管壳式换热器壳侧流场数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换热器是冷热流体进行热量传递的设备,广泛应用于石油、化工等工业领域中。管壳式换热器由于结构简单,设计制造工艺成熟,安全性比较高以及适用性比较广等特点,成为石油化工领域中最常用的换热器结构型式。因此,开展管壳式换热器壳侧流体流场流动特性的研究对改善换热器传热过程、提高效率、降低能耗具有重要的现实意义。本文以大型管壳式换热器为研究对象,分别对单弓形、双弓形和圆环-盘式三种折流板型式的换热器的壳侧流体流动进行数值模拟,同时分析了提高模拟准确度的途径。
     首先,分析大型管壳式换热器的壳侧结构,建立壳侧几何模型。受到微机容量的限制,创造性的提出了将模型分段的方法进行分段数值模拟。
     对于单弓形折流板的壳侧模型,运用标准k -ε模型、壁面函数法和SIMPLE算法对模型壳侧流动进行了数值模拟。结果表明:折流板缺口尺寸越大,在折流板的前面和背面产生流体滞留的区域越大,但壳程的总压降越小;不同换热管排列方式下,管排为正三角形排列的壳侧模型压降最大。同理,对双弓形和圆环-盘式的壳侧模型分别进行了三维数值模拟,表明了两种折流板型式的使用,很好的减小了模型壳程中流动死角;换热管排列方式为正三角形排列时,壳程的压降也最大。
     对比分析了三种折流板型式的壳侧模型的流场特性,结果表明:单弓形折流板的壳侧模型的流场存在不同大小的流动死角区域,壳程压降大;双弓形和圆环-盘式折流板的壳侧模型的流场特性比单弓形折流板的要好,壳程压降也小,其中双弓形折流板的壳侧模型的压降最小。
Heat exchanger is the equipment that make heat transferred from hot fluid to cool fluid,it is widely used in industrial circles like petroleum、chemical engineering.Shell-and-tube heat exchanger is common used in industrial circles for simple structure、fully-fledged designed and worked、highly safety、applicability and so on. So the research in shell-side flows of shell-and-tube heat exchanger has significant meaning for improving heat transfer、enhancing efficiency and reducing energy consumption.This paper regards large-scale shell-and-tube heat exchanger as the research object,shell-side flows of heat exchangers with single and double segmental baffles or disco and doughnut baffles are simulated numerically.And the way for increasing the accuracy simulated is analyzed.
     First, the structure of shell side is analyzed, geometry model is established.The method is brought forward, which is used to divided shell-side model into several sections,and sections are simulated separately.
     Shell-side flow of models with single segment baffles is simulated, to which standard k ?εmodel、wall functions and SIMPLE are applied.The results show that the larger baffle cut, the wider fluid detention areas which are caused in front of baffles and back,and pressure drop of the models whose tubes are arrayed by regular triangle is biggest.In a similar way,the models with double segment and disco and doughnut baffles are simulated.It shows that dead flow angles are well eliminated in the shell side because of the usage of two kinds of baffles,and pressure drop of the models whose tubes are arrayed by regular triangle is also biggest.
     The properties of flow field for shell-side models with three kinds of baffles are analyzed and contrasted.The results show that flow field for shell-side models with single segment baffles exist different size flow dead singles;pressure drops of the models are bigger.For the models with double segment and disco and doughnut baffles,their properties of flow field are better than models with single segment baffles;pressure drops of the models are smaller,pressure drops of models with double segment baffles are smallest among them.
引文
[1]谭天恩,麦本熙,丁慧华.化工原理(上册).北京:化学工业出版社,1984:292-292
    [2]刘月芹.浅谈换热器的分类和特点.化工设计通讯,2003,29(3):39-42
    [3]刘振斌.换热器的类别及特点.现代化农业,1991,6:38-40
    [4]秦叔经,叶文邦.化工设备设计全书—换热器.北京:化学工业出版社,2003:1-4
    [5]李红枫,周明连.管壳式换热器壳侧流动与传热的实验研究.发电设备,2001,1:18-21,40
    [6]邓斌,陶文铨.换热器壳侧流动与换热的数值模拟及实验研究.西安交通大学学位论文,2003:6-10
    [7]郭茶秀,李培宁等.管壳式换热器壳侧流场研究进展.石油化工设备,1999,28(2):10-14
    [8]吴金星,王定标等.管壳式换热器壳程流动和传热的数值模拟研究进展.流体机械,2002,30(5):28-32
    [9]解衡,高祖瑛.管壳式换热器流场三维数值模拟.核科学与工程,2002,22(3):240-243
    [10] N.Targui,H.Kahalerras. Analysis of fluid flow and heat transfer in a double pipe heat exchanger with porous structures.Energy Conversion and Management,49(2008):3217-3229.
    [11]谢国英,庞明军.换热器传热数值模拟的两个假设.山西化工,2005,25(4):44-47
    [12] Prithlviraj M,Andrews M J. Three dimensional numerical simulation of shell-and-tube heat exchanger. Numerical Heat Transfer, Part A,1998,33:799-828
    [13]王定标.纵流壳程换热器数值模拟技术与应用[D].上海:华东理工大学,1999.
    [14]王定标等.纵流壳程换热器数值模拟的应用研究[J].郑州工业大学学报,1999,20(2):18-20
    [15]黄兴华等.管壳式换热器壳程流动的三维数值模拟[J].化工学报,2000,51(3):297-302.
    [16]黄兴华等.换热器壳侧紊流流动特性的数值研究[J].上海交通大学学报,2000,34(9):1191~1194.
    [17]聂建虎等.具有复杂结构的换热器出水管段内湍流的数值模拟[J].西安交通大学学报,2000,34(5):13~18.
    [18]刘敏珊,董其伍,刘乾.折流板换热器壳程流场数值模拟与结构优化.节能,2005,10:3-5,16
    [19] Patanker S V. Recent development in computation heat transfer. Journal of Heat Transfer,1998,110:1037-1045
    [20]陶文铨.计算传热学的近代进展[M] .科学出版社,2000.
    [21]刘利平,黄万年.FLUENT软件模拟管壳式换热器壳程三维流场.化工装备技术,2006,27(3):54-57
    [22]邓斌,陶文铨.管壳式换热器壳侧湍流流动的数值模拟及实验研究.西安交通大学学报,2003.
    [23] Bengt O Neeraas,Arne O Fredheim. Experimental shell side heat transfer and pressure drop in gas flow for spiral wound LNG heat exchanger. International Journal of Heat and Mass Transfer 47(2004):353-361
    [24]黄华.管壳式换热器壳侧单相和两相流动的数值模拟和实验研究(博士论文).西安:西安交通大学.1998.
    [25]吴亚东.管壳式换热器的研究进展.化工纵横,2002,11:18-22
    [26]董其伍,刘敏珊,苏立建.管壳式换热器的研究进展.化工设备与管道,2006,43(6):18-22
    [27]国家质量技术监督局.GB151—1999管壳式换热器
    [28]王建国.管壳式换热器结构型式及传热性能.天津建设科技,2007,17(B07):59-61
    [29]李阳初,王耀斌.石油化学工程基础.东营:石油大学出版社,1997:177-185
    [30] H. Li,V.Kottke.Analysis of local shell side heat and mass transfer in the shell and tube heat exchanger with disc and doughnut baffles. International Journal of Heat and Mass Transfer,42(1999):3509-3521
    [31]宋小平.螺旋折流板列管换热器.石油化工设备技术,2002,23(1):18-19,22
    [32] Yong-GangLei, Ya-LingHe, RuiLi, Ya-FuGao. Effects of baffle inclination angle on flow and heat transfer of a heat exchanger with helical baffles. Chemical Engineering and Processing,47(2008):2336-2345
    [33] Bell,K.J. Delaware. Method of Side Design, in Heat Exchanger Sourcebook, ed. J.W.Palen, Hemisphere. New York,1986
    [34] Nemcansky, J. Thermal Drdign of Shell-and-Tube Heat Exchangers. VUCHZ Report,500/1268b Brno,1989
    [35]陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2001:333
    [36]李万平.计算流体力学.湖北:华中科技大学出版社,2004:34-48
    [37]梁智权.流体力学.重庆:重庆大学出版社,2002:138-164
    [38]江帆,黄鹏.Fluent高级应用与实例分析.北京:清华大学出版社,2008
    [39]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004:18-19
    [40]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004:120-123
    [41] Fluent Inc.FLUENT 6.2 User's Guide.Fluent Inc,2005
    [42]马国彬,茅清希.考虑近壁区域分子粘性的置换通风数值模拟.同济大学学报,2004,31(4):413-417
    [43]郭婷婷,李少华,徐忠.两种近壁湍流模式对横向紊动射流尾流场的影响.水动力学研究与进展,2006,26(1):20-25
    [44]冶萍,张靖周.求解N-S方程SIMPLE算法的半交错网格研究.南京航空航天大学学报,2004,36(1):11-15
    [45]赵国智,孔凡让,占惊春等.基于SIMPLE算法的湍流场数值模拟.水电能源科学,2007,25(3):100-102
    [46]王志东,汪德耀,赖锡军.非正交同位网格中的SIMPLE算法.河海大学学报(自然科学版),2003,31(5):509-512
    [47]柏威,鄂学全.基于非结构化同位网格的SIMPLE算法.计算力学学报,2003,20(6):702-710
    [48]范晓伟,阴建民,陈钟顾.SIMPLE算法中压力松驰因子的自动生成.郑州纺织工学院学报,1997,8(3):8-12
    [49]邓启红,汤广发.SIMPLE算法中压力修正方程边界条件确定新探.湖南大学学报(自熬科学版),1999,26(6):65-70
    [50]郭航,马重芳,陶文铨等.SIMPLE算法的一个新的改进方案.西安交通大学学报,2002,36(1):20-24,42
    [51]孙启鹏.管壳式换热器壳侧流动分析.中国科技信息,2008,1:59~61
    [52]徐斌,王启杰,罗来勤.管壳式换热器壳侧气液两相流路分析法的研究.热科学与技术,2003,2(2):129-135
    [53] Uday C.Kapale,Satish Chand.Modeling for shell-side pressure drop for liquid ?ow in shell-and-tube heat exchanger.International Journal of Heat and Mass Transfer,2006,49:601–610
    [54] H.Li,V.Kottke.Analysis of local shell side heat and mass transfer in the shell-and-tube heat exchanger with disc-and-doughnut baffles.International Journal of Heat and Mass Transfer,1999,42:3509-3521

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700