Kamaishi mine experiment [J]. International Journal of Rock Mechanics and Mining Sciences,2001,38 (1):67-78.
    39. Nguyen, T.S., Borgesson, L., Chijimatsu, M., Rutqvist, J., Fujita, T., Hernelind, J., Kobayashi, A., Ohnishi, Y., Tanaka, M., Jing, L. Hydro-mechanical response of a fractured granitic rock mass to excavation of a test pit-the Kamaishi Mine experiment in Japan [J]. International Journal of Rock Mechanics and Mining Sciences,2001,38 (1):79-84.
    40. Lockner, D. The role of acoustic-emission in the study of rock fracture [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30 (7):883-899.
    41. 唐春安.岩石破裂过程中的灾变.北京:煤炭工业出版社,1993.
    42. 张明,李仲奎,杨强,冯夏庭.准脆性材料声发射的损伤模型及统计分析[J].岩石力学与工程学报,2006,25(12):2493-2501.
    43. 樊运晓.单轴压缩实验下裂纹闭合阶段岩石KAISER效应的研究[J].岩石力学与工程学报,2001,20(6):793-796.
    44. 陈忠辉,唐春安,徐小荷.岩石声发射KAISER效应的理论和实验研究[J].中国有色金属学报,1997,7(1):9-12.
    45. 陈枫,孙宗颀,徐纪成.岩石压剪断裂过程中的超声波波谱特性研究[J].工程地质学报,2000,8(2):164-168.
    46. 吴刚,赵震洋.不同应力状态下岩石类材料破坏的声发射特性[J].岩土工程学报,1998,20(2):82-85.
    47. 陈文化,景立平,徐兵.岩石声发射监测技术应用分析-对三峡水利枢纽运行时库区内滑坡实时动态监测的建议[J].自然灾害学报,1999,8(2):103-109.
    48. 唐绍辉,吴壮军.岩石声发射活动规律的理论与实验研究[J].矿业研究与开发,2000,20(1):16-18.
    49. 李俊平,余志雄,周创兵,戴跃华,孟刚,陈从新,刘才华.水力耦合下岩石的声发射特征试验研究[J].岩石力学与工程学报,2006,25(3):492-498.
    50. 万志军,李学华,刘长友.加载速率对岩石声发射活动的影响[J].辽宁工程技术大学学报,2001,20(4):469-471.
    51. 巴晶,刘力强,马胜利岩石力学试验中的声发射源定位技术[J].无损检测,2004,26(7):342-348.
    52. 王更峰.基于小波分析的岩石声发射信号处理技术[J].矿业工程,2006,4(5):11-14.
    53. 逢焕东,张兴民,姜福兴.岩石类材料声发射事件的波谱分析[J].煤炭学报,2004,29(5):540-544.
    54. 姜福兴,Xun Luo.微震监测技术在矿井岩层破裂监测中的应用[J].岩土工程学报,2002,24(2):147-149.
    55. 逢焕东,姜福兴,张兴民.微地震监测技术在矿井灾害防治中的应用[J].金属矿山,2004,12:58-61.
    56. 张银平.岩体声发射与微震监测定位技术及其应用[J].工程爆破,2002,8(1):58-61.
    57. 刘国清.基于声发射的岩体工程灾害微震监测系统[J].采矿技术,2005,5(1):38-39.
    58. 徐东强,单晓云,甄在学.双向压缩下岩石声发射特性损伤力学分析[J].矿山压力与顶板管理,2000,3:82-84.
    59. 朱传云,喻胜春.爆破引起岩体损伤的判别方法研究[J].工程爆破,2001,7(1):12-16.
    60. Ohtsu, M., Watanabe, H. Quantitative damage estimation of concrete by acoustic emission [J]. Construction and Building Materials,2001,15:217-224.
    61. Shigeishi, M., Ohtsu, M. Acoustic emission moment tensor analysis:development for crack identification in concrete materials [J]. Construction and Building Materials,2001,15:311-319.
    62. Landis, E. N. Micro-macro fracture relationships and acoustic emissions in concrete [J]. Construction and Building Materials,1999,13:65-72.
    63. Cai, M., Kaiser, P.K. Assessment of excavation damaged zone using a micromechanical mode [J]. Tunnelling and Underground Space Technology,2005,20:301-310.
    64. Eberhardt, E., Stead, D., Stimpson, B., Read, R.S. Identifying crack initiation and propagation thresholds in brittle rock[J]. Canadian Geotechanical Journal,1998,35(2):222-33.
    65. Diederichs, M.S. Kaiser, P.K., Eberhardt, E. Damage initiation and propagation in hard rock during tunneling and the influence of near-face stress rotation [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:785-812.
    66. KANG Yumei, TANG Chun'an, BIAN Jingmei, JIA Peng, XU Suchao. Improved Algorithm for Ground Motion Inversion and Structural Parameters Identification [M]. Proceedings of 2006 (Shenyang) Proceeding of the International Colloquium on Safety Science and Technology. (ISBN 7-5381-4821-3)2006:117-121
    67. KANG Yumei, TANG Chun'an, LIANG Zhengzhao, CHEN Gengye. Numerical Simulation on AE Characteristics of Rock and Concrete Materials [M]. Key Engineering Materials, in press, Proceeding of the Asian Pacific Conference on Fracture and Strength'06 (APCFS'06).
    68. 康玉梅,白泉,陈百玲,刘斌.基于广义逆理论的转角信息重构近似算法[J].东北大学学报,2006,27(3):316-319.
    69. 周江,福井正则.岩体中渗流-热-应力耦合作用的理论研究[J].山西矿业学院学报,1995,13(1):76-81.
    70. Biot. General theory of three-dimensional consolidation [J]. Journal of Applied Physics,1941,12: 155-164
    71. 介玉新,温庆博,李广信,许延春.有效应力原理几个问题探讨[J].煤炭学报,2005,30(2):0202-0205.
    72. 徐献芝,李培超,李传亮.多孔介质有效应力原理研究[J].力学与实践,2001,23(4):042-045.
    73. 卢应发,郑俊杰,柴华友.典型岩石和土的Skempton系数特征[J].岩石力学与工程学报,2005,24(11):1847-1851.
    74. Noorishad, J., Tsang, C.F. and Witherspoon, P.A., Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks:numerical approach [J]. Journal of Geophysical Research,1984,89:10365-73.
    75. Tsang CF. Coupled processes associated with nuclear waste repositories [M]. New York:Academic Press,1987.
    76. Tsang CF. Coupled thermomechanical and hydrochemical processes in tock fractures[J]. Review of Geophysics,1991,29:537-48.
    77. Zhou. Y, R.K.N.D. Rajapakse and Graham. J. A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration [J]. Int.J. Solids Structures,1998,35:4659-4683.
    78. Stephansson O, Jing L, Tsang CF. Coupled thermohydro-mechanical processes of fractured media [M]. Rotterdam:Elsevier,1996.
    79. 柴军瑞,韩群柱.岩体渗流场与温度场耦合的连续介质模型[J].地下水,1997,19(2):59-62.
    80. 冯夏庭,丁梧秀.应力-水流-化学耦合下岩石破裂全过程的细观力学试验[J].岩石力学与工程学报,2005,24(9):1465-1473.
    81. Zhu, W. C., Liu, J., Elsworth, D., Polak, A., Grader, A., Sheng, J. C., Liu, J.X. Tracer transport in a fractured chalk:X-ray ct characterization and digital-image-based (DIB) simulation [J]. Transport in Porous Media,2007,70 (1):25-42.
    82. Zhu, W. C., Liu, J., Sheng, J. C., Elsworth, D. Analysis of coupled gas flow and deformation process with desorption and Klinkenberg effects in coal seam [J] International Journal of Rock Mechanics and Mining Sciences,2007,44 (7):971-980.
    83. 孔祥言,李道伦,徐献芝,卢德唐.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展,2005,20(2):269-276.
    84. Yarlong Wang, Maurice B. Dusseault. A coupled conductive-convective thermo-poroelastic solution and implications for wellbore stability [J]. Journal of Petroleum Science and Engineering, 2003:187-198.
    85. S. Dal Pont, S. Durand, B.A. Schrefler. A multiphase thermo-hydro-mechanical model for concrete at high temperatures-Finite element implementation and validation under LOCA load [J]. Nuclear Engineering and Design,2007:2137-2150.
    86. 白冰.饱和土体圆柱形热源热固结问题的一个近似解[J].岩石力学与工程学报,2005,24(6):1004-1009.
    87. 白冰.饱和多孔介质热-水-力控制方程耦合项的意义及耦合影响分析[J].岩土力学,2006,27(4):0519-0525.
    88. 赖远明,吴紫汪,朱元林,朱林楠.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报,1999,21(5):529-533.
    89. 徐光苗,刘泉声,张秀丽.冻结温度下岩体THM完全耦合的理论初步分析[J].岩石力学与工程学报,2004,23(21):3709-3713.
    90. 贺玉龙,杨立中,杨吉义.非饱和岩体三场耦合控制方程[J].西安交通大学学报,2006,41(4):0419-0424.
    91. 刘亚晨.裂隙岩体介质THM耦合问题中的渗透特性研究[J].地质灾害与环境保护,2004,15(1):0080-0085.
    92. 蒋中明,Dashnor Hoxha, Francoise Homand.核废料地质贮存介质黏土岩的三维各向异性热-水-力耦合数值模拟[J].岩石力学与工程学报,2007,26(3):493-500.
    93. 许增光,柴军瑞.考虑温度影响的岩体裂隙网络稳定渗流场数值分析[J].西安石油大学学报,2007,22(2):0169-0173.
    94. 刘亚晨,吴玉山,刘泉声.核废料贮存裂隙岩体耦合分析研究综述[J].地质灾害与环境保护.1999,10(3):72-78.
    95. 刘亚晨.核废料贮存围岩介质THM耦合过程的力学分析[J].地质灾害与环境保护,2006,17(1):0054-0058.
    96. Oda, M. Modern developments in rock structure characterization [J]. In:Comprehensive Rock Engineering.1993, Vol.1:185-200.
    97. Germanovich, L.N. Percolation theory [J]. Thermoelasticity and discrete hydrothermal venting in the earth's crust. Science,1992,255(3):1564-1566.
    98. Martin, J.T. On thermoelasticity and silicica precipitation in hydrothermal systems [J]:Numerical modeling of laboratory experiments. Journal of Geophysical Research,1997,102 (B6): 12095-12107.
    99. 寇绍全.热开裂损伤对花岗岩变形及破坏特性的影响[J].力学学报,1987,19(6):550-556.
    100.张静华,王靖涛,赵爱国.高温下花岗岩断裂特征的研究[J].岩土力学,1987,8(4):11-16
    101.王绳祖,高温高岩石力学-历史、现状、展望[J].地球物力学进展,1995,10(4):1-10.
    102. Wang, H. F., Bonner, B. Thermal stress cracking in granite [J]. Journal of Geophysical Research, 1989,94(B2):1745-1758
    103.陈颙,吴晓东,张福勤.岩石热开裂的实验研究[J].科学通报,1999,4(8):880-883.
    104.谭启,骆循,李仕雄,王地.岩石热破裂研究进展评述[J].露天采矿技术,2006,6:16-19.
    105. David, C., Menendez, B., Darot, M. Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite [J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:433-448
    106. Reuschle, T., Haore, S.G., Darot, M. The effect of heating on the microstructural evolution of La Peyratte granite deduced from acoustic velocity measurements [J]. Earth and Planetary Science Letters,2006,243:692-700.
    107.刘泉声,许锡昌.温度作用下脆性岩石的损伤分析[J].岩石力学与工程学报,2000,19(4):408-411.
    108.王青海,田瑛.中低放核废料地下处置对围岩介质(花岗岩体)温度场的影响[J].地质灾害与环境保护,1997,12,8(4):54-58.
    109.陈剑文,杨春和,高小平,李晓红,姜德义.盐岩温度与应力耦合损伤研究[J].岩石力学与工程学报,2005,24(11):1986-1991.
    110.席道瑛,谢端,易良坤.温度对岩石模量和波速的影响.岩石力学与工程学报,1998.11,17(增):802-807.
    111.唐世斌,唐春安,朱万成,王述红,于庆磊.热应力作用下的岩石破裂过程分析[J].岩石力学与工程学报,2006,25(10):2071-2078.
    112.仵颜卿,张卓元.岩体水力学导论[M].成都:西南交通大学出版社,1995
    113. Mao. Bai, Derpekelsworth. Coupled processes in subsurface depormation, flow, and transport [M]. ASCE PRESS,2000
    114. Paterson, S. Experimental deformation of rocks:the brittle field [M]. Berlin:Springer,1978
    115. Li, S.P., Wu, D.X. Effect of Confining Pressure, Pore Pressure and Specimen Dimension on Permeability of Yinzhuang sandstone [J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(3/4):435-441.
    116. Zoback, M.D., Byerlee, J.D. The effect of microcracks dilatancy on the permeability of Westerly granite [J]. Journal of Geophysical Research,1975,80:752-755.
    117. Schulze, O., Popp, T., Kern, H. Development of damage and permeability in deforming rock salt [J]. Engineering Geology,2001,61:163-180.
    118. Oda, M.T., Takemura. A., Aoki. T. Damage growth and permeability change in triaxial compression tests of Inada granite [J]. Mechanics of Materials,2002,34:313-331.
    119. Schulze, O., Popp, T., Kern, H. Development of damage and permeability in deforming rock salt [J]. Engineering Geology,2001,61:163-180.
    120.韩宝平,冯启言等.全应力应变过程中碳酸盐岩渗透性研究[J].工程地质学报,2000,8(2):127-128.
    121.李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩土工程学报,2001,23(1):68-70.
    122.姜振泉,季梁军.岩石全应力应变过程渗透性试验研究[J].岩土工程学报,2001,23(2):153-156.
    123. Zhu W, Wong T F. The transition from brittle faulting to cataclastic flow:permeability evolution [J]. Journal of Geophysical Research,1997,102 (B2):3027-3041.
    124. Wang, J.A., Park, H.D. Fluid permeability of sedimentary rocks in a complete stress-strain processs [J]. Engineering Geology,2002,63:291-300.
    125.杨栋,赵阳升.裂隙底板采场流固耦合作用的数值模拟[J].煤炭学报,1998,23(1):37-41
    126. Wang, J.A., Park., H.D. Coal mining above a confined aquifer[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(4):537-551.
    127.郑少河,朱维申,王书法.承压水上采煤的流固耦合问题研究[J].岩石力学与工程学报,2000,(7):421-424
    128. Wu, Q., Wang, M., Wu, X. Investigations of groundwater bursting into coal mine seam floors from fault zones [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:557-571.
    129. Zhang, J.C., Shen B.H. A Coal mining under aquifers in China:a case study [J]. International Journal of Rock Mechanics and Mining Sciences,2004; 41:629-639.
    130. Valko, P., Economides, M.J. Propagation of hydraulically induced fractures-a continuum damage mechanics approach [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1994,31(3):221-229.
    131.王媛.裂隙岩体渗流与应力耦全分析的四自由度全耦合法[J].水利学报,1998,(7):55-59.
    132.陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(4):299-308.
    133.杨延毅,周维垣.裂隙岩体的渗流-损伤耦合分析模型及其工程应用[J].水力学报,1991,5:19-27
    134.杨太华,曾德顺.三峡船闸高边坡裂隙岩体的渗流损伤特征[J].中国地质灾害预防治学报,1997,8(2):13-18
    135.朱珍德,孙钧.裂隙岩体非稳定渗流场与损伤场耦合分析模型[J].水文地质工程地质,1999,26(2):35-42
    136.郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报,2001,20(2):156-159
    137.柴军瑞,仵彦卿.岩体渗流与应力相互作用关系综述[M].第六届岩石力学与工程会议论文集.武汉:2000.11,366-368
    138.盛金昌,速宝玉.裂隙岩体渗流应力耦合研究综述[J].岩土力学.1998,2:92-98.
    139. Tang, C.A., Tham, L.G., Lee, P.K.K., Yang, T.H., Li, L.C. Coupled analysis of flow, stress and damage (FSD) in rock failure [J]. International Journal of Rock Mechanics and Mining Sciences, 2002,39:477-489.
    140.朱万成,康玉梅,杨天鸿,李占海,刘继山.基于数字图像的岩石非均匀性表征技术在流固耦合分析中的应用[J].岩土工程学报,2006,28(12):2087-2091.
    141. Zhu, W.C., Liu, J., Yang, T.H., Sheng, J.C., Elsworth, D. Effects of local rock heterogeneities on the hydromechanics of fractured rocks using a digital-image-based technique [J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(8):1182-1199.
    142.杨天鸿,唐春安,朱万成.岩石破裂过程渗流与应力耦合分析[J].岩土工程学报,2001,.23(4),489-493.
    143.杨天鸿,唐春安,刘红元,朱万成,冯启言.承压水底板突水失稳过程的数值模型初探[J].地质力学学报,2003,9(3):281-287
    144. J Liu, J C Sheng, W C Zhu. Effects of heterogeneity on the multiphysics of fractured rocks [C]//Proceedings of the 2nd International Conference on Coupled THMC Processes in Geo-systems: Fundamentals, Modeling, Experiments and Applications. Nanjing:[s. n.],2006:045-061.
    145. Rice J.R. and Cleary, M.P. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents [J] Rev. Geophys. Space Phys.1976,14:227-241.
    146. Cleary, M.P.,1976. Fundamental solutions for fluid-saturated porous media and application to localized repture phenomena. Ph.D. thesis, University Microfilms International, Ann Arbor, Ml.
    147. Cleary, M.P. Fundamental solutions for a fluid-saturated porous solid [J] Int J Solids Structures. 1977,13:785
    148. Noorishad J. and Tsang C-F.1996. Coupled thermohydroelasticity phenomena in variably saturated fractured porous rocks-Formulation and numerical solution. In Coupled Thermo-Hydro-Mechanical Processes of Fractured Media, ed. O Stephansson, L Jing, CF Tsang, p.93-134. Amsterdam:Elsevier Science Publishers. pp.575.
    149. Kurashige, M.. A thermoelastic theory of fluid-filled porous materials [J] Int J Solids Structures. 1989,25(9):1039-1052.
    150. Detournay, E., and Cheng A. H-D,. Poroelastic response of a borehole in a non-hydrostatic stress field [J] Int J Rock Mech Min Sci & Geomech Abstr.1988,25(3):171-182.
    151. Rutqvist J, Tsang C-F. A study of caprock hydromechanical changes associated with CO2-injection into a brine formation [J]. Environmental Geology,2002,42:296-305.
    152.朱万成,唐春安,杨天鸿,梁正召.岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证[J].岩石力学与工程学报,2003,22(1):24-29
    153. COMSOL AB. COMSOL Multiphysics Version 3.4, User's Guide and Reference Guide. Stockholm, 2007
    154. McTigue, D.F. Flow to a heated borehole in porous, thermoelastic rock:analysis [J] Water Resour. Res.1990,26(8):1763-74.
    155. Zhu, W.C., Bruhns, O.T. Simulating excavation damaged zone around a circular opening under hydromechanical conditions [J]. International Journal of Rock Mechanics & Mining Sciences,2008, 45 (5):815-830
    156. Carter, B.J. Lajtai, E.Z.; Petukhov, A. Primary and remote fracture around underground cavities [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1991,15(1):21-40.
    157.朱万成.混凝土断裂过程的细观数值模型及其应用[D].沈阳:东北大学.2001
    158. Tang, C.A. (1997). Numerical simulation of progressive rock failure and associated seismicity [J]. International Journal of Rock Mechanics and Mining Sciences,34:249-261.
    159. Tang, C.A., Liu, H., Lee, P.K.K., Tsui, Y., Tham, L.G. (2000). Numerical tests on micro-macro relationship of rock failure under uniaxial compression, part Ⅰ:effect of heterogeneity [J]. International Journal of Rock Mechanics and Mining Sciences,37,555-569.
    160. Tang, C.A. Tham, L.G., Lee, P.K.K., Yang, T.H., Li, L.C. (2002). Coupled analysis of flow, stress and damage (FSD) in rock failure [J]. International Journal of Rock Mechanics & Mining Sciences 39 (2002) 477-489
    161. 朱万成,唐春安,杨天鸿,梁正召.岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证[J].岩石力学与工程学报,2003,22(1):24-29.
    162.大连力软科技有限公司.RFPA用户手册[R].大连:大连力软科技有限公司,2005.(Dalian Mechsoft Co., Ltd. RFPA users'guide [R].Dalian:Dalian Mechsoft Co. Ltd.,2005.)
    163. Yang, T.H., Tham, L.G, Tang, C.A., Liang, Z.Z., Tsui, Y. Influence of heterogeneity of mechanical properties on hydraulic fracturing in permeable rocks [J]. Rock Mechanics and Rock Engineering, 2004,37 (4):251-275.
    164.潘鹏志,冯夏庭,周辉.开挖损伤区近场模型THM耦合过程的BMT模拟[J].岩石力学与工程学报,2007,26(12):2532-2541
    165. Rutqvist, J. Backstrom, A., Chijimatsu, M., Feng, X.T., Pan, P.Z., Hudson, J.A., Jing, L., Kobayashi, A., Koyama, T., Lee, H.S., Huang, X.H., Rinne, M., Shen, B. A Benchmark Simulation Study of the Long-term EDZ Evolution of Geological Nuclear Waste Repositories. Environmental Geology, 2008, in press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700