不同改良剂修复重金属铬污染土壤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,土壤重金属铬污染日趋严重,铬已经成为土壤和水体重要的污染元素之一,改良剂原位修复技术是降低土壤重金属含量的有效办法之一。本研究以小白菜为材料,采用盆栽试验研究了石灰、活性炭及石灰+活性炭处理对铬胁迫下小白菜生长、生理生化、铬吸收量的影响,对铬污染土壤pH及土壤中铬形态分布的影响,旨在阐明改良剂抑制重金属铬对小白菜的毒害作用机理。主要研究结论如下:
     (1)铬污染土壤对小白菜生长可产生影响,适量的重金属铬对小白菜的生长是有益的,过量的铬对小白菜产生抑制作用,且铬的污染水平越高,小白菜生长受抑制越严重。改良剂的施用会有效缓解铬污染对小白菜抑制,增加小白菜生物产量。小白菜株高升高,地上部和根部干重增加,叶绿素含量增加均说明这一点。其中活性炭处理增产效果最好,其次是石灰+活性炭,石灰最差。高量石灰处理(L_3,即2g/kg处理)与高量铬一起对小白菜生长产生明显的抑制作用。
     (2)铬能够抑制小白菜叶绿素的合成。适量的石灰(L_1、L_2,即1.0、1.5g/kg处理)能够抑制铬对叶绿素的毒害,高浓度石灰处理的抑制作用效果不明显。石灰+活性炭的效果和单施石灰效果类似,活性炭处理的抑制效果最好。
     (3)铬污染对小白菜生理生化活动产生影响。随着外源铬的添加的增加,小白菜SOD活性先升高后降低然后再升高、POD活性先升高后降低、CAT酶活性先降低后升高,MDA含量逐渐升高,说明铬引起细胞产生膜脂过氧化作用。适量改良剂处理可缓解膜脂过氧化。超量石灰处理(L_3浓度)可对小白菜产生另一种胁迫,与铬胁迫共同作用于小白菜,加剧了小白菜细胞膜受破坏的程度。铬处理下不同活性炭浓度处理,抗氧化酶系统表现的效应有所不同,其原因有待进一步研究。
     (4)铬污染土壤会显著增加小白菜对铬的吸收,种植小白菜时,小白菜体内铬含量显著增加,且污染水平越高,小白菜体内的铬含量也越高。小白菜不同部位铬含量不同,以根部最多,其次为叶部,相对最少的在茎部。各污染土壤中加入石灰、活性炭等改良剂处理后,小白菜体内的铬含量较污染对照均有不同程度降低,改良剂用量越大,铬含量越低,说明石灰、活性炭等改良剂能有效抑制小白菜对土壤中铬的吸收,不同改良剂在不同铬处理下对小白菜吸收铬的抑制效果不同。
     (5)外源铬的添加,有使土壤pH升高的趋势。低浓度铬处理下,石灰的施入使土壤pH值有显著升高,高浓度铬处理下,石灰对土壤pH影响相对较小。活性炭对土壤pH影响不显著。石灰+活性炭处理下,土壤pH值仍然升高,但没有石灰对土壤的pH值影响显著,可见活性炭的添加能够一定程度上缓冲土壤pH变化。
     (6)小白菜吸收土壤中铬的量不仅与土壤总量有关,更重要的是取决于土壤中交换态铬含量的多少,土壤中交换态铬含量越多,越容易被植物吸收。石灰的加入一方面能提高土壤的pH,增加铬的沉淀态含量,降低铬的活性;另一方面,钙还可对铬产生拮抗作用,从而降低小白菜对土壤中铬的吸收。活性炭一方面可以直接吸附污染土壤中的重金属,降低土壤中交换态铬;另一方面,活性炭的加入可以提高土壤有机碳的含量,增加土壤铬的有机结合态含量,起到固定铬的作用。
The Pollution of heavy metal chromium in soil has been becoming more serious at Present. It has already become one of the pollution elements in soil. In situ remediation technology by ameliorant is one of the effective approaches to decrease the amount of heavy mental existed in soils. This study makes use of pakchoi as the materials, and uses pot-testing to research on the effect of the application of lime, activated carbon and the co-application of lime and activated carbon on pakchoi’s growth, physical and biochemical conditions, Cr absorption amount, pH of Cr contaminated soil and the morphological distribution of Cr. This study aims at explaining the mechanism of ameliorants in preventing Cr poison to the pakchoi. The main results are as follows:
     (1) Cr contaminated soil has certain effect on Pakchoi’s growth. Proper concentration of Cr is beneficial to pakchoi’s growth, while excessive concentration of Cr can prevent pakchoi’s growth and the more serious the Cr contamination, the more serious growth suppression the pakchoi suffers. The application of soil conditioner can effectively mitigate Cr’s supression influence on pakchoi, and can increase pskchoi’s biological production. The increase of plant height and the dry weight of parts above the ground and the roots as well as the amount of chlorophyll can explain the phenomena. In the study, groups treated with activated carbon has the best production effect, followed by groups with the combination of activated carbon and lime, with groups treated with limes the worst. Treatment with high concentration of lime (L3, 2g/kg) and Cr shows obvious suppression effect on pakchoi’s growth.
     (2) Cr can prevent the compound of chlorophyll. Proper concentrations of lime (L1, L2; 1.0, 1.5g/kg) can decrease Cr’s toxins on chlorophyll. When it comes to high-concentration lime treatment, the effect is not obvious. The co-application of lime and activated carbon and the mere application of lime share nearly the same effect, worse than activated carbon treatment.
     (3) Cr contamination influences pakchoi’s physical and biochemical activities. With the increase of adding Cr, the activity of pakchoi’s SOD increases, then decreases and then increases; POD increases and next decreases; CAT enzymes firstly decreases and then increases; the amount of MDA gradually increases, which indicates that Cr causes membrane-lipid peroxidation. Treatments with proper amount of ameliorants can remiss membrane-lipid peroxidation. Excessive lime treatment (L3 Concentration) can cause another stress, which influences pakchoi together with Cr stress, exacerbating damage on pakchoi’s cell membranes. With different Cr treatments and different concentrations of activated carbon, the effects of Antioxidant System are different, the reasons of which need to be further studied.
     (4) Cr contaminated soil can clearly increase pakchoi’s absorption of Cr. When planting pakchoi in Cr contaminated soil, Cr amount in pakchoi increase largely, and the more serious the pollution, the larger amount pakchoi contains. Different parts share different Cr amount, with roots the most, followed by leaves and then stems. After adding ameliorants like lime, activated carbon, etc. to Cr contaminated soil, the amount of Cr contained by pakchoi decreases to certain extent compared with the control group. The larger amount of ameliorants added, the less Cr contained in pakchoi. This showed that ameliorants like lime and activated carbon can effectively suppress pakchoi’s absorption of Cr. Different soil conditioners share different suppression effect with different Cr treatment.
     (5) The adding Cr can create an increasing tendency of pH. With low-concentration Cr treatment, the add of lime obviously increase soils pH, while with high-concentration Cr treatment, lime has little influence on soil pH. Activated carbon displayed little influence on soil pH. Under the circumstances of the co-application of lime and activated carbon, soil pH still increases, but not as obvious as that of lime. Then we can see that the add of activated carbon can in a sense mitigate soil pH changes.
     (6) The amount of Cr absorbed by pakchoi is not only related with the amount of soil, but also importantly with the amount of exchangeable Cr in soil. The more exchangeable Cr in soils, the easier the plant absorbed. The add of lime for one thing can enhance soil pH, increase the amount of settling Cr and decrease Cr activity; for another Ca can cause antagonistic effect on Cr, and then prevent pakchoi’s absorption from Cr. Activated carbon for one thing can directly absorb heavy mental in soil and decrease the amount of exchangeable Cr; for another the add of activated carbon can enhance the amount of organic carbon in soil and the amount of organic coated Cr, and then fix Cr.
引文
鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000.
    仓龙,周东美.施加不同电压对铬污染黄棕壤电动过程的影响[J].土壤学报,2005,42(6):999-1005.
    曹仁林,霍文瑞,何宗兰,等.铬渣钙镁磷肥改土对地下水潜在影响[J].农业环境与发展,1997,(04).
    陈锋,孟凡生,王业耀,等.电压对电动修复Cr(Ⅵ)污染高岭土的影响研究[J].环境科学与管理,2006,31(8):145-147.
    杜良,王金生.铬渣毒性对环境的影响与产出量分析[J].安全与环境学报,2004,4(2):34-37.
    杜锐.不同水质灌溉条件下蔬菜对铬的积累研究[J].山西煤炭管理干部学院学报,2002,3:77-78.
    段敏,马往校,李岚.17种蔬菜中铅铬镉元素含量分析研究[J].干旱区资源与环境,1999,13(4):74-80.
    高宗军,高洪阁,李白英,等.不同类型岩土对六价铬的抗污染性分析[J].中国地质灾害与防治学报,2003,14(4):108-111.
    何德文.高浓度含铬(Ⅵ)污染物的微生物解毒研究[J].矿冶工程,2004,24(6):58-60.
    纪柱.铬污染土壤的修复[J].无机盐工业,2008,40(2):47-50.
    江澜,王小兰.铬的生物作用及污染治理[J].重庆工商大学学报,2004,21(4):325-328.
    江澜.微生物治理铬污染的应用与发展[J].重庆工商大学学报(自然科学版),2006,23(2):132-135.
    姜辉,叶庆春.部分金属污染物质对人体的危害[J].齐鲁医学杂志,2003,18(4):497-498.
    李明德,汤海涛,汤睿,等.长沙市郊蔬菜土壤和蔬菜重金属污染状况调查及评价[J].湖南农业科学,2005,(3):34-36.
    李义,杨先科.铬的单一或复合污染及镧对水稻幼苗生长的影响[J].贵州师范大学学报,2006,24(1):39-42.
    刘云惠,魏显有,王秀敏,等.土壤中铬的吸附与形态提取研究[J].河北农业大学学报,2000,23(1):16-20.
    罗义,毛大庆.生物修复概述及国内外研究进展[J].辽宁大学学报(自然科学版),2003,30(4):298-302.
    马锦民,瞿建国,夏君,等.失活微生物和活体微生物处理含铬(Ⅵ)废水研究进展[J].环境科学与技术,2006,29(4):103-105.
    孟凡生,王业耀.电动修复铬污染土壤的实验研究[J].环境科学与技术,2005,28(4):27-30.
    孟凡生,王业耀.铬(VI)污染土壤电动修复影响因素研究[J].农业环境科学学报,2006,25(4):983-987.
    任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112-116.
    任旭喜.土壤重金属污染及防治对策研究[J].环境保护科学,1999,25(5):31-33.
    沈振国,陈怀满.土壤重金属污染生物修复的研究进展[J].农村生态环境,2000,16(2):39-44.
    宋波,高定,陈同斌,等.北京市菜地土壤和蔬菜铬含量及其健康风险评估[J].环境科学学报,2006,26(10):1707-1715.
    覃嘉铭,裴建国,郭慧霞,等.粉煤灰重金属铬的二次污染:某电厂灰场周围地下水Cr6+污染事例[J].中国岩溶,2001,20(3):189-194.
    王剑虹,麻密.植物修复的生物学机制[J].植物学通报,2000,17(6):504-510.
    王威.铬污染地区环境对植物吸收重金属的影响[J].天津师范大学学报(自然科学版),2005,25(1):66-68.
    王业耀,孟凡生.铬(Ⅵ)污染高岭土电动修复实验研究[J].生态环境,2005,14(6):855-859.
    夏家淇,蔡道基,夏增禄.GB15618-1995.土壤环境质量标准[S].
    徐勤松,施国新,杜开和.六价铬污染对水车前叶片生理生化及细胞超微结构的影响[J].广西植物,2002,22(1):92-96.
    徐衍忠,秦绪娜,刘祥红,等.铬污染及其生态效应[J].环境科学与技术,2002,25(21):8-10.
    尹晋,马小东,孙红文.电动修复不同形态铬污染土壤的研究[J].环境工程学报,2008,2(5):684-689.
    张瑞华,孙红文.电动力和铁PRB技术联合修复铬(Ⅵ)污染土壤[J].环境科学,2007,28(5):1131-1136.
    张瑞华,孙红文.零价铁修复铬污染水体的实验室研究[J].农业环境科学学报,2004,23(6):1192-1195.
    张锡辉,王慧,罗启仕.电动力学技术在受污然地下水和土壤修复中新进展[J].水科学进展,2001.12(2):249-255.
    张学洪,罗亚平,黄海涛,等.某电镀厂土壤重金属污染及植物富集特征[J].桂林工学院学报,2005,25(3):289-292.
    张学洪,罗亚平,黄海涛,等.一种新发现的湿生铬超积累植物-李氏禾(Leersia hexandra Swartz)[J].生态学报,2006,26(3):950-953.
    赵守城.镉、铬离子对大型水蚤(Daphnia magna)毒性的协同作用[J].中国公共卫生,2000,16(5):414.
    周东美,仓龙,邓昌芬.络合剂和酸度控制对土壤铬电动过程的影响[J].中国环境科学,2005,25(1):10-14.
    周东美,郝秀珍,薛艳,等.污染土壤的修复技术研究进展[J].生态环境,2004,13(2):234-242.
    周红卫,施国新,徐勤松,等.Cr6+和Cr3+对水花生几种生理生化指标的影响比较[J].农村生态环境,2002,18(4):35-40.
    周加祥,刘铮.铬污染土壤修复技术研究进展.环境污染治理技术与设备,2000,1(4):53-57.
    周希琴,李裕红.木麻黄种子萌发对铬胁迫的生理生态响应研究[J].中国生态农业学报,2004,2(1):53-55.
    周易勇,刘同仇,邓波儿.铬污染对辣椒叶绿素和铁含量及几种酶活性的影响[J].环境科学,1991,11(3):28-29.
    Ackerley D F, Gonzalez C F, Park C H, et al. Chromate-reducing properties of soluble flavoproteins from pseudomonas putida and escherichia coli [J]. Applied and Environmental Microbiology, 2004, 70(2): 873-882.
    Amoroso M J, Castro G R, Duran A. Chromium accumulation by two Streptomyces spp. isolated from riverine sediments [J]. Journal of Industrial Microbiology & Biotechnology, 2001, 26: 210-215.
    Arias M, Barral M T, Mejuto J C. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids [J]. Chemosphere, 2002, 48: 1081-1088.
    Arias Y M, Tebo B M. Cr(VI) reduction by sulfidogenic and nonsulfidogenic microbial consortia[J]. Applied and Environmental Microbiology, 2003, 69(3): 1847-1853.
    Barbier F, Duc G, Petit R M. Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite/water interface [J]. Physicochemieal and Engineering Aspects, 2000, 166: 153-159.
    Blowes D W, Ptacek C J, Benner S G, et al.Treatment of inorganic contaminants using permeable reactive barriers [J]. Journal of Contaminant Hydrology, 2000, 45: 123-137.
    Brown S, Christensen B, Lombi E, et al. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ [J]. Environmental Pollution, 2005, 138: 34-45.
    Camargo F A O, Okeke B C, Bento F M, et al. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+ [J]. Appl Microbiol Biotechnol, 2003, 62: 569-573.
    Canovas D, Cases I, Lorenzo V D. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis [J]. Environmental Microbiology, 2003, 5(12): 1242-1256.
    Cao R X, Ma L Q, Chen M, et al. Phosphate-induced metal immobilization in a contaminated site[J]. Environmental Pollution, 2003, 122: 19-28.
    Cao X, Ma L Q. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood [J]. Environmental Pollution, 2004, 132: 435-442.
    Castaldi P, Santona L, Melis P. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth [J]. Chemosphere, 2005, 60: 365-371.
    Chen S B, Zhu Y G, Ma Y B. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils [J]. Journal of Hazardous Materials B, 2006, 134: 74-79.
    Davidson C M, Duncan A L, Littlejohn D, et al.A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land [J]. Analytica Chimica Acta, 1998, 363: 45-55.
    Desjardin V, Bayard R, Huck N, et al. Effect of microbial activity on the mobility of chromium in soils [J]. Waste Management, 2002, 22: 195- 200.
    Desjardin V, Bayard R, Huck N, et al. Effect of microbial activity on the mobility of chromium in soils [J]. Waste Management, 2002, 22: 195-200.
    Foster A L, Brown Jr G E, Parks G A. X-ray absorption fine structure study of As(V) and Se(IV) sorption complexes on hydrous Mn oxides [J]. Geochimica et Cosmochimica Acta, 2003, 67: 1937-1953.
    Garcia-Sanchez A, Alastuey A, Querol X. Heavy metal adsorption by different minerals: application to the remediation of polluted soils [J]. The Science of the Total Environment, 1999, 24 (2): 179-188.
    Gent D B, Bricka R M, Alshawabkeh A N, et al. Bench- and field-scale evaluation of chromium and cadmium extraction by electrokinetics [J]. Journal of Hazardous Materials, 2004, 110: 53-62.
    Haidouti C. Inactivation of mercury in contaminated soils using natural zeolites [J]. The Science of the Total Environment, 1997, 208: 105-109.
    Hashimoto Y, Matsufuru H, Sato T. Attenuation of lead leachability in shooting range soils using poultry waste amendments in combination with indigenous plant species [J]. Chemosphere, 2008, 73: 643-649.
    Hellerich L A,Nikolaidis N P. Studies of hexavalent chromium attenuation in redox variable soils obtained from a sandy to sub-wetland groundwater environment [J]. Water Research, 2005, 39: 2851-2868.
    Ivask A, Virta M, kahru A. Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil [J]. Soil Biology & Biochemistry, 2002, 34: 1439-1447.
    Kalinowski B E, Oskarsson A, Albinsson Y, et al. Microbial leaching of uranium and other trace elements from shale mine tailings at Ranstad [J]. Geoderma, 2004, 122: 177-194.
    Karlsson T, Elgh-Dalgren K, Bjorn E, et al. Complexation of cadmium to sulfur and oxygen functional groups in an organic soil [J]. Geochimica et Cosmochimica Acta, 2007, 71: 604-614.
    Kastumata H, Kaneco S, Inomata K, et al. Removal of heavy metals in rinsing wastewater from plating factory by adsorption with economical viable materials [J]. Journal of Environmental Management, 2003, 69: 187-191.
    Kotas J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environmental Pollution [J], 2000, 107: 263-283.
    Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review [J]. Waste Manage, 2008, 28: 215-225.
    Lageman R, Clarke R L, Pool W. Electro-reclamation, a versatile soil remediation solution [J]. Engineering Geology, 2005, 77: 191-201.
    Leupin O X, Hug S J. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron [J]. Water Research, 2005, 39: 1729-1740.
    Liu R Q, Zhao D Y. In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles [J]. Chemosphere, 2007, 68: 1867-1876.
    Liu R Q, Zhao D Y. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles [J]. Water Research, 2007, 41: 2491-2502.
    Liu Y, Lin C, Wu Y. Characterization of red mud derived from a combined bayer process and bauxite calcinations method [J]. J Hazard Mater, 2007, 146: 255-261.
    Lombi E, Zhao F J , Zhang G, et al. In situ fixation of metals in soils using bauxite residue: Chemical assessment [J]. Environmental Pollution, 2002, 118: 435-443.
    Lombi E, Zhao F J, Wieshammer G, et al. In situ fixation of metals in soils using bauxite residue: Biological effects [J]. Environmental Pollution, 2002, 118: 445-452.
    Mangabeira P A O, Labejaf L, Lamperti A, et al. Accumulation of chromium in root tissues of Eichhornia crassipes(Mart.) Solms. in Cachoeira river-Brazil [J]. Applied Surface Science, 2004: 497-501.
    Manna M, Sanjay K, Shekhar R. Electrochemical cleaning of soil contaminated with a dichromate lixiviant [J]. Int J Miner Process, 2003, 72: 401-406.
    Matusik J, Bajda T, Manecki M. Immobilization of aqueous cadmium by addition of phosphates[J]. Journal of Hazardous Materials, 2008, 152: 1332-1339.
    McLean J S, Beverldge T J, Phlpps D. Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate-contaminated site [J].Environmental Microbiology, 2000, 2(6): 611-619.
    Mendoza J, Garrido T, Castillo G, et al.Metal availability and uptake by sorghum plants grown in soils amended with sludge from different treatments [J]. Chemoshpere, 2006, 65: 2304-2312.
    Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal contaminated soils and groundwater: An evaluation [J]. Engineering Geology, 2001, 60: 193-207.
    Nalini P, Chandra P S. Chromium interference in iron nutrition and water relations of cabbage [J], Environmental and Experimental Botany,2003(49): 16-20.
    Nicholson F A, Smith S R, Alloway B J, et al. An inventory of heavy metals inputs to agricultural soils in England and Wales [J]. Science of the Total Environment, 2003, 311: 205-219.
    Nissen L R, Lepp N W, Edwards R. Synthetic zeolites as amendments for sewage sludge-based compost [J]. Chemosphere, 2000, 41: 263-269.
    O’Dell R, Silk W, Green P, et al. Compost amendment of Cu-Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Bromus carinatus (Hook and Arn. ) [J]. Environmental Pollution, 2007, 148: 115-124.
    Pempkowiak J, Sikora A, Biernacka E. Speciation of heavy metals in marine sediments vs their bioaccumulation by mussels [J]. Chemosphere, 1999, 39(2): 313-321.
    Reddy K R, Chinthamreddy S. Effects of initial form of chromium on electrokinetic remediation in clays [J]. Advances in Environmental Research, 2003, 7: 353-365.
    Reddy K R, Chinthamreddy S. Effects of initial form of chromium on electrokinetic remediation in clays [J]. Advances in Environmental Research, 2003, 7: 353-365.
    Reddy K R, Chinthamreddy S. Electrokinetic remediation of heavy metal-contaminated soils under reducing environments [J]. Waste Management, 1999, 19: 269-282.
    Reddy K R, Xu C Y, Chinthamreddy S. Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis [J]. Journal of Hazardous Materials B, 2001, 84: 279-296.
    Ribeiro A B, Mexia J T. A dynamic model for the electrokinetic removal of copper from a polluted soil [J]. Journal of Hazardous Materials, 1997, 56 (3): 257-271.
    Ruttens A, Mench M, Colpaert J V, et al. Phytostabilization of a metal contaminated sandy soil.Ⅰ: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals [J]. Environmental Pollution, 2006, 144: 524-532.
    Sah J G, Chen J Y. Study of the electrokinetic process on Cd and Pb spiked soils [J]. Journal of Hazardous Materials, 1998, 58: 301-315.
    Santona L, Castaldi P, Melis P. Evaluation of the interaction mechanisms between red muds and heavy metals [J]. Journal of Hazardous Materials B, 2006, 136: 324-329.
    Sawada A, Mori K, Tanaka S, et al. Removal of Cr(VI) from contaminated soil by electrokinetic remediation [J]. Waste Manage, 2004, 24: 483-490.
    Scheinost A M, R C Ford, D L. Spards. The role of Al in the formation of secondary Ni precipitates on pyrophyllite, gibbsite, talc, and amorphous silica: a DRS study [J]. Geochim. Cosmochim. Acta. , 1999, 63 (3): 193-203.
    Shi W, Bsichoff M, Turco R, et al. Long-term effects of chromium and lead upon the activity of soil microbial communities [J]. Applied Soil Ecology, 2002, 21: 169-177.
    Tokunaga T K, Wan J, Firestone M K, et al. In Situ reduction of dhromium(Ⅵ) in heavily contaminated soils through organic carbon amendment [J]. J Environ Qual, 2003, 32: 1641- 1649.
    VanHerwijnen R, Hutchings T R, Al-Tabbaa A, et al. Remediation of metal contaminated soil with mineral-amended composts [J]. Environmental Pollution, 2007, 150: 347-354.
    Viera M, Curutchet G, Donati E. A combined bacterial process for the reduction and immobilization of chromium [J]. International Biodeterioration & Biodegradation, 2003, 52: 31-34.
    Virkutyte J, Sillanpaa M, Latostenmaa P. Electrokinetic soil remediation-critical overview [J]. The Science of the Total Evironment,2002,289:97-121.
    Wang Y M, Chen T C, Yeh K J , et al. Stabilization of an elevated heavy metal contaminated site[J]. Journal of Hazardous Materials, 2001, 88: 63-74.
    Xu Y H, Zhao D Y. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles [J]. Water Research, 2007, 41: 2101-2108.
    Yang G C C, Lin S L. Removal of lead from a silt loam soil by electrokinetic remediation[J]. Journal of Hazardous Materials, 1998, 58: 285-299.
    Zorpas A A, Constantinides T, Vlyssides A G. Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost [J]. Bioresource Technology, 2000, 72: 113-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700